
Lecture 6 – KNN and Decision Trees

CS 335

Dan Sheldon

Nearest Neighbor Classification

Seed classification by area and
compactness I What should we

predict for unlabeled
test points (stars)?

I Nearest neighbor
classification: predict
label of nearest
training example

I k-nearest neighbor:
predict consensus of k
nearest training
examples

k-Nearest Neighbor Classification

I Training: store the training data (trivial!)

D = {(x(1), y(1), . . . (x(m), y(m))}

I Prediction: for a new instance x, predict label that is most
frequent among k training examples closest to x

I KNN can work with any distance function and any value of k.
We need to choose these.

Distance and Similarity

I KNN can use any distance function to determine k nearest
neighbors. A distance function d(x, x′) takes two data points
and returns a distance. It should satisfy

I d(x, x′) ≥ 0 (non-negativity)
I d(x, x′) = 0 (distance from a point to itself is zero)

I Or you can use a similarity function
I s(x, x′) ≥ 0
I s(x, x) ≥ s(x, x′) for all other x′ (x is more similar to itself

than any other point)

Euclidean Distance

I We’ve already seen one distance function, the Euclidean
distance:

d(x, x′) = ‖x− x′‖

I Length of straight line between x and x′ (= vector norm of
x− x′)

Minkowski Distance

I A more general class of distance functions come from
Minkowski Distance

dp(x, x′) := ‖x− x′‖p

‖r‖p :=
(n∑

i=1
|ri|p

)1/p

I p = 2 is Euclidean distance (verify on own)
I p = 1 is called the “Manhattan distance”

Examples

I Jupyter Demo 1: different distance functions

KNN Implementation

I The “brute force” version of KNN is very straightforward:
I Given test point x, compute distances d(i) := d(x, x(i)) to each

training example
I Sort training examples by distance
I k-nearest neighbors = first k examples in this sorted list.
I Now, making the prediction is straightforward.
I Running time: O(m log m) for one prediction

I In practice, clever data structures (e.g., KD-trees) can be
constructed to find k nearest neighbors and make predictions
more quickly.

KNN Trade-Offs

I Strengths
I Simple
I Converges to the correct decision surface as data goes to infinity

I Weaknesses
I Lots of variability in the decision surface when amount of data

is low
I Curse of dimensionality: everything is far from everything else in

high dimensions
I Running time and memory usage: store all training data and

perform neighbor search for every prediction → use a lot of
memory / time

I Jupyter Demo 2: KNN in action
I Effect of k
I KNN convergence as data goes to infinity

Decision Trees

Example: Flu decision tree

Temp%>%100%

Sore%Throat%=Y%

Healthy% Cold%

Runny%Nose=Y%

Flu%Other%

T"F"

T"F"T"F"

Decision Trees

I Classical model for making a decision or classfication using
“splitting rules” organized into tree data structure

I Data instance x is routed from the root to leaf
I Nodes = “splitting rules”

I Continuous variables: test if (xj < c) or (xj ≥ c) (2 branches)
I Discrete variables: test (xj = 1), (xj = 2), . . . for k possible

values of xj (k branches)

I x goes down branch corresponding to result of test

I Leaf nodes are assigned labels → prediction for x

Decision Tree Intution

I Board work
I Geometric illustration of decision tree: recursive axis-aligned

partitioning
I Intuition for how to partition to fit a dataset (= learning a

decision tree)

Decision Tree Learning

I How do we fit a decision tree to training data? We won’t give
details here, just some intuition. . .

I Idea: recursive splitting of training set

None Some Full

Patrons?

French Italian Thai Burger

Type?

I Start with all training examples at root of tree
I Find “best” splitting rule at root
I Recurse on each branch

Decision Tree Learning

None Some Full

Patrons?

French Italian Thai Burger

Type?

I “Best” splitting rule? Which of these is better?
I Ideally, split the examples into subsets that are all the same class
I Design heuristics based on this principle to choose the best split

I When to stop? Recusively split training examples until:
I All examples have same class
I Too few data training examples
I Maximum depth exceeded

Decision Tree Learning

I Jupyter Demo 3: visualize decision trees to fit to seeds dataset

Decision Tree Trade-Offs

I Strengths
I Interpretability: the learned model is easy to understand
I Running time for predictions: shallow trees can be extremely

fast classifiers

I Weaknessees
I Running time for learning: finding the optimal trees is

computationally intractable (NP-complete), so we need to
design greedy heuristics.

I Representation: we may need very large trees to accurately
model geometry of our problem with axis-aligned splits

I General advice: decision trees are very competitive
“out-of-the-box” machine learning models for lots of problems!

