CS 312: Algorithms

Intractability: Intro and Polynomial-Time Reductions

Dan Sheldon

Mount Holyoke College

Last Compiled: November 28, 2018

Algorithm Design

Formulate the problem precisely
Design an algorithm

Prove correctness

Analyze running time

vvyVvyy

Sometimes you can't find an efficient algorithm.

Example: Network Design

» Input: undirected graph G = (V, E) with edge costs

» Minimum spanning tree problem: find min-cost subset of
edges so there is a path between any u,v € V.

» O(mlogn) greedy algorithm

» Minimum Steiner tree problem: find min-cost subset of
edges so there is a path between any u,v € W for specified
terminal set W.

» No polynomial-time algorithm is known.

Example: Subset Sum / Knapsack

MY Hospy:
EVBEDDING NP-(DMPLETE PROBLENS IV RESTAURMT ORDERS

—APPENZERs —~ | Bry? Uit

MXED FRUIT 215 HERE, THESE PRPERS ON THE KNAFSAK

PROBLEM MIGHT HELP YOU OUT-
FRENCHFRIES 275 \ LISTEN, T HAVE Six OMER
GIDE 5ALAD 235 TABLES T0 GET T0—
HoT WiNGs: 3.5

~ A FAST 5 RISSRLE OF COURSE, WANT
‘SOMETHING ON TRAVELING SALESHAN? /

MozzAREUA STIORS 420

SAMPLER PLATE 5.80 % (¢} %; %
— SAVDWIGHES ~— !

RAREEAIE. s

» Input: n items with weights, capacity W
» Goal: maximize total weight without exceeding W

» O(nW) pseudo-polynomial time algorithm (DP)
> No polynomial time algorithm known!

Tractability

» Working definition of efficient: polynomial time
» O(n?) for some d.
» Huge class of natural and interesting problems for which

» We don’t know any polynomial time algorithm
» We can't prove that none exists

» Goal: develop mathematical tools to say when a problem is
hard or “intractable”

Preview of Lansdscape: Classes of Problems

» P: solvable in polynomial time
» NP: includes most problems we don't know about
» EXP: solvable in exponential time

NP-Completeness

NP-
complete

» NP-complete: problems that are “as hard as” every other
problem in NP.

» A polynomial time algorithm for any NP-complete problem
implies one for every problem in NP

P £ NP?

Two possibilities:

NP-
complete

P #NP P=NP

» We don't know which is true, but think P # NP
> $1M prize if you can find out (Clay Institute Millenium
Problems)

Outline

Goal: develop technical tools to make this precise

NP-
complete
» Define NP: characterize mystery
o problems

» NP-completeness: some problems
in NP are “as hard as” all others

» Polynomial-time reductions: what
it means for one problem to be “as
hard as” another

Polynomial-Time Reduction

» Problem Y is polynomial-time reducible to Problem X

solveY (yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

> ...if any instance of Problem Y can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves
problem X

» Notation Y <p X

Polynomial-Time Reduction

» Y <pX

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

» Statement about relative hardness. Suppose Y <p X, then:

1. If X is solvable in poly-time, so is YV’
2. If Y is not solvable in poly-time, neither is X

> 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial
time, through transitivity of reductions:

Indept-Set

SAT
> meansngX.

First Reduction: Independent Set and Vertex Cover

Given a graph G = (V, E),

» S C V is an independent set if no nodes in S share an edge.

Examples: {3,4,5},{1,4,5,6}.
» S C V is a vertex cover if every edge has at least one
endpoint in S. Examples: {1,2,6,7},{2,3,7}

INDEPT-SET Does G have independent set of size at least k7
VERTEX-COVER Does G have a vertex cover of size at most k?

Independent Set and Vertex Cover

» Claim: S is independent set if and only if V' — S is a vertex
cover.

1. S independent set = V — S vertex cover

> Consider any edge (u,v)

» S independent = either u ¢ S or v ¢ S
» le., eitherueV —-—SorveV -8

» = V — §is a vertex cover

2. V — S vertex cover = S independent set

» Similar.

Independent Set <p Vertex Cover
Claim: INDEPENDENT SET <p VERTEX COVER. Reduction:

» On INDEPENDENT SET instance (G, k)
» Construct VERTEX COVER instance (G,n — k)
> Return YEs iff solveVC((G,n — k)) = YES

Correctness for YES output:

» Suppose G has independent set S with > k nodes
» Then T'=V — S is a vertex cover with < n — k nodes
» The algorithm correctly outputs YES

Correctness for NO output:

» Suppose G has no independent set S with > k nodes

» Then there is no vertex cover with T" with < n — k nodes,
otherwise S =V — T is an independent set with > k nodes.

» The algorithm correctly outputs NoO

Vertex Cover <p Independent Set

» Claim: VERTEX COVER <p INDEPENDENT SET
» Reduction:

» On VERTEX COVER input (G, k)
» Construct INDEPENDENT SET input (G,n — k)
» Return YEs if solveIS((G,n —k)) = YEs

» Proof: similar

Aside: Decision versus Optimization

» For intractiability and reductions we will focus on decision
problems (YES/NO answers)

» Algorithms have typically been for optimization (find
biggest/smallest)

» Can reduce optimization to decision and vice versa. Discuss.

Reduction Strategies

» Reduction by equivalence
» VERTEX COVER and INDEPENDENT SET

» Reduction to a more general case
» Reduction by “gadgets”

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets S1,...,S, C U,
and a number k, does there exist a collection of at most k subsets
S; whose union is U?

» Example: U = {A, B,C, D, E} is the set of all skills, there are
five people with skill sets:

Sy ={A,C}, Sy={B,E}, S3={A,CE}

SAZ{D}v 55:{B7C7E}

» Find a small team that has all skills. S, 5S4, S5

Theorem. VERTEXCOVER <p SETCOVER

Reduction of Vertex Cover to Set Cover

Reduction.

» Given VERTEX COVER instance (G, k)

» Construct SET COVER instance (U, S, ..., Sm, k) with
U = FE, and S, = the set of edges incident to v

> Return YEs iff solveSC((U, Si,...,Sm,k)) = YES

Proof
> Straightforward to see that S,,,...,S,, is a set cover of size ¢
if and only if vy,..., vy is a vertex cover of size ¢

» This implies the algorithm correctly outputs YES if G has a
vertex cover of size < k and NO otherwise

» Polynomial # of steps outside of solveSC

» Only one call to solveSC

