	Big Picture: So Far
CS 335: Kernel Trick Dan Sheldon	 Cost function paradigm for supervised machine learning Input x Output y Find h_θ(x) such that h_θ(x⁽ⁱ⁾) ≈ y⁽ⁱ⁾ Cost function J(θ) Regularization to avoid overfitting Everything so far has been based on linear models h_θ(x) = g(θ^Tx)
Kernel-Trick Motivation • But what we really want are flexible non-linear classifers! • How can we get this with linear methods? • Kernel trick! • Wait feature expansions already allow non-linear learning $(x_1, x_2) \mapsto (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)$	 How to apply feature mappings? Do they really give a flexible class of non-linear models? How many features? And which ones? We would like something more "automatic" We don't want to expand our datasets to many times their original size Kernel trick: non-linear feature expansions in implicit way way Computationally efficient Don't actually do expansion
Kernel Trick Starting Point Assumption (*): $\theta = \sum_{i=1}^{m} \alpha_i \mathbf{x}^{(i)}$ for some $\alpha_1, \dots, \alpha_m$ • θ in span of feature vectors • We'll discuss later how to find $\alpha_1, \dots, \alpha_m$	Linear Regression Assumption (*): $\theta = \sum_{i=1}^{m} \alpha_i \mathbf{x}^{(i)}$. What does linear regression hypothesis look like? $h_{\theta}(\mathbf{x}) = \theta^T \mathbf{x} = \left(\sum_{i=1}^{m} \alpha_i \mathbf{x}^{(i)}\right)^T \mathbf{x} = \sum_{i=1}^{m} \alpha_i (\mathbf{x}^{(i)})^T \mathbf{x} = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}^{(i)}, \mathbf{x})$ • $K(\mathbf{x}, \mathbf{z}) := \mathbf{x}^T \mathbf{z}$ is the "kernel function" (just dot product for now) • Predictions only depend on training data through kernel function! (dot products)

Linear Regression	Takeaway
Assumption (*): $\theta = \sum_{i=1}^{m} \alpha_i \mathbf{x}^{(i)}$. Then $h_{\theta}(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}^{(i)}, x)$. What does linear regression cost function look like? $J(\theta) = \frac{1}{2} \sum_{k=1}^{m} (h_{\theta}(\mathbf{x}^{(k)}) - y^{(k)})^2$ $= \frac{1}{2} \sum_{k=1}^{m} \left(\sum_{i=1}^{m} \alpha_i K(\mathbf{x}^{(i)}, \mathbf{x}^{(k)}) - y^{(k)} \right)^2 := J(\alpha)$ • Cost function only depends on training data through kernel function! (dot products) • How to find $\alpha = (\alpha_1, \dots, \alpha_m)$? Minimize $J(\alpha)$. (More later) • Note: (*) only needs to hold for θ that minimizes $J(\theta)$	$\begin{aligned} h_{\theta}(\mathbf{x}) &= \sum_{i=1}^{m} \alpha_{i} K(\mathbf{x}^{(i)}, \mathbf{x}) \\ J(\theta) &= \frac{1}{2} \sum_{k=1}^{m} \left(\sum_{i=1}^{m} \alpha_{i} K(\mathbf{x}^{(i)}, \mathbf{x}^{(k)}) - y^{(k)} \right)^{2} \end{aligned}$ Thought experiment: I hold feature vectors in a box. You can ask me only for dot products. Can you still train model? Make predictions? Yes!
Concrete Example: "Kernelized" Linear Regression • Observation: can rewrite linear regression as a different linear regression model: $h_{\theta}(\mathbf{x}) = \sum_{i} \alpha_{i} K(\mathbf{x}^{(i)}, \mathbf{x}) = \boldsymbol{\alpha}^{T} k(\mathbf{x})$ $\boldsymbol{\alpha}^{T} = \begin{bmatrix} \alpha_{1} & \dots & \alpha_{m} \end{bmatrix}, k(\mathbf{x}) = \begin{bmatrix} K(\mathbf{x}^{(1)}, \mathbf{x}) \\ K(\mathbf{x}^{(2)}, \mathbf{x}) \\ \vdots \\ K(\mathbf{x}^{(m)}, \mathbf{x}) \end{bmatrix}$ • Map x to new "feature vector" $k(\mathbf{x})$ (= kernel evaluation between x and each training feature vector. • What happens to original data matrix X under this mapping? (Recall: <i>i</i> th row of X is <i>i</i> th feature vector $\mathbf{x}^{(i)}$.)	 We get a new "data matrix" K, whose <i>i</i>th row is holds dot products between x⁽ⁱ⁾ and each <i>other</i> training point: K_{ij} = K(x⁽ⁱ⁾, x^(j)) This is called the kernel matrix of a training set Our reasoning so far says you can learn an equivalent linear model using the kernel matrix in place of the original data matrix. Demo Note: this equivalance is only exact without regularization. In practice: use a different optimization method to find α to minimize J(α)
Linear Models Same reasoning applies more generally to any linear model of this form: $h_{\theta}(\mathbf{x}) = g(\theta^{T}\mathbf{x})$ $J(\theta) = \sum_{k=1}^{m} \operatorname{cost}(\theta^{T}\mathbf{x}^{(k)}, y^{(k)})$ • Does this include logistic regression? Yes.	Kernel Trick This doesn't seem that special Real trick: fancy non-linear feature expansions in a computationally efficient way Suppose we want to do feature expansion before learning $h_{\theta}(\mathbf{x}) = \theta^T \phi(\mathbf{x}), \phi : \mathbb{R}^n \to \mathbb{R}^p$
• Substitute $\theta = \sum_{i=1}^{m} \alpha_i \mathbf{x}^{(i)}$ and observe that cost function and by pethods appendix on training data through dat products	► To solve the learning problem and make predictions, we only

