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A Puzzle

How many loads of grain can you ship from s to t? Which boats are
used?

A Puzzle Flow Network
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Max-Flow Problem
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Problem input is a flow network
I Directed graph
I Source node s
I Target node or sink t
I Edge capacities c(e) ≥ 0

Solution: A Flow
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A network flow is an assignment
of values f(e) to each edge e,
which satisfy:
I Capacity constraints:

0 ≤ f(e) ≤ c(e) for all e

I Flow conservation:
∑

e into v

f(e) =
∑

e out of v

f(e)

for all v /∈ {s, t}.
I Value v(f) of flow f = total

flow on edges leaving source

I Max flow problem: find a
flow of maximum value



Algorithm Design Techniques

I Greedy

I Divide and Conquer

I Dynamic Programming

I Network Flows

Network Flow

I Previous topics (Greedy, Divide-and-Conquer, Dynamic
Programming) were design techniques

I Network flow relates to a specific class of problems with many
applications

I Direct applications:
commodities in networks
I transporting food on the

rail network
I packets on the internet
I gas through pipes

I Indirect applications:
I Matching in graphs
I Airline scheduling
I Baseball elimination

Plan: design and analyze algorithms for max-flow problem, then
apply to solve other problems

First, a Story About Flow and Cuts
Key theme: flows in a network are intimately related to cuts
Soviet rail network in 1955

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002.

Designing a Max-Flow Algorithm
First idea: initialize to zero flow and then repeatedly “augment”
flow on paths from s to t until we can no longer do so.
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Problem: we are now stuck. All paths from s to t have a saturated
edge.

We would like to “augment” s
+1−−→ v

−1←−− u
+1−−→ t, but this is not a

real s→ t path. How can we identify such an opportunity?

Residual Graph
The residual graph Gf identifies opportunities to increase flow on
edges with leftover capacity, or decrease flow on edges already
carrying flow:
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residual
capacities

For each original edge e = (u, v) in G, it has:

I A forward edge e = (u, v) with residual capacity c(e)− f(e)
I A reverse edge e′ = (v, u) with residual capacity f(e)

Edges with zero residual capacity are omitted

Exercise: draw the residual graph
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Augment Operation

Revised Idea: use paths in the residual graph to augment flow
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Gf
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new flow

I P = s→ v → u→ t has "bottleneck capacity" 1
I bottleneck capacity = smallest residual capacity of any edge in P

I Increase flow for forward edges, decrease for backward edges.

I Augment s
+1−−→ v

−1←−− u
+1−−→ t

Augment Operation

Revised Idea: use paths in the residual graph to augment flow

Augment(f , P )
Let b = bottleneck(P , f) . least residual capacity in P
for each edge e in P do

if e is a forward edge then
f(e) = f(e) + b . increase flow on forward edges

else e is a backward edge
Let e′ be opposite edge in G
f(e′) = f(e′)− b . decrease flow on backward edges

end if
end for

Augment Example
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Augmenting Path
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New Flow
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Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use
them to augment flow!

Ford-Fulkerson(G, s, t)
. Initially, no flow
Initialize f(e) = 0 for all edges e
Initialize Gf = G

. Augment flow as long as it is possible
while there exists an s-t path P in Gf do

f = Augment(f , P )
update Gf

end while
return f



Ford-Fulkerson Example

See Pearson slides

Ford-Fulkerson Analysis

I Step 1: argue that F-F returns a flow

I Step 2: analyze termination and running time

I Step 3: argue that F-F returns a maximum flow

Step 1: F-F returns a flow

Claim: If f is a flow then f ′ = Augment(f , P ) is also a flow.

Proof idea. Verify two conditions for f ′ to be a flow: capacity and
flow conservation.

Capacity

ts

u

v

2/2 0/1

0/1

2/3

2/2

G

ts

u

v

2

1

1

2

21

Gf

I Suppose original edge is e = (u, v)

I If e appears in P as a forward edge (u +b−→ v), then flow increases
by bottleneck capacity b, which is at most c(e)− f(e), so does
not exceed c(e)

I If e appears in P as a reverse edge (v −b←− u), then flow decreases
by bottleneck capacity b, which is at most f(e), so is at least 0

Flow Conservation
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I Consider any node v in the augmenting path, and do a case analysis on
the types of the incoming and outgoing edge:

residual graph: P = s u −→v −→ w  t

original graph: u
+b−−→v

+b−−→ w

u
+b−−→v

−b←−− w

u
−b←−−v

+b−−→ w

u
−b←−−v

−b←−− w

I In all cases, the change in incoming flow to v is equal to the change in
outgoing flow from v.

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow
values and residual capacities remain integers during the algorithm.

Running time:

I In each F-F iteration, flow increases by at least 1. Therefore,
number of iterations is at most v(f∗), where f∗ is the final flow.

I Let C be the total capacity of edges leaving source s
I Then v(f∗) ≤ C.
I So F-F terminates in at most C iterations

Running time per iteration? O(m + n) to find an augmenting path


