
CS 335: Kernel Trick

Dan Sheldon

Big Picture: So Far

I Cost function paradigm for supervised machine learning
I Input x
I Output y
I Find hθ(x) such that hθ(x(i)) ≈ y(i)

I Cost function J(θ)
I Regularization to avoid overfitting

I Everything so far has been based on linear models
hθ(x) = g(θT x)

Kernel-Trick Motivation

I But what we really want are flexible non-linear classifers!
I How can we get this with linear methods?
I Kernel trick!

I Wait. . . feature expansions already allow non-linear learning. . .

(x1, x2) 7→ (1, x1, x2, x
2
1, x

2
2, x1x2)

How to apply feature mappings? Do they really give a flexible class
of non-linear models? How many features? And which ones?

I We would like something more “automatic”
I We don’t want to expand our datasets to many times their

original size

I Kernel trick: non-linear feature expansions in implicit way way
I Computationally efficient
I Don’t actually do expansion

Kernel Trick Starting Point

Assumption (*): θ = ∑m
i=1 αix(i) for some α1, . . . , αm

I θ in span of feature vectors
I We’ll discuss later how to find α1, . . . , αm

Linear Regression

Assumption (*): θ = ∑m
i=1 αix(i).

What does linear regression hypothesis look like?

hθ(x) = θT x =
( m∑

i=1
αix(i)

)T
x =

m∑

i=1
αi(x(i))T x =

m∑

i=1
αiK(x(i),x)

I K(x, z) := xT z is the “kernel function” (just dot product for
now)

I Predictions only depend on training data through kernel
function! (dot products)



Linear Regression
Assumption (*): θ = ∑m

i=1 αix(i). Then
hθ(x) = ∑m

i=1 αiK(x(i), x).

What does linear regression cost function look like?

J(θ) = 1
2

m∑

k=1

(
hθ(x(k))− y(k))2

= 1
2

m∑

k=1

(
m∑

i=1
αiK(x(i),x(k))− y(k)

)2

:= J(α)

I Cost function only depends on training data through kernel
function! (dot products)

I How to find α = (α1, . . . , αm)? Minimize J(α). (More later)

I Note: (*) only needs to hold for θ that minimizes J(θ)

Takeaway

hθ(x) =
m∑

i=1
αiK(x(i),x)

J(θ) = 1
2

m∑

k=1

(
m∑

i=1
αiK(x(i),x(k))− y(k)

)2

Thought experiment: I hold feature vectors in a box. You can ask
me only for dot products. Can you still train model? Make
predictions? Yes!

Concrete Example: “Kernelized” Linear Regression
I Observation: can rewrite linear regression as a different linear

regression model:

hθ(x) =
∑

i

αiK(x(i),x) = αTk(x)

αT =
[
α1 . . . αm

]
, k(x) =




K(x(1),x)
K(x(2),x)

...
K(x(m),x)




I Map x to new “feature vector” k(x) (= kernel evaluation
between x and each training feature vector.

I What happens to original data matrix X under this mapping?
(Recall: ith row of X is ith feature vector x(i).)

I We get a new “data matrix” K, whose ith row is holds dot
products between x(i) and each other training point:

Kij = K(x(i),x(j))

I This is called the kernel matrix of a training set

I Our reasoning so far says you can learn an equivalent linear
model using the kernel matrix in place of the original data
matrix.

I Demo

I Note: this equivalance is only exact without regularization. In
practice: use a different optimization method to find α to
minimize J(α)

Linear Models

Same reasoning applies more generally to any linear model of this
form:

hθ(x) = g(θT x)

J(θ) =
m∑

k=1
cost(θT x(k), y(k))

I Does this include logistic regression? Yes.
I Substitute θ = ∑m

i=1 αix(i) and observe that cost function and
hypothesis only depend on training data through dot products.

I Can fit model by substituting kernel matrix for data matrix.

Kernel Trick

I This doesn’t seem that special. . .

I Real trick: fancy non-linear feature expansions in a
computationally efficient way

I Suppose we want to do feature expansion before learning

hθ(x) = θTφ(x), φ : Rn → Rp

I To solve the learning problem and make predictions, we only
need to be able to compute K(x, z) = φ(x)Tφ(z). This is
called the kernel corresponding to φ.



Example: Polynomial Kernel

Important trick: we can often compute kernel without actually
doing the expansion

K(x, z) = (xT z)2

Claim: this is the kernel corresponding to φ(x) =




x1x1
x1x2
x2x1
x2x2




Exercise: verify this on board

More Polynomial Kernels

Claim: these two are equivalent

φ(x) =




1√
2x1√
2x2

x1x1
x1x2
x2x1
x2x2




K(x, z) = (xT z + 1)2

I Complexity of computing φ(x)Tφ(z)?
I Complexity of computing xT z?
I Complexity of computing (xT z + 1)2?

Polynomial Kernel: Significance

I Compute φ(x)Tφ(z): O(n2)
I Compute xT z: O(n)
I Compute (xT z + 1)2: O(n)

If using kernel trick, can implement a non-linear feature expansion
at no additional cost

Even More Polynomial Kernels

K(x, z) = (xT z + 1)d

Corresponds to φ that takes all products of up to d original features

O(n) time to compute kernel instead of O(nd)

Gaussian Kernel

K(x, z) = exp(−γ||x− z||2)

I Highly flexible, non-linear kernel

I Corresponds to infinite dimensional φ (cannot implement
feature mapping, but can still use kernel)

I Demos
I Gaussian kernel intuition: similarity function
I Linear regression

A Word on Regularization

I Suppose we want to combine feature expansion with
regularization

J(θ) = λ

2 ‖θ‖
2 +

m∑

k=1
cost

(
θTφ(x(k)), y(k)

)

I Assume θ = ∑m
i=1 αiφ(x(i)). Then regularization term

becomes
‖θ‖2 = θT θ = αTKα

(derivation next slide)

I This is not the same as penalizing ‖α‖2

I Tip: use regularization with kernelized linear models
I Tip: Use a custom optimizer for to minimize J(α)



A Word on Regularization

Derivation of regularization term:

θT θ =
(

m∑

i=1
αiφ(x(i))

)T( m∑

j=1
αiφ(x(j))

)

=
m∑

i=1

m∑

j=1
αiαjφ(x(i))Tφ(x(j))

=
m∑

i=1

m∑

j=1
αiαjK(x(i),x(j))

= αTKα

Practical Tips
I Use support vector machines (SVMs) for kernelized

classification
I Like logistic regression, with slightly different loss function.

(Derivation based on geometric principles, but end point the
same.)

I More efficient than logistic regression when used with kernels
(many αi values are zero)

I Use kernel ridge regression or support vector regression for
kernelized regression

I Use Gaussian kernels

I Use regularization with kernels

I How to select λ and γ? Cross-validation!

Demos

I Kernel logistic regression

I SVM loss

I SVM classification


