Lecture 6 – Logistic Regression CS 335 Dan Sheldon	 Classification Model Cost function Gradient descent Linear classifiers and decision boundaries
Classification • Input: $x \in \mathbb{R}^n$ • Output: $y \in \{0, 1\}$	Example: Hand-Written Digits Input: 20×20 grayscale image $\int_{0}^{1} \int_{0}^{1} $
Example: Document Classification Discuss on board.	The Learning Problem Input: $x \in \mathbb{R}^n$ Output: $y \in \{0, 1\}$ Model (hypothesis class): ? Cost function: ?

The Model—Big Picture

Illustrate on board: $\mathbf{x} \rightarrow z \rightarrow p \rightarrow y$

MATLAB visualization

Cost Function

Can we used squared error?

$$J(\boldsymbol{\theta}) = \sum_{i} (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})^2$$

This is sometimes done. But we want to do better.

Cost Function

Let's explore further. For squared error, we can write:

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{m} \operatorname{cost}(h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}), y^{(i)})$$
$$\operatorname{cost}(p, y) = (p - y)^{2}$$

 $\operatorname{cost}(p,y)$ is cost of predicting $h_{\boldsymbol{\theta}}(\mathbf{x}) = p$ when the true value is y

If we undo the logistic transform, it looks like this

- As $z = \theta^T \mathbf{x} \to \infty$, then $p \to 1$, so the prediction is better and better. The cost approaches zero.
- As $z = \theta^T \mathbf{x} \to -\infty$, then $p \to 0$, so the prediction is worse and worse. The cost. . .

Linear Classifiers

Predict

$$y = \begin{cases} 0 & \text{if } \boldsymbol{\theta}^T \mathbf{x} < 0 \\ 1 & \text{if } \boldsymbol{\theta}^T \mathbf{x} \ge 0 \end{cases}$$

Watch out! Hyperplane!

Many other learning algorithms use linear classification rules

- Perceptron
- Support vector machines (SVMs)
- Linear discriminants

Nonlinear Decision Boundaries by Feature Expansion

Example (Ng)

$$(x_1, x_2) \mapsto (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2),$$

 $\boldsymbol{\theta} = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}^T$

Exercise: what does decision boundary look like in (x_1, x_2) plane?

Note: Where Does Log Loss Come From?

probability of
$$y$$
 given $p = \begin{cases} p & y = 1 \\ 1 - p & y = 0 \end{cases}$

$$\cot(p, y) = -\log \text{ probability} = \begin{cases} -\log p & y = 1\\ -\log(1-p) & y = 0 \end{cases}$$

Find heta to minimize cost \longleftrightarrow Find heta to maximize probability