
Linear Regression

Dan Sheldon

A First Supervised Learning Problem

How do you measure the biomass of a forest?

Hard to measure:
I Mass of tree
I Height of tree (but can be done)

Easy to measure:
I Diameter at breast height (DBH)

Let’s simplify the problem: devise method to easily estimate the
height of a tree

A First Supervised Learning Problem

Idea?
I Collect data on DBH and height for some trees
I Determine relationship between DBH and height
I Use DBH to predict height for a new tree

Some data

What do you predict for the height of a tree with DBH 15cm?
35cm? Why?

A First Supervised Learning Problem

Idea:
I Collect data on DBH and height for some trees
I Determine relationship between DBH and height
I Use DBH to predict height for a new tree

This is supervised learning:
I Collect training data
I Use a learning algorithm to fit a model
I Use model to make a prediction

What model? What algorithm? Largely what this class is about.

Supervised Learning

DBH (x) Height (y)
17 63
19 65
20.5 66
· · · · · ·

Find h such that h(x) ≈ y
Illustration on board: supervised learning



Supervised Learning: Notation and Terminology

I Observe m “training examples” of form (x(i), y(i))
I x(i): features / input / what we observe / DBH
I y(i): target / output / what we want to predict / height
I Training set {(x(1), y(1)), . . . , (x(m), y(m))}

I Find function (“hypothesis”) h such that h(x) ≈ y
I h(x(i)) ≈ y(i) – good fit on training data
I Generalize well to new x values

Variations: type of x, y, h

Linear Regression in One Variable

First example of supervised learning. Assume hypothesis is a linear
function:

hθ(x) = θ0 + θ1x

I θ0: intercept, θ1: slope
I “parameters” or “weights”

How to find “best” θ0, θ1? Illustration: hypotheses.

Finding the best hypothesis

Simplification: “slope-only” model hθ(x) = θ1x

I We only need to find θ1

Idea: design cost function J(θ1) to numerically measure the
quality of hypothesis hθ(x)

Exercise: which cost functions below make sense?

A. J(θ1) =
∑m
i=1
(
hθ(x(i))− y(i))

B. J(θ1) =
∑m
i=1
(
hθ(x(i))− y(i))2

C. J(θ1) =
∑m
i=1
∣∣hθ(x(i))− y(i)∣∣

1. A only
2. B only
3. C only
4. B and C
5. A, B, and C

Answer. 4

Squared Error Cost Function

The “squared error” cost function is:

J(θ1) = 1
2

m∑

i=1

(
hθ(x(i))− y(i))2

I E.g., θ1 = 3:
x y (3x− y)2/2
17 63 (51− 63)2 = 144/2
19 65 (57− 65)2 = 64/2
20.5 66 (61.5− 65)2 = 12.25/2

J(3) = (144 + 64 + 12.25)/2 = 220.25/2

Our First Algorithm

We can use calculus to find the hypothesis of minimum cost. Set
the derivative of J to zero and solve for θ1. For this example:

J(θ1) = 1
2
(
(17 · θ1 − 63)2 + (19 · θ1 − 65)2 + (20.5 · θ1 − 66)2

)

= 535.125 · θ2
1 − 3659 · θ1 + 6275

0 = d

dθ1
J(θ1) = 1070.25 · θ1 − 3659

θ1 = 3659
1070.25 = 3.4188

(See http://www.wolframalpha.com)

Our First Algorithm In Action

16 18 20 22 24
50

60

70

80

Knee height (in.)

H
e
ig

h
t 
(i
n
.)



The General Algorithm

In general, we don’t want to plug numbers into J(θ1) and solve a
calculus problem every time.

Instead, we can solve for θ1 in terms of x(i) and y(i).

The general problem: find θ1 to minimize

J(θ1) = 1
2

m∑

i=1
(θ1x

(i) − y(i))2

You will solve this in HW1.

Two Problems Remain

Problem one: we only fit the slope. What if θ0 6= 0?

Problem two: we will need a better optimization algorithm than
“Set d

dθJ(θ) = 0 and solve for θ.”
I Wiggly functions
I Equation(s) may be non-linear, hard to solve

Exercise: ideas for problem one?

Solution to Problem One

Design a cost function that takes two parameters:

J(θ0, θ1) = 1
2

m∑

i=1

(
hθ(x(i))− y(i))2

= 1
2

m∑

i=1

(
θ0 + θ1x

(i) − y(i))2

Find θ0, θ1 to minimize J(θ0, θ1)

Functions of multiple variables!

