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What is Machine Learning?

What is Machine Learning?

• How do you program a computer to
– Recognize faces?
– Recommend movies?
– Decide which web pages are relevant to a Google 

search query?

A Simple Task: Recognize Obama

A Simple Task: Recognize Obama

• Input: picture
• Output: yes/no

• Can you program this?
– Probably not…
– But you can show a computer 

how to solve this task
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Discussion

• Is it easier to design a learning algorithm or an 
Obama recognizer?

• Is it more useful to have a learning algorithm or 
an Obama recognizer?

• What problems like this would you like to solve?

What is Machine Learning?

• Machine learning is the practice of 
programming a computer to learn to solve a 
task through experience, rather than directly 
programming it to solve the task.

• What are some examples of ML in your day-
to-day life?

Why is ML Important?

ML makes the world go round. ML Achievements
Applications: Deep question answering

David Sontag (NYU) Graphical Models Lecture 1, January 26, 2012 6 / 37ML wins Jeopardy!
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ML Achievements

Building high-level features using large-scale unsupervised learning

spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to di↵erentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron
is indeed a face. The first method is visualizing the
most responsive stimuli in the test set. Since the test
set is large, this method can reliably detect near opti-
mal stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the opti-
mal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x
⇤ = argmin

x
f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron
given learned parameters W,H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may su↵er from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 3, confirm that the tested neuron in-
deed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-

http://www.npr.org/2012/06/26/155792609/a-massive-google-network-learns-to-identify
Building High-level Features Using Large Scale Unsupervised Learning
Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, 
Jeffrey Dean, and Andrew Y. Ng 

ML watches YouTube for three straight days!
(and learns to recognize cats)

ML in Science
• Bioinformatics
– Gene prediction
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ABSTRACT
Phylogenetic hidden Markov models (phylo-HMMs) have re-
cently been proposed as a means for addressing a multi-
species version of the ab initio gene prediction problem.
These models allow sequence divergence, a phylogeny, pat-
terns of substitution, and base composition all to be consid-
ered simultaneously, in a single unified probabilistic model.
Here, we apply phylo-HMMs to a restricted version of the
gene prediction problem in which individual exons are sought
that are evolutionarily conserved across a diverse set of spec-
ies. We discuss two new methods for improving prediction
performance: (1) the use of context-dependent phylogenetic
models, which capture phenomena such as a strong CpG ef-
fect in noncoding regions and a preference for synonymous
rather than nonsynonymous substitutions in coding regions;
and (2) a novel strategy for incorporating insertions and
deletion (indels) into the state-transition structure of the
model, which captures the different characteristic patterns
of alignment gaps in coding and noncoding regions. We also
discuss the technique, previously used in pairwise gene pre-
dictors, of explicitly modeling conserved noncoding sequence
to help reduce false positive predictions. These methods
have been incorporated into an exon prediction program
called ExoniPhy, and tested with two large data sets. Ex-
perimental results indicate that all three methods produce
significant improvements in prediction performance. In com-
bination, they lead to prediction accuracy comparable to
that of some of the best available gene predictors, despite
several limitations of our current models.

General Terms
Algorithms, Experimentation, Performance

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics
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1. INTRODUCTION
With three mammalian genomes now sequenced and as-

sembled, more on the way, and the database of known genes
steadily growing more accurate and more complete, the rules
of the game are changing in mammalian gene prediction.
In round numbers, some 70–90% of human protein-coding
genes are probably now known—depending on how many
genes exist and how many currently “known” are actually
pseudogenes [40, 31]—and the situation is similar with other
species. The challenge now is to reveal the intransigent genes
laid bare by the genome sequencing projects, yet still hid-
den. Thus, it is no longer enough to do fairly well on average
at predicting average genes, in newly sequenced regions of
a genome. The next generation of gene-finding programs
must be able to find new, possibly unusual, genes in well-
studied regions, and with low enough false positive rates
that predictions can be tested in the laboratory efficiently
and economically (see [16]).

