Lecture 6 — Logistic Regression

CS 335

Dan Sheldon

Logistic Regression

» Classification

» Model

» Cost function

» Gradient descent

» Linear classifiers and decision boundaries

Classification

> Input: x € R”
» Output: y € {0,1}

Example: Hand-Written Digits

Input: 20 x 20 grayscale image
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s Unroll image into a feature
10 s vector x € R400
15|
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x = (21,...,T400)
20 o
5 10 15 20

Output:
Ty X21 ... I381
Ty T2 ... 382 y = 0 digit is "four"
1 digit is "nine"
20 T40 --- T400

Example: Document Classification

Discuss on board.

The Learning Problem

Input: x € R™

Output: y € {0,1}

Model (hypothesis class): ?
Cost function: ?

vyvyYyy




Classification as regression?

Discuss on board

The Model

Exercise: fix the linear regression model

he(x) = g(67x), g:R—1[0,1].

What should g look like?

Logistic Function

The Model

Put it together

1
s T _
hg(x) = logistic(0 x) = P
Nuance:
» This is called the logistic or sigmoid function > Output is in [0, 1], not {0,1}.
> Interpret as probability
g(z) = logistic(z) = sigmoid(z)
Hypothesis vs. Prediction Rule Prediction Rule
i
Hypothesis (for learning, or when probability is useful)
>0.5
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Prediction rule (when you need to commit!)

-20 -15 -10 -5 0 5 10 15 20

Rule

~f0 ifhy(x) < 1/2
TN i he(x) > 1/2

Equivalent rule

_fo ife"x<0
YTt ifeTx>o0.




The Model—Big Picture

Illustrate on board: x =z = p —y

MATLAB visualization

Cost Function

Can we used squared error?

7(0) = 3 (hg(x?) )2

i

This is sometimes done. But we want to do better.

Cost Function

Let's explore further. For squared error, we can write:
m B X
J(0) = cost(hg(x),y*))
i=1
cost(p,y) = (p — y)°

cost(p, y) is cost of predicting hg(x) = p when the true value is y

Cost Function

Suppose y = 1. For squared error, cost(p, 1) looks like this
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squared error
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If we undo the logistic transform, it looks like this

squared error
o
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Cost Function Log Loss (y = 1)
Exercise: fix these
1
0 cost(p, 1) = —logp
gOG 5
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> Recall that y = 1 is the correct answer 2 20
> As z = 87x — 00, then p — 1, so the prediction is better and better. 5710—
The cost approaches zero. k]
> Asz=0"x — —00, then p — 0, so the prediction is worse and worse. o] 3 . n
The cost. . . -20 -10 _IQ 10 20




Log Loss
—logp y=
cost(p,y) = {
—log(l—p) y=0
=
4 —y=0
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Equivalent Expression for Log-Loss

—logp y=

cost(p,y) = {— log(1—p) y=0

cost(p,y) = —ylogp — (1 —y)log(1 — p)

cost(hg(x),y) = —ylog hg(x) — (1 — y) log(1 — he(x))

Review so far

> Input: x € R"
» Output: y € {0,1}
» Model (hypothesis class)

1
TN N S
hg(x) = logistic(0" x) = P
» Cost function:
UOEDY ( — 5P log ho(x™) — (1 = y@) log(1 — he(X(i)))>
i=1

TODO: optimize J(6)

Gradient Descent for Logistic Regression

1. Initialize 6y, 01, ..., 04 arbitrarily
2. Repeat until convergence

0 .
9j<—9j—a87)jj(0), j=0,...,d

Partial derivatives for logistic regression (exercise):

0 m X 3 .
3. 7(0) =23 (he(x) —yD)al?
J i=1

(Same as linear regression! But hg(x) is different )

Decision Boundaries

Example from R&N (Fig. 18.15).
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Figure 1: Earthquakes (white circles) vs. nuclear explosions (black circles)
by body wave magnitude (z1) and surface wave magnitude (z2)

Decision Boundaries
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E.g., suppose hypothesis is

h(z1,z2) = logistic(1.7z1 — x2 — 4.9)

Predict nuclear explosion if:

1.73?1 — Xy — 4.9 Z 0
r9 < 1.721 — 4.9




Linear Classifiers

Predict
~ fo ife"x<o,
YT ifeTx >0

Watch out! Hyperplane!

Many other learning algorithms use linear classification rules

» Perceptron
> Support vector machines (SVMs)
> Linear discriminants

Nonlinear Decision Boundaries by Feature Expansion
Example (Ng)

(w1, 22) = (1,21, 22,21, 23, T122),

9:[—1 0011 o]T

Exercise: what does decision boundary look like in (z1,z2) plane?

Note: Where Does Log Loss Come From?

p y=1

probability of y given p =
I-p y=0

—logp y=

cost(p, y) = — log probability = {
—log(l—p) y=0

Find @ to minimize cost <— Find 0 to maximize probability




