CS 312: Algorithms

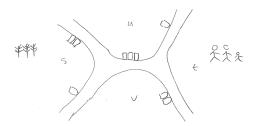
Lecture 19: Network Flows

Dan Sheldon

Mount Holyoke College

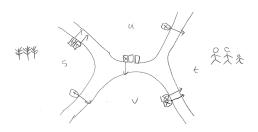
Last Compiled: November 14, 2018

A Puzzle

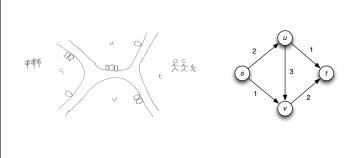


How many loads of grain can you ship from \boldsymbol{s} to t? Which boats are used?

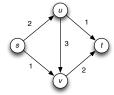
A Puzzle



Flow Network



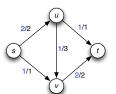
Max-Flow Problem



Problem input is a flow network

- ▶ Directed graph
- ightharpoonup Source node s
- ightharpoonup Target node or $sink\ t$
- $\blacktriangleright \ \ \mathsf{Edge} \ \mathsf{capacities} \ c(e) \geq 0$

Solution: A Flow



A **network flow** is an assignment of values f(e) to each edge e, which satisfy:

- ► Capacity constraints: $0 \le f(e) \le c(e)$ for all e
- ► Flow conservation:

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

for all $v \notin \{s, t\}$.

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- ► Max flow problem: find a flow of maximum value

Algorithm Design Techniques

- Greedy
- ► Divide and Conquer
- ► Dynamic Programming
- ► Network Flows

Network Flow

- Previous topics (Greedy, Divide-and-Conquer, Dynamic Programming) were design techniques
- Network flow relates to a specific class of problems with many applications
- ► Direct applications:

commodities in networks

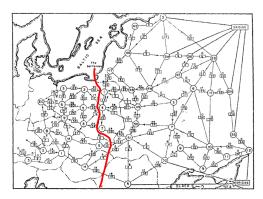
- transporting food on the rail network
- packets on the internet
- ▶ gas through pipes
- ► Indirect applications:
 - Matching in graphs
 - ► Airline scheduling
 - ► Baseball elimination

Plan: design and analyze algorithms for max-flow problem, then apply to solve other problems

First, a Story About Flow and Cuts

 $\label{eq:Key theme: flows in a network are intimately related to cuts} % \[\frac{1}{2} \left(\frac{1}{2} \left$

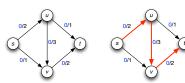
Soviet rail network in 1955

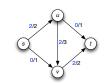


On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002.

Designing a Max-Flow Algorithm

First idea: initialize to zero flow and then repeatedly "augment" flow on paths from s to t until we can no longer do so.



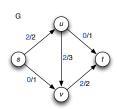


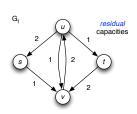
 $\mbox{\bf Problem}:$ we are now stuck. All paths from s to t have a saturated edge.

We would like to "augment" $s \xrightarrow{+1} v \xleftarrow{-1} u \xrightarrow{+1} t$, but this is not a real $s \to t$ path. How can we identify such an opportunity?

Residual Graph

The residual graph G_f identifies opportunities to increase flow on edges with leftover capacity, or decrease flow on edges already carrying flow:



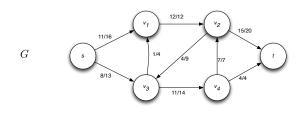


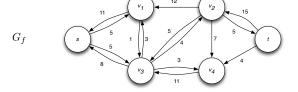
For each original edge e = (u, v) in G, it has:

- lacktriangledown A forward edge e=(u,v) with residual capacity c(e)-f(e)
- ▶ A reverse edge e' = (v, u) with residual capacity f(e)

Edges with zero residual capacity are omitted

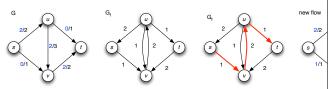
Exercise: draw the residual graph





Augment Operation

Revised Idea: use paths in the residual graph to augment flow



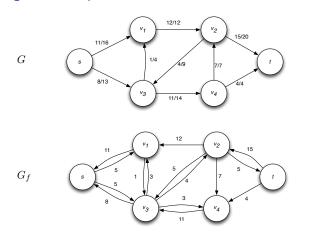
- $\blacktriangleright \ P = s \rightarrow v \rightarrow u \rightarrow t$ has "bottleneck capacity" 1
 - lacktriangle bottleneck capacity = smallest residual capacity of any edge in P
- Increase flow for forward edges, decrease for backward edges.

