

Derivative

- Function $f: \mathbb{R} \rightarrow \mathbb{R}$
- Derivative $\frac{d}{d x} f(x)$
- (Also $f^{\prime}(x)$, but we usually prefer the other notation)

Motivation

Functions of one or more variables

- $f(x)=(5 x-4)^{2}$
- $g(x, y)=4 x^{2}-x y+2 y^{2}-x-y$
- Optimization: find inputs that lead to smallest (or largest) outputs
- value of x with smallest $f(x)$
- (x, y) pair with smallest $g(x, y)$
- Slope of tangent line at x
- Illustration: function, tangent line, rise over run
- Rate of change

$$
f(a+\epsilon) \approx f(a)+\epsilon \frac{d}{d x} f(a)
$$

Interpretation

Rules

- Polynomial: $\frac{d}{d x} x^{k}=k x^{k-1}$
- Scalar times function: $\frac{d}{d x}(a f(x))=a \frac{d}{d x} f(x)$
- Addition: $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$
- Chain rule
- $f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
- $\frac{d}{d x} f(g(x))=\frac{d f}{d g} \cdot \frac{d g}{d x}$

Chain rule example
$\frac{d}{d x}(5 x-4)^{2}=2 \cdot(5 x-4) \cdot \frac{d}{d x}(5 x-4)$

Rules

- $\frac{d}{d x} \log x=\frac{1}{x}$
- $\frac{d}{d x} e^{x}=e^{x}$
- Quotient rule, product rule, etc.
- Many good references online

Example

$$
\begin{array}{rlr}
\frac{d}{d x}(5 x-4)^{2} & =2 \cdot(5 x-4) \cdot \frac{d}{d x}(5 x-4) & \text { (chain rule) } \\
& =2 \cdot(5 x-4) \cdot\left(\frac{d}{d x} 5 x-\frac{d}{d x} 4\right) & \text { (addition) } \\
& =2 \cdot(5 x-4) \cdot(5-0) & \text { (polynomial) } \\
& =10 \cdot(5 x-4) & \\
& =50 x-40 &
\end{array}
$$

Back to optimization

- Our function and derivative:

$$
f(x)=(5 x-4)^{2} \quad \Longrightarrow \quad \frac{d}{d x} f(x)=50 x-40
$$

- Set equal to zero:

$$
0=\frac{d}{d x} f(x)=50 x-40
$$

- Solve:

$$
x=4 / 5
$$

Convex functions

- Is $x=4 / 5$ a minimum, maximum, or inflection point?
- Illustration: convex / concave functions
- Convex $=$ bowl-shaped
- Second derivative
- $\frac{d^{2}}{d x^{2}} f(x):=\frac{d}{d x}\left(\frac{d}{d x} f(x)\right)=f^{\prime \prime}(x)$
- A function is convex if $\frac{d^{2}}{d x^{2}} f(x) \geq 0$ for all x - $\frac{d}{d x} f(a)=0$ implies that a is a minimum

Wolfram Alpha

- Wolfram Alpha: http://www.wolframalpha.com/
(Optional Exercises)
- $\frac{d}{d x} \sqrt{x}$
- $\frac{d}{d x} 3 e^{4 x}$

Wrap-up

- What to know
- Intuition of derivative
- How to take derivatives of simple functions
- Convex, concave
- Find minimum by setting derivative equal to zero and solving (for convex functions)
- Resources
- Lots of material online
- Wolfram Alpha: http://www.wolframalpha.com/
- Mathematica, Maple, etc.