- hypothesis only depend on training data through dot products.
 Can fit model by substituting kernel matrix for data matrix.
- ► To solve the learning problem and make predictions, we only need to be able to compute $K(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^T \phi(\mathbf{z})$. This is called the kernel corresponding to ϕ .

Example: Polynomial Kernel	More Polynomial Kernels
Important trick : we can often compute kernel without actually doing the expansion $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$ Claim: this is the kernel corresponding to $\phi(\mathbf{x}) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_2 x_1 \\ x_2 x_2 \end{bmatrix}$ Exercise: verify this on board	Claim: these two are equivalent $\phi(\mathbf{x}) = \begin{bmatrix} 1\\ \sqrt{2}x_1\\ \sqrt{2}x_2\\ x_1x_1\\ x_1x_2\\ x_2x_1\\ x_2x_2 \end{bmatrix}$ $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + 1)^2$ $\text{Complexity of computing } \phi(\mathbf{x})^T \phi(\mathbf{z})?$ $\text{Complexity of computing } \mathbf{x}^T \mathbf{z}?$ $\text{Complexity of computing } (\mathbf{x}^T \mathbf{z} + 1)^2?$
Polynomial Kernel: Significance	Even More Polynomial Kernels
 Compute φ(x)^Tφ(z): O(n²) Compute x^Tz: O(n) Compute (x^Tz + 1)²: O(n) If using <i>kernel trick</i>, can implement a non-linear feature expansion at no additional cost 	$K(\mathbf{x},\mathbf{z})=(\mathbf{x}^T\mathbf{z}+1)^d$ Corresponds to ϕ that takes all products of up to d original features $O(n)$ time to compute kernel instead of $O(n^d)$
Gaussian Kernel $K(\mathbf{x}, \mathbf{z}) = \exp(-\gamma \mathbf{x} - \mathbf{z} ^2)$ Highly flexible, non-linear kernel 	A Word on Regularization • Suppose we want to combine feature expansion with regularization $J(\theta) = \frac{\lambda}{2} \ \theta\ ^2 + \sum_{k=1}^{m} \operatorname{cost} \left(\theta^T \phi(\mathbf{x}^{(k)}), y^{(k)} \right)$
 Finging nextbe, non-initial kerner Corresponds to infinite dimensional \u03c6 (cannot implement feature mapping, but can still use kernel) Demos Gaussian kernel intuition: similarity function Linear regression 	 Assume θ = ∑_{i=1}^m α_iφ(x⁽ⁱ⁾). Then regularization term becomes

A Word on Regularization **Practical Tips** Use support vector machines (SVMs) for kernelized classification Derivation of regularization term: • Like logistic regression, with *slightly* different loss function. (Derivation based on geometric principles, but end point the $\boldsymbol{\theta}^{T}\boldsymbol{\theta} = \left(\sum_{i=1}^{m} \alpha_{i}\phi(\mathbf{x}^{(i)})\right)^{T} \left(\sum_{j=1}^{m} \alpha_{i}\phi(\mathbf{x}^{(j)})\right)$ same.) More efficient than logistic regression when used with kernels $= \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j \phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)})$ $= \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ $= \boldsymbol{\alpha}^T K \boldsymbol{\alpha}$ (many α_i values are **zero**) ► Use kernel ridge regression or support vector regression for kernelized regression Use Gaussian kernels Use regularization with kernels • How to select λ and γ ? Cross-validation! Demos Kernel logistic regression SVM loss SVM classification