The missing genes most likely belong to several different
classes, and a variety of computational approaches (some
possibly quite specialized) will be required to identify them.
One broad distinction that can be drawn is between ancient
genes shared by most species, and newer, lineage-specific
genes, e.g., resulting from recent gene duplications. In this
paper, we are concerned with genes of the first type. Be-
cause they are present in most species, these “core” genes
should be particularly amenable to comparative gene predic-
tion, and they are a natural starting point for a multi-species
method. We choose to approach these genes at the level of
individual (coding) exons, which are more likely than com-
plete genes to be conserved through evolutionary history. (If
desired, predicted exons can be combined into complete or
partial transcripts in post-processing.) A large percentage
of exons appear to be well conserved across diverse sets of
species—by our estimates, probably more than 80% for the
placental mammals.

Our goal is to predict conserved exons using only the se-
quences of the genomes in question, so that genes can be
found without cDNA evidence or homologous proteins. This
problem is a multi-species version of the standard ab initio
gene prediction problem addressed by programs such as Ge-
nie [21] and Genscan [6], and of the pairwise ab initio gene
prediction problem addressed by programs such as Twin-

scan [20], SGP2 [29], SLAM [1], and Doublescan [26]. In
our case, we assume that a multiple alignment of ortholo-
gous sequences is available, and that the phylogeny of the
species is known. Several new genomic-scale aligners help to
make the first assumption possible [5, 4, 2] (but see Discus-
sion), and an emerging consensus on mammalian phylogeny
[28, 38] allows for the second assumption.

In addressing this problem, we make use of a type of prob-
abilistic model called a phylogenetic hidden Markov model,
or “phylo-HMM,” which combines a hidden Markov model
and a set of phylogenetic models [12, 43, 15, 30, 35, 25,
34]. Phylo-HMMs model molecular evolution as a Markov
process in two dimensions: a substitution process over time
at each site in a genome, which is guided by a phylogenetic
tree, and a process by which the “mode” of evolution (as de-
scribed by a phylogenetic model—see below) changes from
one site to the next. Recently, phylo-HMMs have been ap-
plied to gene prediction with encouraging results [30, 25],
but so far their performance has been evaluated only with
simulated data or in small-scale experiments with real bi-
ological data. In one case [25], a phylo-HMM was used in
the context of “phylogenetic shadowing” [3], which is based
on a somewhat different set of goals from the ones we have
stated (see Discussion).

We consider three ways of improving the performance of
phylo-HMMs in exon prediction: the use of context-dep-
endent phylogenetic models, explicit modeling of conserved
noncoding sequences, and modeling of insertions and dele-
tions (indels). These methods have been implemented in a
computer program, called ExoniPhy1, which predicts evo-
lutionarily conserved exons from a multiple alignment, given
a definition of a phylo-HMM. Using ExoniPhy, we have con-
ducted the first large-scale experiments with real biological
data in phylo-HMM-based exon/gene prediction. Compar-
isons of alternative versions of the program indicate that
all three of the methods considered produce substantial im-
provements in prediction performance. When they are used
in combination, ExoniPhy achieves a level of performance
that is competitive with some of the best available gene pre-
dictors, despite the limitations of considering each exon sep-
arately and the fact that the program still lacks some of the
basic features of current gene predictors—e.g, it does not
allow for non-geometric length distributions of exons or use
the best available methods for splice-site detection. Our re-
sults suggest that it may be possible, using a strategy based
on phylo-HMMs, to predict conserved exons with very good
sensitivity and near perfect specificity.

2. METHODS

2.1 Phylo-HMMs for exon prediction
A phylo-HMM is a hidden Markov model that has a phylo-

genetic model associated with each of its states (Figure 1A).
It can be thought of as a probabilistic machine that gener-
ates a multiple alignment by randomly transitioning from
one state to another, in discrete time steps, and at each step
emitting an alignment column that is drawn from a distribu-
tion associated with the current state. These distributions
of alignment columns are defined by probabilistic phyloge-
netic models, and reflect the topology and branch lengths
of a phylogenetic tree, as well as a continuous-time Markov

1Pronounced “ex-ON-if-I,” like personify.
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Figure 1: A state-transition diagram (A) and graphical
model representation (B) of a simple phylo-HMM with
three coding states (s1, s2, and s3), corresponding to the
three codon positions, and a noncoding state (s4). In
(B), the shaded nodes, collectively labeled Xi−1,Xi, and
Xi+1, represent observed random variables, defined by a
given multiple alignment. The unshaded nodes represent
latent variables for ancestral nodes in the tree (Yi−1, Yi,
Yi+1) and states in the path (φi−1, φi, φi+1).

model of nucleotide substitution. A phylo-HMM can be used
for prediction with a multiple alignment, much the way an
ordinary HMM is used with a single sequence. Phylo-HMMs
can be represented naturally as graphical models (Figure
1B) [25, 34].

