Linear Regression \quad Dan Sheldon

A First Supervised Learning Problem

How do you measure the biomass of a forest?
Hard to measure:

- Mass of tree
- Height of tree (but can be done)

Easy to measure:

- Diameter at breast height (DBH)

Let's simplify the problem: devise method to easily estimate the height of a tree

A First Supervised Learning Problem

Idea?

- Collect data on DBH and height for some trees
- Determine relationship between DBH and height
- Use DBH to predict height for a new tree

Some data

Development and Evaluation of Models for the Relationship between Tree Height and Diameter at Breast Height for ChineseFir Plantations in Subtropical China

What do you predict for the height of a tree with DBH 15 cm ? 35 cm ? Why?

Supervised Learning

DBH (x)	Height (y)
17	63
19	65
20.5	66
\cdots	\cdots

Find h such that $h(x) \approx y$
Illustration on board: supervised learning

Supervised Learning: Notation and Terminology

- Observe m "training examples" of form $\left(x^{(i)}, y^{(i)}\right)$
- $x^{(i)}$: features / input / what we observe / DBH
- $y^{(i)}$: target / output / what we want to predict / height
- Training set $\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}$
- Find function ("hypothesis") h such that $h(x) \approx y$
- $h\left(x^{(i)}\right) \approx y^{(i)}$ - good fit on training data
- Generalize well to new x values

Variations: type of x, y, h

Linear Regression in One Variable

First example of supervised learning. Assume hypothesis is a linear function:

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} x
$$

- θ_{0} : intercept, θ_{1} : slope
- "parameters" or "weights"

How to find "best" θ_{0}, θ_{1} ? Illustration: hypotheses

Finding the best hypothesis

Simplification: "slope-only" model $h_{\theta}(x)=\theta_{1} x$

- We only need to find θ_{1}

Idea: design cost function $J\left(\theta_{1}\right)$ to numerically measure the quality of hypothesis $h_{\theta}(x)$

Exercise: which cost functions below make sense?
A. $J\left(\theta_{1}\right)=\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)$
A only
B. $J\left(\theta_{1}\right)=\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
C. $J\left(\theta_{1}\right)=\sum_{i=1}^{m}\left|h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right|$
2. B only
3. C only
4. B and C
5. A, B, and C

Answer. 4

Our First Algorithm

We can use calculus to find the hypothesis of minimum cost. Set the derivative of J to zero and solve for θ_{1}. For this example:

$$
\begin{gathered}
J\left(\theta_{1}\right)=\frac{1}{2}\left(\left(17 \cdot \theta_{1}-63\right)^{2}+\left(19 \cdot \theta_{1}-65\right)^{2}+\left(20.5 \cdot \theta_{1}-66\right)^{2}\right) \\
=535.125 \cdot \theta_{1}^{2}-3659 \cdot \theta_{1}+6275 \\
0=\frac{d}{d \theta_{1}} J\left(\theta_{1}\right)=1070.25 \cdot \theta_{1}-3659 \\
\theta_{1}=\frac{3659}{1070.25}=3.4188
\end{gathered}
$$

(See http://www.wolframalpha.com)

Squared Error Cost Function

The "squared error" cost function is:

$$
J\left(\theta_{1}\right)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

- E.g., $\theta_{1}=3$:

x	y	$(3 x-y)^{2} / 2$
17	63	$(51-63)^{2}=144 / 2$
19	65	$(57-65)^{2}=64 / 2$
20.5	66	$(61.5-65)^{2}=12.25 / 2$

$$
J(3)=(144+64+12.25) / 2=220.25 / 2
$$

Our First Algorithm In Action

The General Algorithm

In general, we don't want to plug numbers into $J\left(\theta_{1}\right)$ and solve a calculus problem every time.

Instead, we can solve for θ_{1} in terms of $x^{(i)}$ and $y^{(i)}$.
The general problem: find θ_{1} to minimize

$$
J\left(\theta_{1}\right)=\frac{1}{2} \sum_{i=1}^{m}\left(\theta_{1} x^{(i)}-y^{(i)}\right)^{2}
$$

You will solve this in HW1.

Solution to Problem One

Design a cost function that takes two parameters:

$$
\begin{aligned}
J\left(\theta_{0}, \theta_{1}\right) & =\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{m}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)^{2}
\end{aligned}
$$

Find θ_{0}, θ_{1} to minimize $J\left(\theta_{0}, \theta_{1}\right)$

Two Problems Remain

Problem one: we only fit the slope. What if $\theta_{0} \neq 0$?

Problem two: we will need a better optimization algorithm than
"Set $\frac{d}{d \theta} J(\theta)=0$ and solve for θ."

- Wiggly functions
- Equation(s) may be non-linear, hard to solve

Exercise: ideas for problem one?

Functions of multiple variables!

