

What is Overfitting?

Overfitting is learning a model that fits the training data very well, but does not generalize well.
(Generalize $=$ predict accurately for new examples.)

How to Diagnose Overfitting?
Exercise

How to Diagnose Overfitting?

Exercise
Reserve some data to test whether hypothesis generalizes well

How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial

How to Diagnose Overfitting?

Example: feature expansion for book data

Width x_{1}	Thickness x_{2}	Height x_{3}	Weight y
8	1.8	10	4.4
8	0.9	9	2.7

Suppose you add "quadratic" features:

$$
\left(x_{1}, \ldots, x_{n},\right) \mapsto(\underbrace{x_{1}, \ldots, x_{n}}_{\text {original features }}, \underbrace{x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{n-1} x_{n}, x_{n}^{2}}_{\text {products of two original features }})
$$

Do more features help?

Train Data vs. Test Data

Very simple but important methodology!!

- Start with m training examples

$$
\left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right), \ldots,\left(\mathbf{x}^{(m)}, y^{(m)}\right)
$$

- Split into train and test sets (usually random)
- Training data: use to fit model
- Test data: use to evaluate fit

Details/illustration on board

How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial

How to Diagnose Overfitting?

Example: cost function vs. number of features in book data

Cost vs. Complexity

General phenomenon: training/test cost vs. model "complexity"

What Makes a Model Complex?

- Polynomial: higher degree
- Book data: more features
- Linear functions $\left(h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{T} \mathbf{x}\right)$: large weights (steep hyperplanes)

Large Weights

Example

Width x_{1}	Thickness x_{2}	Height x_{3}	Weight y
8	1.8	10	4.4
8	0.9	9	2.7

Which is more complex?

$$
y=-3.94+0.18 x_{1}+.34 x_{2}+0.4 x_{3}
$$

vs.

$$
y=2842-957 x_{1}+300 x_{2}+69712 x_{3}
$$

Solution to Overfitting: Regularization

Intuition: large weights \rightarrow high complexity
Modify the cost function to penalize large weights $=$ "regularization"

For squared error, we get:

$$
J(\boldsymbol{\theta})=\frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2}+\frac{1}{2} \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

λ controls trade-off between model complexity and fit

Notes

Penalty / regularization term:

$$
\frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2}
$$

- Best practice not to regularize θ_{0}. Why?
- Often written as $\frac{\lambda}{2}\|\boldsymbol{\theta}\|^{2}$ (Need to be careful to specify whether $\boldsymbol{\theta}$ include θ_{0} or not!).

Discussion

Regularization is really important!!!
Why?

Learning with Regularization

Let's see how to solve two learning problems with regularized cost functions:

- Linear regression
- Logistic regression

Linear Regression: Normal Equations with Regularization

Find $\boldsymbol{\theta}$ to minimize regularized $J(\boldsymbol{\theta})$

$$
\boldsymbol{\theta}=\left(X^{T} X+\lambda \hat{I}\right)^{-1} X^{T} y
$$

Normal Equations Derivation: Vectorized Cost Function

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{2} \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2} \\
& =\frac{1}{2}(X \boldsymbol{\theta}-\mathbf{y})^{T}(X \boldsymbol{\theta}-\mathbf{y})+\frac{\lambda}{2} \hat{\boldsymbol{\theta}}^{T} \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

Normal Equations Derivation: Vectorized Cost Function

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{2} \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2} \\
& =\frac{1}{2}(X \boldsymbol{\theta}-\mathbf{y})^{T}(X \boldsymbol{\theta}-\mathbf{y})+\frac{\lambda}{2} \hat{\boldsymbol{\theta}}^{T} \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

$$
\hat{\boldsymbol{\theta}}=\left[\begin{array}{c}
0 \\
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right]=\hat{I} \boldsymbol{\theta}
$$

Normal Equations Derivation

$$
J(\boldsymbol{\theta})=\frac{1}{2}(X \boldsymbol{\theta}-\mathbf{y})^{T}(X \boldsymbol{\theta}-\mathbf{y})+\frac{\lambda}{2} \hat{\boldsymbol{\theta}}^{T} \hat{\boldsymbol{\theta}}
$$

Set derivative to zero and solve (review on your own)

$$
\begin{aligned}
0=\frac{d}{d \boldsymbol{\theta}} J(\boldsymbol{\theta}) & =(X \boldsymbol{\theta}-\mathbf{y})^{T} X+\lambda \hat{\boldsymbol{\theta}}^{T} \\
0 & =X^{T}(X \boldsymbol{\theta}-\mathbf{y})+\lambda \hat{I} \boldsymbol{\theta} \\
X^{T} X \boldsymbol{\theta}+\lambda \hat{I} \boldsymbol{\theta} & =X^{T} \mathbf{y} \\
\left(X^{T} X+\lambda \hat{I}\right) \boldsymbol{\theta} & =X^{T} \mathbf{y} \\
\boldsymbol{\theta} & =\left(X^{T} X+\lambda \hat{I}\right)^{-1} X^{T} \mathbf{y}
\end{aligned}
$$

Linear Regression: Regularized Gradient Descent

$$
J(\boldsymbol{\theta})=\frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2}+\frac{1}{2} \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

Repeat until convergence

Linear Regression: Regularized Gradient Descent

$$
J(\boldsymbol{\theta})=\frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2}+\frac{1}{2} \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

Repeat until convergence

$$
\begin{aligned}
& \theta_{0} \leftarrow \theta_{0}-\alpha \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right) \\
& \theta_{j} \leftarrow \theta_{j}-\alpha\left(\lambda \theta_{j}+\sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}\right), \quad j=1, \ldots, n
\end{aligned}
$$

Linear Regression: Regularized Gradient Descent

Update rule for θ_{j} after simplification:

$$
\theta_{j} \leftarrow \underbrace{\theta_{j}(1-\alpha \lambda)}_{\text {shrink }}-\underbrace{\alpha \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}}_{\text {old gradient }}, \quad j=1, \ldots, n
$$

Interpretation: first "shrink" weights, then take gradient step for unregularized cost function

Logistic Regression: Regularized Gradient Descent

$$
J(\boldsymbol{\theta})=\frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2}+\sum_{i=1}^{m}\left(-y^{(i)} \log h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-\left(1-y^{(i)}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)\right)
$$

Algorithm:
Repeat until convergence

$$
\begin{aligned}
& \theta_{0} \leftarrow \theta_{0}-\alpha \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right) \\
& \theta_{j} \leftarrow \theta_{j}(1-\alpha \lambda)-\alpha \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}, \quad j=1, \ldots, n
\end{aligned}
$$

(Again: same as linear regression, but different $h_{\boldsymbol{\theta}}(\mathbf{x})$)

What You Need To Know

- Concept of overfitting
- Diagnosis: train/test sets
- Regularized cost function (penalize weights)
- Regularized gradient descent ("weight shrinking")
- See it work: polynomial regularization demo

