
CS 312: Algorithms
Shortest Paths with Negative Edge Lengths: Bellman-Ford

Dan Sheldon

Mount Holyoke College

Last Compiled: November 12, 2018

Currency Trading

1

2

3

4

0.97

USD

CDN EUR

GBP

1.03
0.73

0.65 1.16

1.28

0.64

I Problem: given directed graph
with exchange rate re on edge
e, find s→ t path P to
maximize overall exchange rate∏

e∈P re

I Assumption (no arbitrage):
no cycles C such that∏

e∈C re > 1.

From Rates to Costs

I This problem is similar, but not the same as finding a shortest
path. But let’s change from rates to costs by transforming the
problem.

I Let ce = − log re be the cost of edge e

1

2

3

4

0.97

USD

CDN EUR

GBP

1.03
0.73

0.65 1.16

1.28

0.64

Rates

1

2

3

4

0.04

USD

CDN EUR

GBP

0.46

0.62 –0.21

–0.36

0.64

–0.04

Costs

From Rates to Costs

I After this tranformation, the highest rate path becomes the
shortest path (the one with the smallest sum of edge costs)

1

2

3

4

0.97

USD

CDN EUR

GBP

1.03
0.73

0.65 1.16

1.28

0.64

Rates

1

2

3

4

0.04

USD

CDN EUR

GBP

0.46

0.62 –0.21

–0.36

0.64

–0.04

Costs

Maximum-Rate Path → Minimum-Cost Path

I Define cost(P) to be the negative log of its exchange rate.
Then the highest rate path is now the lowest cost path.

I But cost(P) is also the sum of its edge costs:

cost(P) = − log
∏

e∈P

re

=
∑

e∈P

(− log re)

=
∑

e∈P

ce

I New problem: find the s→ t path of minimum cost

Currency Trading as Shortest Path Problem

1

2

3

4

0.04

USD

CDN EUR

GBP

0.46

0.62 –0.21

–0.36

0.64

–0.04

I Negative edge weights!

I Problem: given a graph with
edge weights that may be
negative, find shortest s→ t
path

I Assumption: no cycle C such
that ∑e∈C ce < 0. Why?

Dynamic Programming Approach (False Start)

I Let OPT(v) be the cost of the shortest v → t path

I What goes wrong with this?

Bellman-Ford Algorithm
With negative edge lengths, paths can get shorter as we include
more edges. What is the largest number of edges we need to worry
about? Fact. If no negative cycles, shortest path has at most
n− 1 edges.

Recursive principle:

I Let OPT(i, v) be cost of shortest v → t path with at most i
edges, and let P be the optimal v → t path using at most i
edges.

I If P uses exactly i edges, then P = v → w t where w t
path uses i− 1 edges.

OPT(i, v) = min
w
{cv,w + OPT(i− 1, w)}

I Else P uses at most i− 1, so: OPT(i, v) = OPT(i− 1, v).

Bellman-Ford

OPT(i, v) = min
{

OPT(i− 1, v), min
w∈V
{cv,w + OPT(i− 1, w)}

}

Shortest-Path(G, s, t)
n = number of nodes in G
Create array M of size n× n
Set M [0, t] = 0 and M [0, v] =∞ for all other v
for i = 1 to n− 1 do

for all nodes v in any order do
Compute M [i, v] using the recurrence above

end for
end for

Running time? O(n3). Better analysis: O(mn).