Augment Operation

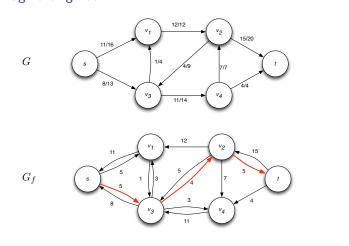
Revised Idea: use paths in the residual graph to augment flow

```
\begin{array}{lll} \operatorname{Augment}(f,\,P) & & \\ \operatorname{Let}\,b = \operatorname{bottleneck}(P,\,f) & & \\ \operatorname{for}\,\operatorname{each}\,\operatorname{edge}\,e\,\operatorname{in}\,P\,\operatorname{do} & \\ & \operatorname{if}\,e\,\operatorname{is}\,\operatorname{a}\,\operatorname{forward}\,\operatorname{edge}\,\operatorname{then} & \\ & f(e) = f(e) + b & \\ & \operatorname{else}\,e\,\operatorname{is}\,\operatorname{a}\,\operatorname{backward}\,\operatorname{edge} & \\ & \operatorname{Let}\,e'\,\operatorname{be}\,\operatorname{opposite}\,\operatorname{edge}\,\operatorname{in}\,G & \\ & f(e') = f(e') - b & \\ & \operatorname{elcrease}\,\operatorname{flow}\,\operatorname{on}\,\operatorname{backward}\,\operatorname{edges} & \\ & \operatorname{end}\,\operatorname{if} & \\ & \operatorname{end}\,\operatorname{for} & \\ \end{array}
```

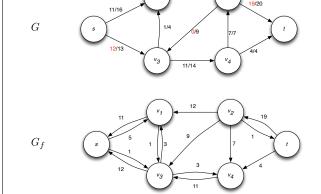
Augment Example



Augmenting Path



New Flow



Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use them to augment flow!

```
Ford-Fulkerson(G, s, t)

ightharpoonup Initially, no flow
Initialize <math>f(e) = 0 for all edges e
Initialize G_f = G

ightharpoonup Augment flow as long as it is possible
while there exists an <math>s-t path P in G_f do
f = \operatorname{Augment}(f, P)
update G_f
end while
return f
```

Ford-Fulkerson Example

See Pearson slides

Ford-Fulkerson Analysis

- ▶ Step 1: argue that F-F returns a flow
- ▶ Step 2: analyze termination and running time
- ▶ Step 3: argue that F-F returns a maximum flow

Step 1: F-F returns a flow

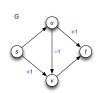
Claim: If f is a flow then f' = Augment(f, P) is also a flow.

Proof idea. Verify two conditions for f^\prime to be a flow: capacity and flow conservation.

Capacity

- lacksquare Suppose original edge is e=(u,v)
- ▶ If e appears in P as a forward edge $(u \xrightarrow{+b} v)$, then flow increases by bottleneck capacity b, which is at most c(e) f(e), so does not exceed c(e)
- ▶ If e appears in P as a reverse edge $(v \leftarrow^{-b} u)$, then flow decreases by bottleneck capacity b, which is at most f(e), so is at least 0

Flow Conservation



ightharpoonup Consider any node v in the augmenting path, and do a case analysis on the types of the incoming and outgoing edge:

residual graph:
$$P = s \leadsto u \xrightarrow{-v} v \xrightarrow{-w} w \leadsto t$$
 original graph:
$$u \xrightarrow{+b} v \xrightarrow{-b} w$$

$$u \xrightarrow{-b} v \xrightarrow{-b} w$$

$$u \xleftarrow{-b} v \xrightarrow{-b} w$$

$$u \xrightarrow{-b} v \xrightarrow{-b} w$$

 $\,\blacktriangleright\,$ In all cases, the change in incoming flow to v is equal to the change in outgoing flow from v.

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow values and residual capacities remain integers during the algorithm.

Running time:

- ▶ In each F-F iteration, flow increases by at least 1. Therefore, number of iterations is at most $v(f^*)$, where f^* is the final flow.
- lacktriangle Let C be the total capacity of edges leaving source s
- ▶ Then $v(f^*) \le C$.
- ightharpoonup So F-F terminates in at most C iterations

Running time per iteration? O(m+n) to find an augmenting path