

Dynamic Programming Approach (False Start)	Bellman-Ford Algorithm
• Let $OPT(v)$ be the cost of the shortest $v \to t$ path • What goes wrong with this?	 With negative edge lengths, paths can get <i>shorter</i> as we include more edges. What is the largest number of edges we need to worry about? Fact. If no negative cycles, shortest path has at most n - 1 edges. Recursive principle: Let OPT(i, v) be cost of shortest v → t path with at most i edges, and let P be the optimal v → t path using at most i edges. If P uses exactly i edges, then P = v → w → t where w → t path uses i - 1 edges. OPT(i, v) = min_w {c_{v,w} + OPT(i - 1, w)} Else P uses at most i - 1, so: OPT(i, v) = OPT(i - 1, v).
Bellman-Ford	
$OPT(i,v) = \min\left\{OPT(i-1,v), \min_{w \in V} \{c_{v,w} + OPT(i-1,w)\}\right\}$	
Shortest-Path(G , s , t) n = number of nodes in $GCreate array M of size n \times nSet M[0, t] = 0 and M[0, v] = \infty for all other vfor i = 1 to n - 1 dofor all nodes v in any order doCompute M[i, v] using the recurrence aboveend forend forRunning time? O(n^3). Better analysis: O(mn).$	