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Demo: polynomials

What is Overfitting?
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What is Overfitting?

Overfitting is learning a model that fits the training data very well,
but does not generalize well.

(Generalize = predict accurately for new examples.)

How to Diagnose Overfitting?

Exercise

Reserve some data to test whether hypothesis generalizes well
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Train Data vs. Test Data

Very simple but important methodology!!

I Start with m training examples

(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

I Split into train and test sets (usually random)

I Training data: use to fit model

I Test data: use to evaluate fit

Details/illustration on board

How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial
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How to Diagnose Overfitting?

Example: feature expansion for book data

Width Thickness Height Weight
x1 x2 x3 y
8 1.8 10 4.4
8 0.9 9 2.7

. . .

Suppose you add “quadratic” features:

(x1, . . . , xn, ) 7! ( x1, . . . , xn| {z }
original features

, x21, x1x2, x1x3, . . . , xn�1xn, x
2
n| {z }

products of two original features

)

Do more features help?

How to Diagnose Overfitting?

Example: cost function vs. number of features in book data
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Cost vs. Complexity

General phenomenon: training/test cost vs. model “complexity”

What Makes a Model Complex?

I Polynomial: higher degree

I Book data: more features

I Linear functions (h✓(x) = ✓Tx): large weights (steep
hyperplanes)

Large Weights

Example

Width Thickness Height Weight
x1 x2 x3 y
8 1.8 10 4.4
8 0.9 9 2.7

. . .

Which is more complex?

y = �3.94 + 0.18x1 + .34x2 + 0.4x3

vs.
y = 2842� 957x1 + 300x2 + 69712x3

Solution to Overfitting: Regularization

Intuition: large weights ! high complexity

Modify the cost function to penalize large weights =
“regularization”

For squared error, we get:

J(✓) =
�

2

nX

j=1

✓2j +
1

2

mX

i=1

(h✓(x
(i))� y(i))2

� controls trade-o↵ between model complexity and fit

Notes

Penalty / regularization term:

�

2

nX

j=1

✓2j

I Best practice not to regularize ✓0. Why?

I Often written as �
2k✓k

2 (Need to be careful to specify
whether ✓ include ✓0 or not!).

Discussion

Regularization is really important!!!

Why?



Learning with Regularization

Let’s see how to solve two learning problems with regularized cost
functions:

I Linear regression

I Logistic regression

Linear Regression: Normal Equations with Regularization

Find ✓ to minimize regularized J(✓)

✓ = (XTX + �Î)�1XT y

Î =

2

666664

0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

3

777775

(Identity matrix with top left entry replaced by 0)
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Normal Equations Derivation: Vectorized Cost Function

J(✓) =
1
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mX
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(h✓(x
(i))� y(i))2 +

�

2

nX

j=1
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=
1

2
(X✓ � y)T (X✓ � y) +

�

2
✓̂
T
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= Î✓

Normal Equations Derivation: Vectorized Cost Function

J(✓) =
1

2

mX

i=1

(h✓(x
(i))� y(i))2 +

�

2

nX

j=1

✓2j

=
1

2
(X✓ � y)T (X✓ � y) +

�

2
✓̂
T
✓̂.

✓̂ =

2

666664

0
✓1
✓2
...
✓n

3

777775
= Î✓

Normal Equations Derivation

J(✓) =
1

2
(X✓ � y)T (X✓ � y) +

�

2
✓̂
T
✓̂

Set derivative to zero and solve (review on your own)

0 =
d

d✓
J(✓) = (X✓ � y)TX + �✓̂

T

0 = XT (X✓ � y) + �Î✓

XTX✓ + �Î✓ = XTy

(XTX + �Î)✓ = XTy

✓ = (XTX + �Î)�1XTy



Linear Regression: Regularized Gradient Descent

J(✓) =
�

2

nX

j=1

✓2j +
1

2

mX

i=1

(h✓(x
(i))� y(i))2

Repeat until convergence

✓0  ✓0 � ↵
mX

i=1

(h✓(x
(i))� y(i))

✓j  ✓j � ↵
⇣
�✓j +

mX

i=1

(h✓(x
(i))� y(i))x(i)j

⌘
, j = 1, . . . , n

Linear Regression: Regularized Gradient Descent

J(✓) =
�

2

nX

j=1

✓2j +
1

2

mX

i=1

(h✓(x
(i))� y(i))2

Repeat until convergence

✓0  ✓0 � ↵
mX

i=1

(h✓(x
(i))� y(i))

✓j  ✓j � ↵
⇣
�✓j +

mX

i=1

(h✓(x
(i))� y(i))x(i)j

⌘
, j = 1, . . . , n

Linear Regression: Regularized Gradient Descent

Update rule for ✓j after simplification:

✓j  ✓j(1� ↵�)
| {z }

shrink

�↵
mX

i=1

(h✓(x
(i))� y(i))x(i)j

| {z }
old gradient

, j = 1, . . . , n

Interpretation: first “shrink” weights, then take gradient step for
unregularized cost function

Logistic Regression: Regularized Gradient Descent

J(✓) =
�

2

nX

j=1

✓2j+
mX

i=1

⇣
�y(i) log h✓(x(i))�(1�y(i)) log

�
1�h✓(x(i))

�⌘

Algorithm:

Repeat until convergence

✓0  ✓0 � ↵
mX

i=1

(h✓(x
(i))� y(i))

✓j  ✓j(1� ↵�)� ↵
mX

i=1

(h✓(x
(i))� y(i))x(i)j , j = 1, . . . , n

(Again: same as linear regression, but di↵erent h✓(x))

What You Need To Know

I Concept of overfitting

I Diagnosis: train/test sets

I Regularized cost function (penalize weights)

I Regularized gradient descent (“weight shrinking”)

I See it work: polynomial regularization demo


