CS 312: Algorithms

Lecture 19: Network Flows

Dan Sheldon

Mount Holyoke College

Last Compiled: November 14, 2018

A Puzzle

\ C /
At ?0\\\565«/(. X x
)\ ¢
g / N
RN

How many loads of grain can you ship from s to ¢? Which boats are
used?

A Puzzle

N

O
770
o
e

x

Flow Network

. !/
o \ w ()// /
= % / // o<
TN N PN
/ — \ €
2 N
& S\
Yy
7S W\

Max-Flow Problem

Problem input is a flow network

Directed graph

Source node s

Target node or sink t
Edge capacities ¢(e) > 0

>
>
>
>

Solution: A Flow

A network flow is an assignment
of values f(e) to each edge e,
which satisfy:

» Capacity constraints:
0 < f(e) <ce) for all e

» Flow conservation:

Y. flo= 3 fle)

e into v e out of v

for all v ¢ {s,t}.

> Value v(f) of flow f = total
flow on edges leaving source

» Max flow problem: find a
flow of maximum value

Algorithm Design Techniques

> Greedy
» Divide and Conquer

» Dynamic Programming

v

Network Flows

Network Flow

> Previous topics (Greedy, Divide-and-Conquer, Dynamic
Programming) were design techniques

> Network flow relates to a specific class of problems with many
applications

> Direct applications:

commodities in networks » Indirect applications:

» transporting food on the
rail network

» packets on the internet

> gas through pipes

» Matching in graphs
» Airline scheduling
» Baseball elimination

Plan: design and analyze algorithms for max-flow problem, then
apply to solve other problems

First, a Story About Flow and Cuts

Key theme: flows in a network are intimately related to cuts

Soviet rail network in 1955

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002

Designing a Max-Flow Algorithm

First idea: initialize to zero flow and then repeatedly “augment”
flow on paths from s to ¢ until we can no longer do so.

Problem: we are now stuck. All paths from s to t have a saturated
edge.

We would like to “augment” s +—1> v @l u +—1> t, but this is not a
real s — t path. How can we identify such an opportunity?

Residual Graph
The residual graph G/ identifies opportunities to increase flow on
edges with leftover capacity, or decrease flow on edges already
carrying flow:

residual
capacities

For each original edge e = (u,v) in G, it has:

> A forward edge e = (u,v) with residual capacity c(e) — f(e)
> A reverse edge ¢’ = (v, u) with residual capacity f(e)

Edges with zero residual capacity are omitted

Exercise: draw the residual graph

Augment Operation

Revised Idea: use paths in the residual graph to augment flow

» P=s—v— u—t has "bottleneck capacity" 1

> bottleneck capacity = smallest residual capacity of any edge in P

> Increase flow for forward edges, decrease for backward edges.

1 -1 1
> Augment s =5 v < u T ¢

new flow

Augment Operation

Revised Idea: use paths in the residual graph to augment flow

Augment(f, P)
Let b = bottleneck(P, f)
for each edge ¢ in P do
if ¢ is a forward edge then
fle)=f(e)+b
else ¢ is a backward edge
Let ¢’ be opposite edge in G
fle)y=f()—b > decrease flow on backward edges
end if
end for

> least residual capacity in P

> increase flow on forward edges

Augment Example

Augmenting Path

G
Gy
New Flow Ford-Fulkerson Algorithm
Repeatedly find augmenting paths in the residual graph and use
them to augment flow!
G
Ford-Fulkerson(G, s, t)
> Initially, no flow
Initialize f(e) = 0 for all edges e
Initialize Gy = G
> Augment flow as long as it is possible
while there exists an s-t path P in Gy do
f = Augment(f, P)
Gy update G
end while

return f

Ford-Fulkerson Example

See Pearson slides

Ford-Fulkerson Analysis

» Step 1: argue that F-F returns a flow
» Step 2: analyze termination and running time

» Step 3: argue that F-F returns a maximum flow

Step 1: F-F returns a flow

Claim: If f is a flow then f' = Augment(f, P) is also a flow.

Proof idea. Verify two conditions for f’ to be a flow: capacity and
flow conservation.

Capacity

» Suppose original edge is e = (u,v)

> If e appears in P as a forward edge (u LN v), then flow increases
by bottleneck capacity b, which is at most c(e) — f(e), so does
not exceed c(e)

> If e appears in P as a reverse edge (v & w), then flow decreases
by bottleneck capacity b, which is at most f(e), so is at least 0

Flow Conservation

» Consider any node v in the augmenting path, and do a case analysis on
the types of the incoming and outgoing edge:
residual graph: P=s~u —v — w~1

+b +b
U —v —w

original graph:
+b b
U =0 — W
b b
U —v — w
—b b
U —V — W
> In all cases, the change in incoming flow to v is equal to the change in
outgoing flow from v.

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow
values and residual capacities remain integers during the algorithm.

Running time:

> In each F-F iteration, flow increases by at least 1. Therefore,
number of iterations is at most v(f*), where f* is the final flow.

> Let C be the total capacity of edges leaving source s

> Then v(f*) < C.

» So F-F terminates in at most C' iterations

Running time per iteration? O(m + n) to find an augmenting path

