Lecture 6 - Logistic Regression CS 335 Dan Sheldon	Logistic Regression - Classification - Model - Cost function - Gradient descent - Linear classifiers and decision boundaries
Classification - Input: $\mathrm{x} \in \mathbb{R}^{n}$ - Output: $y \in\{0,1\}$	Example: Hand-Written Digits Input: 20×20 grayscale image Unroll image into a feature vector $\mathbf{x} \in \mathbb{R}^{400}$ $\mathbf{x}=\left(x_{1}, \ldots, x_{400}\right)^{T}$ Output: $\left[\begin{array}{cccc} x_{1} & x_{21} & \ldots & x_{381} \\ x_{2} & x_{22} & \ldots & x_{382} \\ & & \vdots & \\ x_{20} & x_{40} & \ldots & x_{400} \end{array}\right]$ $y= \begin{cases}0 & \text { digit is "four" } \\ 1 & \text { digit is "nine" }\end{cases}$
Example: Document Classification Discuss on board.	The Learning Problem - Input: $\mathbf{x} \in \mathbb{R}^{n}$ - Output: $y \in\{0,1\}$ - Model (hypothesis class): ? - Cost function: ?

Classification as regression?

Logistic Function

$$
g(z)=\frac{1}{1+e^{-z}}
$$

- This is called the logistic or sigmoid function

$$
g(z)=\operatorname{logistic}(z)=\operatorname{sigmoid}(z)
$$

Hypothesis vs. Prediction Rule

Hypothesis (for learning, or when probability is useful)

Prediction rule (when you need to commit!)

The Model

Put it together

$$
h_{\boldsymbol{\theta}}(\mathbf{x})=\operatorname{logistic}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)=\frac{1}{1+e^{-\boldsymbol{\theta}^{T} \mathbf{x}}}
$$

Nuance:

- Output is in $[0,1]$, not $\{0,1\}$.
- Interpret as probability

Prediction Rule

Rule

$$
y= \begin{cases}0 & \text { if } h_{\boldsymbol{\theta}}(\mathbf{x})<1 / 2 \\ 1 & \text { if } h_{\boldsymbol{\theta}}(\mathbf{x}) \geq 1 / 2\end{cases}
$$

Equivalent rule

$$
y= \begin{cases}0 & \text { if } \boldsymbol{\theta}^{T} \mathbf{x}<0 \\ 1 & \text { if } \boldsymbol{\theta}^{T} \mathbf{x} \geq 0\end{cases}
$$

The Model—Big Picture
Illustrate on board: $\mathrm{x} \rightarrow z \rightarrow p \rightarrow y$
MATLAB visualization

Cost Function

Can we used squared error?

$$
J(\boldsymbol{\theta})=\sum_{i}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

This is sometimes done. But we want to do better.

Cost Function

Let's explore further. For squared error, we can write:

$$
\begin{gathered}
J(\boldsymbol{\theta})=\sum_{i=1}^{m} \operatorname{cost}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right), y^{(i)}\right) \\
\operatorname{cost}(p, y)=(p-y)^{2}
\end{gathered}
$$

$\operatorname{cost}(p, y)$ is cost of predicting $h_{\boldsymbol{\theta}}(\mathbf{x})=p$ when the true value is y

Cost Function

Suppose $y=1$. For squared error, $\operatorname{cost}(p, 1)$ looks like this

If we undo the logistic transform, it looks like this

$\log \operatorname{Loss}(y=1)$

$$
\operatorname{cost}(p, 1)=-\log p
$$

Review so far

- Input: $\mathbf{x} \in \mathbb{R}^{n}$
- Output: $y \in\{0,1\}$
- Model (hypothesis class)

$$
h_{\boldsymbol{\theta}}(\mathbf{x})=\operatorname{logistic}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)=\frac{1}{1+e^{-\boldsymbol{\theta}^{T} \mathbf{x}}}
$$

- Cost function:

$$
\begin{gathered}
J(\boldsymbol{\theta})=\sum_{i=1}^{m}\left(-y^{(i)} \log h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-\left(1-y^{(i)}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)\right) \\
\text { TODO: optimize } J(\boldsymbol{\theta})
\end{gathered}
$$

Decision Boundaries

Example from R\&N (Fig. 18.15).

Figure 1: Earthquakes (white circles) vs. nuclear explosions (black circles) by body wave magnitude ($x 1$) and surface wave magnitude ($x 2$)

Equivalent Expression for Log-Loss

$$
\operatorname{cost}(p, y)= \begin{cases}-\log p & y=1 \\ -\log (1-p) & y=0\end{cases}
$$

$$
\operatorname{cost}(p, y)=-y \log p-(1-y) \log (1-p)
$$

$\operatorname{cost}\left(h_{\boldsymbol{\theta}}(\mathbf{x}), y\right)=-y \log h_{\boldsymbol{\theta}}(\mathbf{x})-(1-y) \log \left(1-h_{\boldsymbol{\theta}}(\mathbf{x})\right)$

Gradient Descent for Logistic Regression

1. Initialize $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$ arbitrarily
2. Repeat until convergence

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta}), \quad j=0, \ldots, d
$$

Partial derivatives for logistic regression (exercise):

$$
\frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})=2 \sum_{i=1}^{m}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

(Same as linear regression! But $h_{\boldsymbol{\theta}}(\mathbf{x})$ is different)

Decision Boundaries

E.g., suppose hypothesis is

$$
h\left(x_{1}, x_{2}\right)=\operatorname{logistic}\left(1.7 x_{1}-x_{2}-4.9\right)
$$

Predict nuclear explosion if:

$$
\begin{aligned}
1.7 x_{1}-x_{2}-4.9 & \geq 0 \\
x_{2} & \leq 1.7 x_{1}-4.9
\end{aligned}
$$

Linear Classifiers

Predict

$$
y= \begin{cases}0 & \text { if } \boldsymbol{\theta}^{T} \mathbf{x}<0 \\ 1 & \text { if } \boldsymbol{\theta}^{T} \mathbf{x} \geq 0\end{cases}
$$

Watch out! Hyperplane!

Many other learning algorithms use linear classification rules

- Perceptron
- Support vector machines (SVMs)
- Linear discriminants

Nonlinear Decision Boundaries by Feature Expansion
Example (Ng)

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) & \mapsto\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right) \\
\boldsymbol{\theta} & =\left[\begin{array}{llllll}
-1 & 0 & 0 & 1 & 1 & 0
\end{array}\right]^{T}
\end{aligned}
$$

Exercise: what does decision boundary look like in $\left(x_{1}, x_{2}\right)$ plane?

Note: Where Does Log Loss Come From?

$$
\begin{gathered}
\text { probability of } y \text { given } p= \begin{cases}p & y=1 \\
1-p & y=0\end{cases} \\
\operatorname{cost}(p, y)=-\log \text { probability }= \begin{cases}-\log p & y=1 \\
-\log (1-p) & y=0\end{cases}
\end{gathered}
$$

Find $\boldsymbol{\theta}$ to minimize cost \longleftrightarrow Find $\boldsymbol{\theta}$ to maximize probability

