
CS 312: Algorithms
Intractability: Intro and Polynomial-Time Reductions

Dan Sheldon

Mount Holyoke College

Last Compiled: November 28, 2018

Algorithm Design

I Formulate the problem precisely
I Design an algorithm
I Prove correctness
I Analyze running time

Sometimes you can’t find an efficient algorithm.

Example: Network Design

I Input: undirected graph G = (V, E) with edge costs

I Minimum spanning tree problem: find min-cost subset of
edges so there is a path between any u, v ∈ V .

I O(m log n) greedy algorithm

I Minimum Steiner tree problem: find min-cost subset of
edges so there is a path between any u, v ∈W for specified
terminal set W .

I No polynomial-time algorithm is known.

Example: Subset Sum / Knapsack

I Input: n items with weights, capacity W
I Goal: maximize total weight without exceeding W

I O(nW) pseudo-polynomial time algorithm (DP)
I No polynomial time algorithm known!

Tractability

I Working definition of efficient: polynomial time
I O(nd) for some d.

I Huge class of natural and interesting problems for which
I We don’t know any polynomial time algorithm
I We can’t prove that none exists

I Goal: develop mathematical tools to say when a problem is
hard or “intractable”

Preview of Lansdscape: Classes of Problems

P

NP

EXP

I P: solvable in polynomial time
I NP: includes most problems we don’t know about
I EXP: solvable in exponential time

NP-Completeness

P

NP

NP-
complete

I NP-complete: problems that are “as hard as” every other
problem in NP.

I A polynomial time algorithm for any NP-complete problem
implies one for every problem in NP

P 6= NP?

Two possibilities:

P

NP

NP-
complete

P = NP

P 6= NP P = NP

I We don’t know which is true, but think P 6= NP
I $1M prize if you can find out (Clay Institute Millenium

Problems)

Outline

Goal: develop technical tools to make this precise

P

NP

NP-
complete

I Polynomial-time reductions: what
it means for one problem to be “as
hard as” another

I Define NP: characterize mystery
problems

I NP-completeness: some problems
in NP are “as hard as” all others

Polynomial-Time Reduction

I Problem Y is polynomial-time reducible to Problem X

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

I . . . if any instance of Problem Y can be solved using
1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves

problem X

I Notation Y ≤P X

Polynomial-Time Reduction

I Y ≤P X

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

I Statement about relative hardness. Suppose Y ≤P X, then:
1. If X is solvable in poly-time, so is Y
2. If Y is not solvable in poly-time, neither is X

I 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial
time, through transitivity of reductions:

3-SAT

Indept-Set SAT

Vertex-Cover

Set-Cover

I Y X means Y ≤P X.

First Reduction: Independent Set and Vertex Cover
Given a graph G = (V, E),

1 2

3 4 5

6 7

I S ⊂ V is an independent set if no nodes in S share an edge.
Examples: {3, 4, 5}, {1, 4, 5, 6}.

I S ⊂ V is a vertex cover if every edge has at least one
endpoint in S. Examples: {1, 2, 6, 7}, {2, 3, 7}

Indept-Set Does G have independent set of size at least k?
Vertex-Cover Does G have a vertex cover of size at most k?

Independent Set and Vertex Cover

I Claim: S is independent set if and only if V − S is a vertex
cover.

1. S independent set ⇒ V − S vertex cover
I Consider any edge (u, v)
I S independent ⇒ either u /∈ S or v /∈ S
I I.e., either u ∈ V − S or v ∈ V − S
I ⇒ V − S is a vertex cover

2. V − S vertex cover ⇒ S independent set
I Similar.

Independent Set ≤P Vertex Cover
Claim: Independent Set ≤P Vertex Cover. Reduction:

I On Independent Set instance 〈G, k〉
I Construct Vertex Cover instance 〈G, n− k〉
I Return Yes iff solveVC(〈G, n− k〉) = Yes

Correctness for Yes output:

I Suppose G has independent set S with ≥ k nodes
I Then T = V − S is a vertex cover with ≤ n− k nodes
I The algorithm correctly outputs Yes

Correctness for No output:

I Suppose G has no independent set S with ≥ k nodes
I Then there is no vertex cover with T with ≤ n− k nodes,

otherwise S = V − T is an independent set with ≥ k nodes.
I The algorithm correctly outputs No

Vertex Cover ≤P Independent Set

I Claim: Vertex Cover ≤P Independent Set
I Reduction:

I On Vertex Cover input 〈G, k〉
I Construct Independent Set input 〈G, n− k〉
I Return Yes if solveIS(〈G, n− k〉) = Yes

I Proof: similar

Aside: Decision versus Optimization

I For intractiability and reductions we will focus on decision
problems (Yes/No answers)

I Algorithms have typically been for optimization (find
biggest/smallest)

I Can reduce optimization to decision and vice versa. Discuss.

Reduction Strategies

I Reduction by equivalence
I Vertex Cover and Independent Set

I Reduction to a more general case
I Reduction by “gadgets”

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets S1, . . . , Sm ⊂ U ,
and a number k, does there exist a collection of at most k subsets
Si whose union is U?

I Example: U = {A, B, C, D, E} is the set of all skills, there are
five people with skill sets:

S1 = {A, C}, S2 = {B, E}, S3 = {A, C, E}

S4 = {D}, S5 = {B, C, E}
I Find a small team that has all skills. S1, S4, S5

Theorem. VertexCover ≤P SetCover

Reduction of Vertex Cover to Set Cover

Reduction.

I Given Vertex Cover instance 〈G, k〉
I Construct Set Cover instance 〈U, S1, . . . , Sm, k〉 with

U = E, and Sv = the set of edges incident to v
I Return Yes iff solveSC(〈U, S1, . . . , Sm, k〉) = Yes

Proof

I Straightforward to see that Sv1 , . . . , Sv`
is a set cover of size `

if and only if v1, . . . , v` is a vertex cover of size `
I This implies the algorithm correctly outputs Yes if G has a

vertex cover of size ≤ k and No otherwise
I Polynomial # of steps outside of solveSC
I Only one call to solveSC