Here is an example cost function:

$$
\begin{aligned}
J\left(\theta_{0}, \theta_{1}\right) & =\frac{1}{2}\left(\theta_{0}+17 \cdot \theta_{1}-63\right)^{2}+\frac{1}{2}\left(\theta_{0}+19 \cdot \theta_{1}-65\right)^{2} \\
& +\frac{1}{2}\left(\theta_{0}+20.5 \cdot \theta_{1}-66\right)^{2}+\frac{1}{2}\left(\theta_{0}+18.9 \cdot \theta_{1}-62.9\right)^{2}+\ldots
\end{aligned}
$$

Gain intuition on http://www.wolframalpha.com

- Surface plot
- Contour plot

Solution to Problem Two: Gradient Descent

- Gradient descent is a general purpose optimization algorithm. A "workhorse" of ML.
- Idea: repeatedly take steps in steepest downhill direction, with step length proportional to "slope"
- Illustration: contour plot and pictorial definition of gradient descent

Gradient Descent

To minimize a function $J\left(\theta_{0}, \theta_{1}\right)$ of two variables

- Intialize θ_{0}, θ_{1} arbitrarily
- Repeat until convergence

$$
\begin{aligned}
\theta_{0} & :=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}} J\left(\theta_{0}, \theta_{1}\right) \\
\theta_{1} & :=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}} J\left(\theta_{0}, \theta_{1}\right)
\end{aligned}
$$

- $\alpha=$ step-size or learning rate (not too big)

Partial derivative intuition

Interpretation of partial derivative: $\frac{\partial}{\partial \theta_{j}} J\left(\theta_{0}, \theta_{1}\right)$ is the rate of change along the θ_{j} axis

Example: illustrate funciton with elliptical contours

- Sign of $\frac{\partial}{\partial \theta_{0}} J\left(\theta_{0}, \theta_{1}\right)$?
- Sign of $\frac{\partial}{\partial \theta_{1}} J\left(\theta_{0}, \theta_{1}\right)$?
- Which has larger absolute value?

Gradient Descent

- Repeat until convergence

$$
\begin{aligned}
\theta_{0} & =\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}} J\left(\theta_{0}, \theta_{1}\right) \\
\theta_{1} & =\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}} J\left(\theta_{0}, \theta_{1}\right)
\end{aligned}
$$

- Issues (explore in HW1)
- Pitfalls
- How to set step-size α ?
- How to diagnose convergence?

Gradient descent intuition

$$
\begin{aligned}
\theta_{0} & :=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}} J\left(\theta_{0}, \theta_{1}\right) \\
\theta_{1} & :=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}} J\left(\theta_{0}, \theta_{1}\right)
\end{aligned}
$$

- Why does this move in the direction of steepest descent?
- What would we do if we wanted to maximize $J\left(\theta_{0}, \theta_{1}\right)$ instead?

The Result in Our Problem

$$
h_{\theta}(x)=39.75+1.25 x
$$

Gradient descent for linear regression

Algorithm

$$
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta_{0}, \theta_{1}\right) \quad \text { for } j=0,1
$$

Cost function

$$
J\left(\theta_{0}, \theta_{1}\right)=\sum_{i=1}^{m} \frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

We need to calculate partial derivatives.

Linear regression partial derivatives
Let's first do this with a single training example (x, y) :

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} J\left(\theta_{0}, \theta_{1}\right) & =\frac{\partial}{\partial \theta_{j}} \frac{1}{2}\left(h_{\theta}(x)-y\right)^{2} \\
& =2 \cdot \frac{1}{2}\left(h_{\theta}(x)-y\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(h_{\theta}(x)-y\right) \\
& =\left(h_{\theta}(x)-y\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(\theta_{0}+\theta_{1} x-y\right)
\end{aligned}
$$

So we get

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{0}} J\left(\theta_{0}, \theta_{1}\right) & =\left(h_{\theta}(x)-y\right) \\
\frac{\partial}{\partial \theta_{1}} J\left(\theta_{0}, \theta_{1}\right) & =\left(h_{\theta}(x)-y\right) x
\end{aligned}
$$

Demo: parameter space vs. hypotheses

Show gradient descent demo

Linear regression partial derivatives
More generally, with many training examples (work this out):

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{0}} J\left(\theta_{0}, \theta_{1}\right) & =\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \\
\frac{\partial}{\partial \theta_{1}} J\left(\theta_{0}, \theta_{1}\right) & =\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}
\end{aligned}
$$

So the algorithm is:

$$
\begin{aligned}
& \theta_{0}:=\theta_{0}-\alpha \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \\
& \theta_{1}:=\theta_{1}-\alpha \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}
\end{aligned}
$$

- What to know
- Supervised learning setup
- Cost function
- Convert a learning problem to an optimization problem - Squared error
- Gradient descent
- Next time
- More on gradient descent
- Linear algebra review

