Review of Derivatives Dan Sheldon	Motivation Functions of one or more variables • $f(x) = (5x - 4)^2$ • $g(x, y) = 4x^2 - xy + 2y^2 - x - y$ • Optimization: find inputs that lead to smallest (or largest) outputs • value of x with smallest $f(x)$ • (x, y) pair with smallest $g(x, y)$
Derivative • Function $f : \mathbb{R} \to \mathbb{R}$ • Derivative $\frac{d}{dx}f(x)$ • (Also $f'(x)$, but we usually prefer the other notation)	Interpretation • Slope of tangent line at x • Illustration: function, tangent line, rise over run • Rate of change $f(a + \epsilon) \approx f(a) + \epsilon \frac{d}{dx} f(a)$
Optimization! • If x is a maximum or minimum of f , then the derivative is zero $\frac{d}{dx}f(x) = 0$ • Illustration: minimum, maximum, inflection point • So, one way to <i>find</i> maximum or minimum is to set the derivative equal to zero and solve the resulting equaiton for x • Need an expression for $\frac{d}{dx}f(x)$	Rules Polynomial: $\frac{d}{dx}x^k = kx^{k-1}$ Scalar times function: $\frac{d}{dx}(af(x)) = a\frac{d}{dx}f(x)$ Addition: $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$ Addition: $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$ Chain rule $f(g(x))' = f'(g(x)) \cdot g'(x)$ $\frac{d}{dx}f(g(x)) = \frac{df}{dg} \cdot \frac{dg}{dx}$

Chain rule exampleRules
$$\frac{d}{dx}(x-4)^2 = 2 \cdot (5x-4), \frac{d}{dx}(x-4)$$
 $\frac{d}{dx} \frac{1}{5} \ln x = \frac{1}{2}$
 $\frac{d}{dx}e^x - e^x$
 $\frac{d}{dx}e^x - e$

Convex functions	Wolfram Alpha
 Is x = 4/5 a minimum, maximum, or inflection point? Illustration: convex / concave functions Convex = bowl-shaped Second derivative d²/dx² f(x) := d/dx (d/dx f(x)) = f''(x) A function is convex if d²/dx² f(x) ≥ 0 for all x d/dx f(a) = 0 implies that a is a minimum 	Wolfram Alpha: http://www.wolframalpha.com/
(Optional Exercises) $ \begin{array}{c} & \frac{d}{dx}\sqrt{x} \\ & & \frac{d}{dx}3e^{4x} \end{array} \end{array}$	 Wrap-up What to know Intuition of derivative How to take derivatives of simple functions Convex, concave Find minimum by setting derivative equal to zero and solving (for convex functions)
	 Resources Lots of material online Wolfram Alpha: http://www.wolframalpha.com/ Mathematica, Maple, etc.