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Linear algebra wrap-up

> Inverse (other slides)

Multivariate linear regression

Book Data

101

> Model e

» Cost function g

» Normal equations 2 4

» Gradient descent

> Features 2r
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Can we predict better with multiple features?

Width  Thickness Height # Pages Hardcover Weight

8 1.8 10 1152 1 4.4
8 0.9 9 584 1 2.7
7 1.8 9.2 738 1 3.9
6.4 15 9.5 512 1 1.8

Training data

(xM, M), x@ 5@, (x M)y )

x(® is a feature vector

» Input: x € R?

» Output: y € R

v

Model (hypothesis class): ?

v

Cost function: ?




Model

ho(x) = 6o + 0121 + Orzo + ... + Oy,

1

]
ho(x) = [60 61 ... 0,

Ty
he(x) = 6Tx =xT0

(Augment feature vector with 1)

Geometry of high dimensional linear functions

n-dimensional linear function hg : R® - R

hg(x) = 01z + 0222 + ... + Opxy,

MATLAB demo

» Contours = parallel hyperplanes
» Gradient = 6 (a vector, orthogonal to contours)
> The norm ||@|| can be interpreted as slope

The Problem

Find @ such that
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y@ | |1 (2) .7:(22) 2210 o

y(m™ 1 90(17”) xgm) CON R/
y~ X6

Inputs: Data Matrix and Label Vector

Data matrix, label vector

1 W x<21) sl y
- 1 2 x§2) )] v y@
1 L(lm) :Lém) 15:") y(m)
Width  Thickness Height # Pages Hardcover Weight
8 1.8 10 1152 1 4.4
8 0.9 9 584 1 2.7
7 1.8 9.2 738 1 3.9
6.4 15 9.5 512 1 1.8

[[lustration

Find 6 such that 4 ~ hg(x®), i=1,...,m

Y

Elements of Statistical Learnin

Cost Function

7(60) = 53" (halx) — )2

i=1

Exercise: write this succinctly in matrix-vector notation




Cost Function

Answer:

J(0) = L(X60—y)" (X0~ y)

The Problem

Given training data X and y, find € to minimize cost function:

J(0) = L(X60—y)" (X0~ y)

Solution 1: Normal Equations

Normal equations
0=(XTx)"'xTy

Heuristic derivation:

Proper Approach

» Set all partial derivatives to zero

» Solve a system of n + 1 linear equations for 6y, ..., 0,

» Tedious, but leads to normal equations

Gradient!

Definition: gradient = vector of partial derivatives:

P
a5,”©

0
VJ(6) = a0,”®

5
—J(0
00y, ©)
> Also written as Vg.J(6) or C,%J(G)
» Fact: the gradient is a vector that points in the steepest uphill
direction

Aside: Matrix Calculus

Succinct (and cool!) way to solve for normal equations:

0=VJ0) = & L(X0-y)(x0-y)
0 = (X0-y)Tx
0 = XT(x6-y)
xTxe = XTy

0 = (XTx)'xTy

(Note: not responsible vector derivative in first line, but should
understand rest of derivation.)




Solution 2: Gradient Descent

1. Initialize 69,04, ...,0, arbitrarily

2. Repeat until convergence

0
0;=0;— 0437]_(](9)7

Partial derivatives:

Vectorized Gradient Descent

1. Initialize @ arbitrarily
2. Repeat until convergence
0+0-aXT(X0-y)

—_———
v.J(6)

Feature Normalization

» Advice: normalize your features so they have the similar numeric
ranges!

94 .99 -022 -1
116 1 |~ | 109 0
83 1.01 —-0.87 1

Feature Normalization: why?

Example: cost function contours before and after normalization

10

Feature Normalization: why?

Why is the bottom cost function better?

1. It has a smaller minimum value,
which allows you to find a better
A hypothesis.
- 2. It is easier to optimize (e.g. can use
bigger step size)
3. It is not better. The top one is
} better (explain why).

Feature Normalization: how?

Adjust columns of data matrix to have mean zero and standard
deviation equal to one.

» For each feature j, compute the mean f; and standard deviation
o; of that feature over training set.

Z x;‘l)) 05 = .. Z(Ijl) - :U’])2
» Then, subtract mean and divide by standard deviation:

T (ng) — uj)/o;j




Feature Design Polynomial Regression

It is possible to fit nonlinear functions using linear regression:

(21,22, 23) = (21,22, 73, 23, log(z2), 21 + x3)

Approaches

» Try standard transformations

» Design features you think will work




