
Overfitting and Regularization

Dan Sheldon

February 12, 2019

Plan

I What is Overfitting?

I How to Diagnose Overfitting

I Regularization

What is Overfitting?

Demo: polynomials

What is Overfitting?

Complex decision boundaries

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

What is Overfitting?

Overfitting is learning a model that fits the training data very well,
but does not generalize well.

(Generalize = predict accurately for new examples.)

How to Diagnose Overfitting?

Exercise

Reserve some data to test whether hypothesis generalizes well

How to Diagnose Overfitting?

Exercise
Reserve some data to test whether hypothesis generalizes well

−1 −0.5 0 0.5 1−2

−1

0

1

2

3

4

x

y

Degree 8 polynomial

Train
Test

−1 −0.5 0 0.5 1−2

−1

0

1

2

3

4

x
y

Degree 4 polynomial

Train
Test

−1 −0.5 0 0.5 1−2

−1

0

1

2

3

4

x

y

Degree 2 polynomial

Train
Test

Train Data vs. Test Data

Very simple but important methodology!!

I Start with m training examples

(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

I Split into train and test sets (usually random)

I Training data: use to fit model

I Test data: use to evaluate fit

Details/illustration on board

How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial

How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial

0 2 4 6 8 100

5

10

15

20

Degree of polynomial

C
os

t

Train
Test

How to Diagnose Overfitting?

Example: feature expansion for book data

Width Thickness Height Weight
x1 x2 x3 y
8 1.8 10 4.4
8 0.9 9 2.7

. . .

Suppose you add “quadratic” features:

(x1, . . . , xn,) 7! (x1, . . . , xn| {z }
original features

, x21, x1x2, x1x3, . . . , xn�1xn, x
2
n| {z }

products of two original features

)

Do more features help?

How to Diagnose Overfitting?

Example: cost function vs. number of features in book data

0 5 10 15 200

5

10

15

20

Features

C
os

t

Train
Test

Cost vs. Complexity

General phenomenon: training/test cost vs. model “complexity”

What Makes a Model Complex?

I Polynomial: higher degree

I Book data: more features

I Linear functions (h✓(x) = ✓Tx): large weights (steep
hyperplanes)

Large Weights

Example

Width Thickness Height Weight
x1 x2 x3 y
8 1.8 10 4.4
8 0.9 9 2.7

. . .

Which is more complex?

y = �3.94 + 0.18x1 + .34x2 + 0.4x3

vs.
y = 2842� 957x1 + 300x2 + 69712x3

Solution to Overfitting: Regularization

Intuition: large weights ! high complexity

Modify the cost function to penalize large weights =
“regularization”

For squared error, we get:

J(✓) =
�

2

nX

j=1

✓2j +
1

2

mX

i=1

(h✓(x
(i))� y(i))2

� controls trade-o↵ between model complexity and fit

Notes

Penalty / regularization term:

�

2

nX

j=1

✓2j

I Best practice not to regularize ✓0. Why?

I Often written as �
2k✓k

2 (Need to be careful to specify
whether ✓ include ✓0 or not!).

Discussion

Regularization is really important!!!

Why?

Learning with Regularization

Let’s see how to solve two learning problems with regularized cost
functions:

I Linear regression

I Logistic regression

Linear Regression: Normal Equations with Regularization

Find ✓ to minimize regularized J(✓)

✓ = (XTX + �Î)�1XT y

Î =

2

666664

0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

3

777775

(Identity matrix with top left entry replaced by 0)

Linear Regression: Normal Equations with Regularization

Find ✓ to minimize regularized J(✓)

✓ = (XTX + �Î)�1XT y

Î =

2

666664

0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

3

777775

(Identity matrix with top left entry replaced by 0)

Normal Equations Derivation: Vectorized Cost Function

J(✓) =
1

2

mX

i=1

(h✓(x
(i))� y(i))2 +

�

2

nX

j=1

✓2j

=
1

2
(X✓ � y)T (X✓ � y) +

�

2
✓̂
T
✓̂.

✓̂ =

2

666664

0
✓1
✓2
...
✓n

3

777775
= Î✓

Normal Equations Derivation: Vectorized Cost Function

J(✓) =
1

2

mX

i=1

(h✓(x
(i))� y(i))2 +

�

2

nX

j=1

✓2j

=
1

2
(X✓ � y)T (X✓ � y) +

�

2
✓̂
T
✓̂.

✓̂ =

2

666664

0
✓1
✓2
...
✓n

3

777775
= Î✓

Normal Equations Derivation

J(✓) =
1

2
(X✓ � y)T (X✓ � y) +

�

2
✓̂
T
✓̂

Set derivative to zero and solve (review on your own)

0 =
d

d✓
J(✓) = (X✓ � y)TX + �✓̂

T

0 = XT (X✓ � y) + �Î✓

XTX✓ + �Î✓ = XTy

(XTX + �Î)✓ = XTy

✓ = (XTX + �Î)�1XTy

Linear Regression: Regularized Gradient Descent

J(✓) =
�

2

nX

j=1

✓2j +
1

2

mX

i=1

(h✓(x
(i))� y(i))2

Repeat until convergence

✓0 ✓0 � ↵
mX

i=1

(h✓(x
(i))� y(i))

✓j ✓j � ↵
⇣
�✓j +

mX

i=1

(h✓(x
(i))� y(i))x(i)j

⌘
, j = 1, . . . , n

Linear Regression: Regularized Gradient Descent

J(✓) =
�

2

nX

j=1

✓2j +
1

2

mX

i=1

(h✓(x
(i))� y(i))2

Repeat until convergence

✓0 ✓0 � ↵
mX

i=1

(h✓(x
(i))� y(i))

✓j ✓j � ↵
⇣
�✓j +

mX

i=1

(h✓(x
(i))� y(i))x(i)j

⌘
, j = 1, . . . , n

Linear Regression: Regularized Gradient Descent

Update rule for ✓j after simplification:

✓j ✓j(1� ↵�)
| {z }

shrink

�↵
mX

i=1

(h✓(x
(i))� y(i))x(i)j

| {z }
old gradient

, j = 1, . . . , n

Interpretation: first “shrink” weights, then take gradient step for
unregularized cost function

Logistic Regression: Regularized Gradient Descent

J(✓) =
�

2

nX

j=1

✓2j+
mX

i=1

⇣
�y(i) log h✓(x(i))�(1�y(i)) log

�
1�h✓(x(i))

�⌘

Algorithm:

Repeat until convergence

✓0 ✓0 � ↵
mX

i=1

(h✓(x
(i))� y(i))

✓j ✓j(1� ↵�)� ↵
mX

i=1

(h✓(x
(i))� y(i))x(i)j , j = 1, . . . , n

(Again: same as linear regression, but di↵erent h✓(x))

What You Need To Know

I Concept of overfitting

I Diagnosis: train/test sets

I Regularized cost function (penalize weights)

I Regularized gradient descent (“weight shrinking”)

I See it work: polynomial regularization demo

