CS 312: Algorithms

Reductions and NP-Completeness

Dan Sheldon

Mount Holyoke College

Last Compiled: December 3, 2018

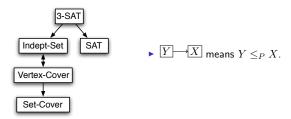
Polynomial-Time Reduction

 $ightharpoonup Y \leq_P X$

- ▶ Statement about relative hardness. Suppose $Y \leq_P X$, then:
 - 1. If X is solvable in poly-time, so is Y
 - 2. If Y is *not* solvable in poly-time, neither is X
- ▶ 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:



Reduction Strategies

- ► Reduction by equivalence (Vertex Cover and Indpendent Set)
- ▶ Reduction to a more general case
- ► Reduction by "gadgets"

Reduction by Gadgets: Satisfiability

Can we determine if a Boolean formula has a satisfying assignment?

$$\underbrace{(x_1 \vee \bar{x}_2)}_{\text{"clause"}} \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (x_2 \vee \bar{x}_3)$$

Terminology

Variables	x_1, \ldots, x_n	
Term	x_i or $ar{x}_i$	variable or its negation
Clause	$C = x_1 \vee \bar{x}_2 \vee x_4$	"or" of terms
Formula	$C_1 \wedge C_2 \wedge C_3 \wedge C_4$	"and" of clauses
Assignment	$(x_1, x_2, x_3) = (1, 1, 1)$	assign $0/1$ to each variable
Satisfying assigment	$(x_1, x_2, x_3) = (0, 0, 0)$	all clauses are "true"

Reduction by Gadgets: Satisfiability

SAT – Given boolean formula $\Phi=C_1\wedge C_2\ldots\wedge C_m$ over variables x_1,\ldots,x_n , does there exist a satisfying assignment?

 $3\text{-}\mathrm{SAT}$ – Same, but each C_i has exactly three terms

$$\Phi = (\bar{x}_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3)$$

Claim: $3\text{-SAT} \leq_P \text{INDEPENDENTSET}$.

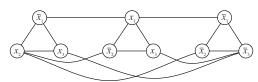
Reduction:

- Given $3\text{-}\mathrm{SAT}$ instance Φ , we will construct an independent set instance $\langle G, m \rangle$ such that G has an independent set of size m iff Φ is satisfiable
- ▶ Return YES if solveIS($\langle G, m \rangle$) = YES

Reduction

▶ Idea: construct graph G where independent set will select one term per clause to be true

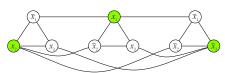
$$(\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$$



- ▶ One node per term
- ▶ Edges between all terms in same clause (select at most one)
- Edges between a literal and all of its negations (consistent truth assignment)

Correctness 1

$$\Phi = (\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$$

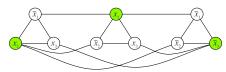


 $\textbf{Claim} \colon \text{if } G \text{ has an independent set of size } m \text{, then } \Phi \text{ is satisfiable}$

- $\,\blacktriangleright\,$ Suppose S is an independent set of size m
- Assign variables so selected literals are true. Edges from terms to negations ensure non-conflicting assignment.
- ► Set any remaining variables arbitrarily
- ► At most one term per clause is selected. Since *m* are selected, every clause is satisfied.

Correctness 2

$\Phi = (\bar{x}_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3)$

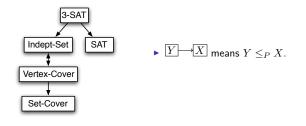


 ${f Claim}:$ if Φ is satisfiable, then G has an independent set of size m

- ightharpoonup Consider a satsifying assignment of Φ
- Let S consist of *one node* per triangle corresponding to true literal in that clause. Then |S|=m.
- For (u, v) within triangle, at most one endpoint is selected
- For edge (x_i, \bar{x}_i) between clauses, at most one endpoint is selected, because $x_i=1$ or $\bar{x}_i=1$, but not both
- lacktriangle Therefore S is an independent set

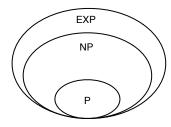
Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:



Toward a Definition of NP

Remember our mystery problems:



What is special about these?

P and NP

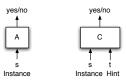
- P: Decision problems for which there is a polynomial time algorithm.
- ▶ NP: Decision problems for which there is a polynomial time certifier.

Intuition: A correct solution can be certified in polynomial time.

