	First story
Methodology: Assessment and Cross-Validation Dan Sheldon	 USPS uses a classifier to distinguish 4 from 9 Pays \$1 for every mistake How much money should it budget for 2015? Model assessment: estimate prediction error on future unseen data (generalization)
Second story	Two goals
 USPS uses regularized logistic regression to prevent overfitting in its classifier What value of λ will lead to the model with the least prediction error? Model selection: compare prediction error of many models to select the best one 	 Model assessment: estimate prediction error on future unseen data (generalization) Model selection: compare prediction error of many models to select the best one Can't do either of these with data used to train the model
Data-Generating Mechanism	In an Ideal World
 Assumption: training data representative of future unseen data Formally, training examples and future test examples drawn independently from same probability distribution P	If we are "data rich", this is what we would do: Train Validation Test Validation set: labeled data reserved to compare models Test set: labeled data reserved to assess future performance E.g., 50/25/25 split Warning: Terminology of validation/test not always consistently used

The Dilemma: Train vs. Test Size	Cross-Validation
 What if you only have 100 training examples? 50? 10? The dilemma More training data → more accurate classifier More test data → better estimate of generalization accuracy 	(Assume assessment for now how much will USPS pay?) Beautiful and simple solution to train/test size dilemma: • Split data in k equal-sized "folds" (usually 2, 5, 10) • For each fold, test on that fold while training on all others: 1 2 3 4 $5Train Train Validation Train Train• Estimate accuracy by averaging over all folds$
Example 5-fold cross-validation $ \frac{Train \ folds}{12345} \ \frac{Test \ folds}{2,3,4,5} \ \frac{1}{1} \ \frac{85\%}{12345} \ \frac{1}{1,3,4,5} \ 2 \ 83\% \ 12345 \ 1,2,4,5 \ 3 \ 91\% \ 12345 \ 1,2,3,5 \ 4 \ 88\% \ 12345 \ 1,2,3,4 \ 5 \ 84\% \ 22345 \ 1,2,3,4 \ 5 \ 84\% \ Average \ accuracy = 88.2\% $	 Discussion What if you need to do both model comparison and assessment? Fancier methods: One fold for validation (e.g. train/valid/test = 3/1/1) Nested cross-validation Warning: There is no single agreed-upon methodology that is always best. Methods are applied somewhat flexibly. It's best to understand the <i>principles</i> so you can judge what is (or is not) appropriate.