Lecture 5 – Multivariate Linear Regression

CS 335

Dan Sheldon

Linear algebra wrap-up

► Inverse (other slides)

Multivariate linear regression

- Model
- Cost function
- ► Normal equations
- ► Gradient descent
- Features

Book Data

y = 0.004036x - .122291

Book Data

Can we predict better with multiple features?

,	Width	Thickness	Height	# Pages	Hardcover	Weight
	8	1.8	10	1152	1	4.4
	8	0.9	9	584	1	2.7
	7	1.8	9.2	738	1	3.9
	6.4	1.5	9.5	512	1	1.8
	8	0.9 1.8	9 9.2	584 738	1 1 1 1	2.7 3.9

Training data

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$$

 $\mathbf{x}^{(i)}$ is a feature vector

Multivariate Linear Regression

 $\blacktriangleright \; \mathsf{Input:} \; \mathbf{x} \in \mathbb{R}^d$

 $\quad \bullet \ \, \mathsf{Output:} \,\, y \in \mathbb{R}$

► Model (hypothesis class): ?

Cost function: ?

Model

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

$$h_{\theta}(\mathbf{x}) = \begin{bmatrix} \theta_0 & \theta_1 & \dots & \theta_n \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x} = \mathbf{x}^T \boldsymbol{\theta}$$

(Augment feature vector with 1)

Geometry of high dimensional linear functions

n-dimensional linear function $h_{\boldsymbol{\theta}}: \mathbb{R}^n \to \mathbb{R}$

$$h_{\theta}(\mathbf{x}) = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

MATLAB demo

- ► Contours = parallel hyperplanes
- Gradient = θ (a vector, orthogonal to contours)
- ▶ The norm $\| heta\|$ can be interpreted as slope

The Problem

Find θ such that

$$y^{(i)} \approx h_{\theta}(\mathbf{x}^{(i)}), \qquad i = 1, \dots, m$$

$$\begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \approx \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ \vdots \\ 1 & x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$$

$$\mathbf{y} \approx X \boldsymbol{\theta}$$

Inputs: Data Matrix and Label Vector

Data matrix, label vector

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ \dots & & & & \\ 1 & x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(m)} \end{bmatrix}.$$

Width	Thickness	Height	# Pages	Hardcover	Weight
8	1.8	10	1152	1	4.4
8	0.9	9	584	1	2.7
7	1.8	9.2	738	1	3.9
6.4	1.5	9.5	512	1	1.8

Illustration

Find θ such that $y^{(i)} \approx h_{\theta}(\mathbf{x}^{(i)}), \qquad i = 1, \dots, n$

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})^{2}$$

Exercise: write this succinctly in matrix-vector notation

Cost Function

Answer:

$$J(\boldsymbol{\theta}) = \frac{1}{2} (X\boldsymbol{\theta} - \mathbf{y})^T (X\boldsymbol{\theta} - \mathbf{y})$$

The Problem

Given training data X and \mathbf{y} , find $\boldsymbol{\theta}$ to minimize cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{2} (X\boldsymbol{\theta} - \mathbf{y})^T (X\boldsymbol{\theta} - \mathbf{y})$$

Solution 1: Normal Equations

Normal equations

$$\boldsymbol{\theta} = (X^T X)^{-1} X^T \mathbf{y}$$

Heuristic derivation:

Proper Approach

▶ Set all partial derivatives to zero

$$0 = \frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta})$$

- lacktriangle Solve a system of n+1 linear equations for $heta_0,\dots, heta_n$
- ► Tedious, but leads to normal equations

Gradient!

Definition: gradient = vector of partial derivatives:

$$\nabla J(\boldsymbol{\theta}) := \begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} J(\boldsymbol{\theta}) \end{bmatrix}$$

- \blacktriangleright Also written as $abla_{m{ heta}} J(m{ heta})$ or $rac{d}{dm{ heta}} J(m{ heta})$
- ► Fact: the gradient is a *vector* that points in the steepest uphill direction

Aside: Matrix Calculus

Succinct (and cool!) way to solve for normal equations:

$$\begin{split} 0 = \nabla J(\boldsymbol{\theta}) &= \frac{d}{d\boldsymbol{\theta}} \frac{1}{2} (X\boldsymbol{\theta} - \mathbf{y})^T (X\boldsymbol{\theta} - \mathbf{y}) \\ 0 &= (X\boldsymbol{\theta} - \mathbf{y})^T X \\ 0 &= X^T (X\boldsymbol{\theta} - \mathbf{y}) \\ X^T X\boldsymbol{\theta} &= X^T \mathbf{y} \\ \boldsymbol{\theta} &= (X^T X)^{-1} X^T \mathbf{y} \end{split}$$

(Note: not responsible vector derivative in first line, but should understand rest of derivation.)

Solution 2: Gradient Descent

- 1. Initialize $\theta_0, \theta_1, \dots, \theta_n$ arbitrarily
- 2. Repeat until convergence

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}), \qquad j = 0, \dots, n.$$

Partial derivatives:

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \sum_{i=1}^m (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$

Vectorized Gradient Descent

- 1. Initialize θ arbitrarily
- 2. Repeat until convergence

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \underbrace{\boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{\theta} - \mathbf{y})}_{\nabla J(\boldsymbol{\theta})}$$

Feature Normalization

Advice: normalize your features so they have the similar numeric ranges!

$$\begin{bmatrix} 94 & .99 \\ 116 & 1 \\ 83 & 1.01 \end{bmatrix} \mapsto \begin{bmatrix} -0.22 & -1 \\ 1.09 & 0 \\ -0.87 & 1 \end{bmatrix}$$

Feature Normalization: why?

Example: cost function contours before and after normalization

Feature Normalization: why?

Why is the bottom cost function better?

- It has a smaller minimum value, which allows you to find a better hypothesis.
- 2. It is easier to optimize (e.g. can use bigger step size)
- 3. It is not better. The top one is better (explain why).

Feature Normalization: how?

Adjust columns of data matrix to have mean zero and standard deviation equal to one.

For each feature j, compute the mean μ_j and standard deviation σ_j of that feature over training set.

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}, \qquad \sigma_j = \sqrt{\frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2}$$

▶ Then, subtract mean and divide by standard deviation:

$$x_i^{(i)} \leftarrow (x_i^{(i)} - \mu_j)/\sigma_j$$

Feature Design

It is possible to fit *nonlinear* functions using linear regression:

$$(x_1, x_2, x_3) \mapsto (x_1, x_2, x_3, x_1^2, \log(x_2), x_1 + x_3)$$

Approaches

- ► Try standard transformations
- ▶ Design features you think will work

Polynomial Regression $x\mapsto (1,x,x^2,x^3,\ldots)$