More formally, a phylo-HMM θ = (S,ψ, A,b) is a four-
tuple consisting of a set of M states, S = {s1, . . . , sM}, a
set of associated phylogenetic models, ψ = {ψ1, . . . ,ψM},
a matrix of state-transition probabilities, A = {aj,k} (1 ≤
j, k ≤ M), and a vector of initial-state probabilities, b =
(b1, . . . , bM ). Model ψj is associated with state sj (1 ≤ j ≤
M), aj,k (1 ≤ j, k ≤ M) is the probability of visiting state
k at an alignment column i given that state j is visited
at column i − 1, and bj (1 ≤ j ≤ M) is the probability
that state j is visited first (thus,

P
k aj,k = 1 for all j, andP

j bj = 1; note that the Markov chain for state transitions
is assumed to be first-order and homogeneous). Let X be
the given alignment, consisting of L columns (sites) and n
rows (one for each species), with the ith column denoted Xi

(1 ≤ i ≤ L). The probability that a column Xi is emitted by
state sj is P (Xi|ψj), a quantity that can be computed with
Felsenstein’s “pruning” algorithm [11]. A “path” through
the phylo-HMM is a sequence of states, φ = (φ1, . . . , φL),
such that 1 ≤ φi ≤ M for 1 ≤ i ≤ L. The joint probability
of a path and an alignment is

P (φ,X|θ) = bφ1P (X1|ψφ1
)

LY

i=2

aφi−1,φiP (Xi|ψφi
). (1)

Hidden Markov model

ML in Data Science

Extracting insight and knowledge from data

http://drewconway.com

Data Science

By Hilary Mason, bitly
From forbes.com

OK, but what are we actually 
going to do in this class?

Course Goals

• Learn how to design basic ML algorithms

• Learn about specific, widely used ML 
algorithms

• Learn tools to apply ML algorithms to real 
data and evaluate their performance

http://www.npr.org/2012/06/26/155792609/a-massive-google-network-learns-to-identify
http://research.google.com/people/jeff/
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Course Structure

• Supervised learning
– Learn from examples

• Unsupervised learning
– Find patterns in data

• Probabilistic learning
– Quantify uncertainty

“20% chance of rain”
“80% chance of survival”

“90% sure it is President Obama”

Course Structure

• There are many dimensions of ML methodology:
– Supervised vs. unsupervised
– Linear vs. nonlinear
– Univariate vs. multivariate
– Regression vs. classification
– Binary vs. multiclass
– Probabilistic or not

• We will touch on most of these

Logistics

Course Webpage

• Entry point for all course information
– Course policies (review)
– Schedule
– Slides
– Homework

• Office hours: 
– Tue 4-5pm 3:30-4:30pm, Clapp 200
– Thu 1-2pm, Clapp 200

http://people.cs.umass.edu/~sheldon/teaching/cs335/index.html

Math
• Warning: there is math in this course

– Calculus
• Derivatives
• (Partial derivatives)

– Probability
• Sample space, events, conditional probability, discrete 

random variables, expected value
• Review later in semester

– Linear algebra
• Matrices and vectors
• (Vector norm, dot product, transpose, inverse)
• (Manipulation of linear algebraic equations)

• Self-assessment in HW0

Python
• All programming in this course done in Python
– Required environment: 

Anaconda 2018.12 for Python 3.7
– Installed on CS lab computers

• Python session during class in ~1 week

• But you are largely responsible for learning on 
your own

http://people.cs.umass.edu/~sheldon/teaching/cs335/index.html
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What’s Next?

• Homework 0 posted

– By next Tuesday

• Read course policies

• Post on Piazza

– By next Friday:

• Get started with Python exercise

• Optional calculus review?

– Derivatives / optima

– TBD based on interest…

(If time) A First Supervised Learning 
Model

• Other slides and board work