Here is an example cost function:

J(θ0, θ1) = 1
2(θ0 + 17 · θ1 − 63)2 + 1

2(θ0 + 19 · θ1 − 65)2

+ 1
2(θ0 + 20.5 · θ1 − 66)2 + 1

2(θ0 + 18.9 · θ1 − 62.9)2 + . . .

Gain intuition on http://www.wolframalpha.com
I Surface plot
I Contour plot

Solution to Problem Two: Gradient Descent

I Gradient descent is a general purpose optimization algorithm.
A “workhorse” of ML.

I Idea: repeatedly take steps in steepest downhill direction, with
step length proportional to “slope”

I Illustration: contour plot and pictorial definition of gradient
descent

Gradient Descent

To minimize a function J(θ0, θ1) of two variables
I Intialize θ0, θ1 arbitrarily
I Repeat until convergence

θ0 := θ0 − α
∂

∂θ0
J(θ0, θ1)

θ1 := θ1 − α
∂

∂θ1
J(θ0, θ1)

I α = step-size or learning rate (not too big)



Partial derivatives

I The partial derivative with respect to θj is denoted
∂
∂θj
J(θ0, θ1)

I Treat all other variables as constants, then take derivative
I Example

∂

∂u
5u2v3 = 5v3 ∂

∂u
u2

= 5v3 · 2u
= 10v3u

∂

∂v
5u2v3 =??

Partial derivative intuition

Interpretation of partial derivative: ∂
∂θj
J(θ0, θ1) is the rate of

change along the θj axis

Example: illustrate funciton with elliptical contours
I Sign of ∂

∂θ0
J(θ0, θ1)?

I Sign of ∂
∂θ1

J(θ0, θ1)?
I Which has larger absolute value?

Gradient Descent

I Repeat until convergence

θ0 = θ0 − α
∂

∂θ0
J(θ0, θ1)

θ1 = θ1 − α
∂

∂θ1
J(θ0, θ1)

I Issues (explore in HW1)
I Pitfalls
I How to set step-size α?
I How to diagnose convergence?

The Result in Our Problem

16 18 20 22 24
50

60

70

80

Knee height (in.)

H
e
ig

h
t 
(i
n
.)

hθ(x) = 39.75 + 1.25x

Gradient descent intuition

θ0 := θ0 − α
∂

∂θ0
J(θ0, θ1)

θ1 := θ1 − α
∂

∂θ1
J(θ0, θ1)

I Why does this move in the direction of steepest descent?
I What would we do if we wanted to maximize J(θ0, θ1) instead?

Gradient descent for linear regression

Algorithm

θj := θj − α
∂

∂θj
J(θ0, θ1) for j = 0, 1

Cost function

J(θ0, θ1) =
m∑

i=1

1
2
(
hθ(x(i))− y(i))2

We need to calculate partial derivatives.



Linear regression partial derivatives

Let’s first do this with a single training example (x, y):

∂

∂θj
J(θ0, θ1) = ∂

∂θj

1
2
(
hθ(x)− y)2

= 2 · 1
2(hθ(x)− y) · ∂

∂θj
(hθ(x)− y)

=
(
hθ(x)− y) · ∂

∂θj

(
θ0 + θ1x− y

)

So we get
∂

∂θ0
J(θ0, θ1) =

(
hθ(x)− y)

∂

∂θ1
J(θ0, θ1) =

(
hθ(x)− y)x

Linear regression partial derivatives

More generally, with many training examples (work this out):

∂

∂θ0
J(θ0, θ1) =

m∑

i=1

(
hθ(x(i))− y(i))

∂

∂θ1
J(θ0, θ1) =

m∑

i=1

(
hθ(x(i))− y(i))x(i)

So the algorithm is:

θ0 := θ0 − α
m∑

i=1

(
hθ(x(i))− y(i))

θ1 := θ1 − α
m∑

i=1

(
hθ(x(i))− y(i))x(i)

Demo: parameter space vs. hypotheses

Show gradient descent demo

Summary

I What to know
I Supervised learning setup
I Cost function

I Convert a learning problem to an optimization problem
I Squared error

I Gradient descent
I Next time

I More on gradient descent
I Linear algebra review


