	First Application of Network Flows: Bipartite Matching
CS 312: Algorithms	
Flow Applications	 Given a bipartite graph G = (L ∪ R, E), a subset of edges M ⊆ E ⊆ L × R is a matching if each node appears in at most one edge in M.
Dan Sheldon	The maximum matching problem is to find the matching with the most edges.
Mount Holyoke College	 We'll design an efficient algorithm for maximum matching in a bipartite graph.
Last Compiled: November 26, 2018	
Formulating it as a a network flow problem	Correctness
	There is a bijection between integral flows f of value k and matchings M of size k
Goal: given matching instance G = (L ∪ R, E), create a flow network G', find a maximum flow f in G', and use f to construct a maximum matching M in G. Exercise.	1. Integral flow f of value $k \Rightarrow$ matching M of size k
 Add a source s and sink t For each edge (u, v) ∈ E, add a directed edge from u to v with capacity 1 Add an edge with capacity 1 from s to each node u ∈ L Add an edge with capacity 1 from each node v ∈ R to t. Run F-F to get an integral max-flow f Set M to the set of edges from L to R with flow f(e) = 1 Claim: The set M is a maximum matching. 	 Suppose f is a flow of value k Let M = edges from L to R carrying one unit of flow There are k such edges, because the net flow across cut between L and R is k, and there are no edges from R to L There is at most 1 unit of flow entering u ∈ L, and therefore at most 1 unit of flow leaving u Since all flow values are 0 or 1, this means M has at most one edge incident to u. A similar argument for v ∈ L means that M has at most one edge incident to v Therefore, M is a matching with size k
Correctness	 Second Application of Network Flows: Image Segmentatio Using an expensive camera and appropriate lenses, you can get
2. Matching M of size $k \Rightarrow$ integral flow f of value k	a "bokeh" effect on portrait photos in which the background is blurred and the foreground is in focus.
 Suppose M is a matching of size k Send one unit of flow from s to u ∈ L if u is matched Send one unit of flow from v ∈ R to t if t is matched Sent one unit of flow on e if e is in M All other edge flow values are zero Verify that capacity and flow conservation constraints are satisfied, and that v(f) = k. For every integer flow of value k we can construct a matching M of size k and vice versa. Therefore, a maximum integer-valued flow yields a maximum matching. 	
yreas a maximum matering.	But using cheap cameras in phones and appropriate software you can fake this effect

you can fake this effect...

Formulating the problem

 $\mbox{Problem}:$ given set V of pixels, classify each as foreground or background. Assume you have:

- ► Numeric "cost" for assigning each pixel foreground/background
- Numeric penalty for assigning neighboring pixels to different classes

Sketch of approach: other slides, board work, demo.