Solver vs. Certifier

Let X be a decision problem and s be problem instance (e.g., $s = \langle G, k \rangle$ for INDEPENDENT SET)

Poly-time solver. Algorithm A(s) such that $A(s)={\rm YES}$ iff correct answer is ${\rm YES}$, and running time polynomial time in |s|



Poly-time certifier. Algorithm C(s,t) such that for every instance s, there is some t such that $C(s,t)=\mathrm{YES}\ t$ iff correct answer is YES , and running time is polynomial in |s|.

 \blacktriangleright t is the "certificate" or hint. Size of t must also be polynomial in |s|

Certifier Example: Independent Set

Input $s = \langle G, k \rangle$.

Problem: Does G have an independent set of size at least k?

Hint t: a candidate independent set U of size k

$$\begin{split} & \operatorname{CertifyIS}(\ \langle G,k\rangle,U) \\ & \rhd \operatorname{Check} \text{ if size at most } k \\ & \operatorname{if} \ |U| < k \text{ return NO} \\ & \rhd \operatorname{Check} \text{ if independent set} \\ & \operatorname{for each edge} \ e = (u,v) \in E \ \operatorname{do} \\ & \operatorname{if} \ u \in U \text{ and } v \in U \text{ return NO} \\ & \operatorname{end for} \\ & \operatorname{Return YES} \end{split}$$

Polynomial time?

Example: Independent Set

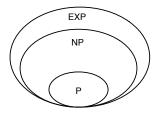
- ► INDEPENDENT SET ∈ P?
 - ▶ Unknown. No known polynomial time algorithm.
- ► INDEPENDENT SET ∈ NP?
 - ▶ Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

Input: formula Φ on n variables. Problem: Is Φ satisfiable? Hint t: the satisfying assignment

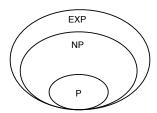
Certify3SAT($\langle \Phi \rangle, t$) \triangleright Check if t makes Φ true

Takeaway



▶ 3SAT and INDEPENDENT SET are in NP, as are many other problems that are hard to solve, but easy to certify!

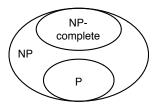
P, NP, EXP



Claim: P ⊆ NP
 Claim: NP ⊆ EXP

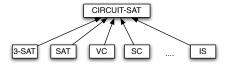
▶ Both straightforward to prove, but not critical right now.

NP-Complete



 $\begin{tabular}{ll} NP-complete = a problem $Y \in \mathsf{NP}$ with the property that $X \leq_P Y$ for every problem $X \in \mathsf{NP}$! \end{tabular}$

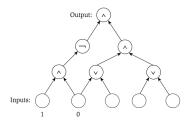
NP-Complete



- Cook-Levin Theorem: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- We'll look at CIRCUIT-SAT as canonical NP-Complete problem.

CIRCUIT-SAT

Problem: Given a circuit built of $A{\rm ND}$, $O{\rm R}$, and $N{\rm OT}$ gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?

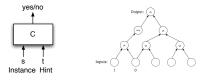


Satisfiable? Yes. Set inputs: 1, 1, 0.

CIRCUIT-SAT

 $\textbf{Cook-Levin Theorem} \ \mathrm{CIRCUIT\text{-}SAT} \ \text{is NP-Complete}.$

Proof Idea: encode certifier as a circuit. If $X \in \mathsf{NP}$, then X has a poly-time certifier C(s,t)



- \blacktriangleright Construct a circuit where s is hard-coded, and circuit is satsifiable iff $\exists~t$ that causes C(s,t) to output YES
- ▶ s is YES instance $\Leftrightarrow \exists t$ such that C(s,t) outputs YES
- $lackbox{ }s$ is $Y{
 m ES}$ instance \Leftrightarrow circuit is satisfiable
- lacktriangle Algorithm for CIRCUIT-SAT implies an algorithm for X

Example

See Independent Set example in other slides.

Proving New Problems NP-Complete

Fact: If Y is NP-complete and $Y \leq_P X$, then X is NP-complete.

Want to prove problem \boldsymbol{X} is NP-complete

- ▶ Check $X \in NP$.
- ${\color{red} \blacktriangleright} \ \, {\rm Choose} \,\, {\rm known} \,\, {\rm NP\text{-}complete} \,\, {\rm problem} \,\, Y.$
- ▶ Prove $Y \leq_P X$.

Theorem: $3\text{-}\mathrm{SAT}$ is NP-Complete.

- ▶ In NP? Yes, check satisfying assignment in poly-time.
- \blacktriangleright Can show that $\textsc{Circuit-SAT} \leq_P 3\text{-SAT}$

