

The General Algorithm

In general, we don't want to plug numbers into $J(\theta_1)$ and solve a calculus problem every time.

Instead, we can solve for θ_1 in terms of $x^{(i)}$ and $y^{(i)}.$

The general problem: find θ_1 to minimize

$$J(\theta_1) = \frac{1}{2} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

You will solve this in HW1.

Solution to Problem One

Design a cost function that takes two parameters:

$$J(\theta_0, \theta_1) = \frac{1}{2} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$
$$= \frac{1}{2} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Find θ_0, θ_1 to minimize $J(\theta_0, \theta_1)$

Solution to Problem Two: Gradient Descent

Two Problems Remain

Problem one: we only fit the slope. What if $\theta_0 \neq 0$?

Problem two: we will need a better optimization algorithm than "Set $\frac{d}{d\theta}J(\theta)=0$ and solve for $\theta.$ "

- Wiggly functions
- Equation(s) may be non-linear, hard to solve

Exercise: ideas for problem one?

Functions of multiple variables!

Here is an example cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2}(\theta_0 + 17 \cdot \theta_1 - 63)^2 + \frac{1}{2}(\theta_0 + 19 \cdot \theta_1 - 65)^2 + \frac{1}{2}(\theta_0 + 20.5 \cdot \theta_1 - 66)^2 + \frac{1}{2}(\theta_0 + 18.9 \cdot \theta_1 - 62.9)^2 + \dots$$

Gain intuition on http://www.wolframalpha.com

- Surface plot
- Contour plot

Gradient Descent

To minimize a function $J(\theta_0, \theta_1)$ of two variables

- ▶ Intialize θ_0, θ_1 arbitrarily
- Repeat until convergence

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

• $\alpha = \text{step-size or learning rate (not too big)}$

- Gradient descent is a general purpose optimization algorithm. A "workhorse" of ML.
- Idea: repeatedly take steps in steepest downhill direction, with step length proportional to "slope"
- Illustration: contour plot and pictorial definition of gradient descent

Linear regression partial derivatives

Let's first do this with a single training example (x, y):

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_\theta(x) - y)^2$$
$$= 2 \cdot \frac{1}{2} (h_\theta(x) - y) \cdot \frac{\partial}{\partial \theta_j} (h_\theta(x) - y)$$
$$= (h_\theta(x) - y) \cdot \frac{\partial}{\partial \theta_j} (\theta_0 + \theta_1 x - y)$$

So we get

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = (h_\theta(x) - y)$$
$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = (h_\theta(x) - y) x$$

Demo: parameter space vs. hypotheses

Show gradient descent demo

Linear regression partial derivatives

More generally, with many training examples (work this out):

$$\begin{split} \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) &= \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \\ \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) &= \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)} \end{split}$$

So the algorithm is:

$$\theta_0 := \theta_0 - \alpha \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Summary

What to know

- Supervised learning setup Cost function
 - Convert a learning problem to an optimization problem
 Squared error
- Gradient descent

Next time

- More on gradient descentLinear algebra review