CS 335: Kernel Trick

Dan Sheldon

Big Picture: So Far

» Cost function paradigm for supervised machine learning
> Input x
» Output y
» Find hg(x) such that hg(x®) ~ y(®
» Cost function J(6)
» Regularization to avoid overfitting

» Everything so far has been based on linear models
ho(x) = g(8"x)

Kernel-Trick Motivation

» But what we really want are flexible non-linear classifers!
» How can we get this with linear methods?
> Kernel trick!

» Wait... feature expansions already allow non-linear learning. ..

(21, 22) = (1,21, 22, 23, 23, T122)

How to apply feature mappings? Do they really give a flexible class
of non-linear models? How many features? And which ones?

» We would like something more “automatic”
» We don't want to expand our datasets to many times their
original size

» Kernel trick: non-linear feature expansions in implicit way way
» Computationally efficient
» Don't actually do expansion

Kernel Trick Starting Point

Assumption (*¥): 8 = 37, a;x( for some a, ..., o,

> 0 in span of feature vectors
» We'll discuss later how to find a,...,am

Linear Regression

Assumption (*¥): § = 37, a;x(.
What does linear regression hypothesis look like?

m

T m ) m )
ho(x) = 67x = (Z aixm) x =Y ai(x)Tx =3 i K(x" x)
=1 i=1 i=1
> K(x,2):= x"'z is the “kernel function” (just dot product for

now)

» Predictions only depend on training data through kernel
function! (dot products)




Linear Regression

Assumption (*): 6 = >, a;x®. Then
ho(x) = X o K (x), 2).

What does linear regression cost function look like?

m

k=1
2
=3 > (ZaiK(xm,x(k)) - y(k)> = J(a)
k=1 \i=1

» Cost function only depends on training data through kernel
function! (dot products)

» How to find & = (e, ..., a,)? Minimize J(a). (More later)

> Note: (*) only needs to hold for 6 that minimizes .J(8)

Takeaway

he(x) = Z o K (x?, %)
i=1

2

1 m m X
J0) =5 (Zam@“%xw) - y<k>)

k=1 \i=1

Thought experiment: | hold feature vectors in a box. You can ask
me only for dot products. Can you still train model? Make
predictions? Yes!

Concrete Example: "Kernelized” Linear Regression

» Observation: can rewrite linear regression as a different linear
regression model:

ho(x) = Z i K (x®, %) = o k(x)

K(x®M x)
K X(Q),X
a :[al am}, k(x) = ( . )
K(x™,x)

> Map x to new “feature vector” k(x) (= kernel evaluation
between x and each training feature vector.

» What happens to original data matrix X under this mapping?
(Recall: ith row of X is ith feature vector x(.)

» We get a new “data matrix" K, whose ith row is holds dot
products between x() and each other training point:

Kij = K(x® x0)
» This is called the kernel matrix of a training set
» Our reasoning so far says you can learn an equivalent linear
model using the kernel matrix in place of the original data
matrix.
» Demo
» Note: this equivalance is only exact without regularization. In

practice: use a different optimization method to find « to
minimize J(a)

Linear Models

Same reasoning applies more generally to any linear model of this
form:

ho(x) = 9(8"x)

J(0) = Z cost(87x(*)_4(k))
k=1

» Does this include logistic regression? Yes.

> Substitute @ = 37| a;x() and observe that cost function and
hypothesis only depend on training data through dot products.

» Can fit model by substituting kernel matrix for data matrix.

Kernel Trick

» This doesn't seem that special. ..

> Real trick: fancy non-linear feature expansions in a
computationally efficient way

» Suppose we want to do feature expansion before learning
ho(x) = 0" p(x), ¢:R" = RP
» To solve the learning problem and make predictions, we only

need to be able to compute K (x,2z) = ¢(x)7¢(z). This is
called the kernel corresponding to ¢.




Example: Polynomial Kernel

Important trick: we can often compute kernel without actually
doing the expansion

K(x,2) = (xTz)?

xr1T1
xr1xo
ToT1
xroXxo

Claim: this is the kernel corresponding to ¢(x) =

Exercise: verify this on board

More Polynomial Kernels

Claim: these two are equivalent

1
V2x1
V219
d(x) = | 121

xr1T9
21
_:l/'z:l;2 |

K(x,2) = (xTz+1)2

» Complexity of computing ¢(x)” ¢(z)?
» Complexity of computing x7z?
» Complexity of computing (x”z + 1)?

Polynomial Kernel: Significance

» Compute ¢(x)Té(z): O(n?)
» Compute x7z: O(n)
» Compute (x7z +1)%: O(n)

If using kernel trick, can implement a non-linear feature expansion
at no additional cost

Even More Polynomial Kernels

K(x,z) = (xTZ + 1)d

Corresponds to ¢ that takes all products of up to d original features

O(n) time to compute kernel instead of O(n?)

Gaussian Kernel

K(x,2) = exp(—||x — 2||%)
» Highly flexible, non-linear kernel

» Corresponds to infinite dimensional ¢ (cannot implement
feature mapping, but can still use kernel)

» Demos

> Gaussian kernel intuition: similarity function
> Linear regression

A Word on Regularization

» Suppose we want to combine feature expansion with
regularization

m

7(6) = 3161+ 3 cone(67 ) 1)

> Assume 0 = 7, a;¢(x(?). Then regularization term
becomes
16]? =676 = a"Ka

(derivation next slide)

> This is not the same as penalizing ||c||?

» Tip: use regularization with kernelized linear models
» Tip: Use a custom optimizer for to minimize J(cx)




A Word on Regularization

Derivation of regularization term:

070 =

T m
Oéicb(x(i))) <Z Oéiﬁb(x(j)))
=1

;o (xV) " p(x17)

1

o

2

o
NE

Il
A
<
Il
-

s
B

i K (xW, xU))

Il
iM:
Ti.

I
Q\‘
=
S

Practical Tips

» Use support vector machines (SVMs) for kernelized
classification

> Like logistic regression, with slightly different loss function.
(Derivation based on geometric principles, but end point the
same.)

» More efficient than logistic regression when used with kernels
(many «; values are zero)

> Use kernel ridge regression or support vector regression for
kernelized regression

» Use Gaussian kernels

» Use regularization with kernels

v

How to select \ and v?7 Cross-validation!

Demos

» Kernel logistic regression
» SVM loss

» SVM classification




