

First Reduction: Independent Set and Vertex Cover	Independent Set and Vertex Cover
Given a graph $G = (V, E)$,	
 I 2 3 6 5 6 7 S ⊂ V is an independent set if no nodes in S share an edge. Examples: {3,4,5}, {1,4,5,6}. S ⊂ V is a vertex cover if every edge has at least one endpoint in S. Examples: {1,2,6,7}, {2,3,7} INDEPT-SET Does G have independent set of size at least k? VERTEX-COVER Does G have a vertex cover of size at most k? 	 Claim: S is independent set if and only if V − S is a vertex cover. 1. S independent set ⇒ V − S vertex cover Consider any edge (u, v) S independent ⇒ either u ∉ S or v ∉ S I.e., either u ∈ V − S or v ∈ V − S ⇒ V − S is a vertex cover 2. V − S vertex cover ⇒ S independent set Similar.
Independent Set \leq_P Vertex Cover Claim: INDEPENDENT SET \leq_P VERTEX COVER. Reduction: • On INDEPENDENT SET instance $\langle G, k \rangle$ • Construct VERTEX COVER instance $\langle G, n - k \rangle$ • Return YES iff solveVC($\langle G, n - k \rangle$) = YES Correctness for YES output: • Suppose G has independent set S with $\geq k$ nodes • Then $T = V - S$ is a vertex cover with $\leq n - k$ nodes • The algorithm correctly outputs YES Correctness for No output: • Suppose G has no independent set S with $\geq k$ nodes • The there is no vertex cover with T with $\leq n - k$ nodes, otherwise $S = V - T$ is an independent set with $\geq k$ nodes. • The algorithm correctly outputs No	Vertex Cover \leq_P Independent Set • Claim: VERTEX COVER \leq_P INDEPENDENT SET • Reduction: • On VERTEX COVER input $\langle G, k \rangle$ • Construct INDEPENDENT SET input $\langle G, n - k \rangle$ • Return YES if solveIS($\langle G, n - k \rangle$) = YES • Proof: similar
Aside: Decision versus Optimization	Reduction Strategies
 For intractiability and reductions we will focus on decision problems (YES/NO answers) Algorithms have typically been for optimization (find biggest/smallest) Can reduce optimization to decision and vice versa. Discuss. 	 Reduction by equivalence VERTEX COVER and INDEPENDENT SET Reduction to a more general case Reduction by "gadgets"

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets $S_1, \ldots, S_m \subset U$, and a number k, does there exist a collection of at most k subsets S_i whose union is U?

▶ Example: *U* = {*A*, *B*, *C*, *D*, *E*} is the set of all skills, there are five people with skill sets:

$$S_1 = \{A, C\}, \quad S_2 = \{B, E\}, \quad S_3 = \{A, C, E\}$$

 $S_4 = \{D\}, \quad S_5 = \{B, C, E\}$

 \blacktriangleright Find a small team that has all skills. S_1,S_4,S_5

Theorem. VERTEXCOVER \leq_P SETCOVER

Reduction of Vertex Cover to Set Cover

Reduction.

- Given VERTEX COVER instance $\langle G, k \rangle$
- ▶ Construct SET COVER instance $\langle U, S_1, \ldots, S_m, k \rangle$ with U = E, and S_v = the set of edges incident to v
- Return YES iff solveSC($\langle U, S_1, \ldots, S_m, k \rangle$) = YES

Proof

- Straightforward to see that $S_{v_1}, \ldots, S_{v_\ell}$ is a set cover of size ℓ if and only if v_1, \ldots, v_ℓ is a vertex cover of size ℓ
- \blacktriangleright This implies the algorithm correctly outputs ${\rm YES}$ if G has a vertex cover of size $\leq k$ and ${\rm NO}$ otherwise
- Polynomial # of steps outside of solveSC
- Only one call to solveSC