CS 312: Algorithms

More Divide and Conquer

Dan Sheldon

Mount Holyoke College

Last Compiled: October 29, 2018

Master Theorem

Consider the general recurrence:

n

T(n) < aT( b

) + cnd
This solves to:

O(n?) if logya < d
T(n) =4 O(ntlogn) iflogya=d
o8y iflogya > d

Intuition: work at each level of the recursion tree is (1) decreasing
exponentially, (2) staying the same, (3) increasing exponentially.

Integer Multiplication

Motivation: multiply two 30-digit integers?

153819617987625488624070712657
x 925421863832406144537293648227

» Multiply two 300-digit integers?
» Cannot do this in Java with built-in data types

> 64-bit unsigned integer can only represent integers up to ~20
digits (264 ~ 10%9)

Warm-Up: Addition

Input: two n-digit binary integers x and y
Goal: compute = + y

Let's do everything in base-10 instead of binary to make examples
more familiar.
Grade-school algorithm:

1854
+ 3242

Running time? ©(n)

Integer Multiplication Problem

Input: two n-digit base-10 integers  and y
Goal: compute zy

Can anyone think of an algorithm?

Grade-School Algorithm (Long Multiplication)

Example: n =3

287 x 132 = (2 x 287) + 10 - (3 x 287) + 100 - (1 x 287)

Running time? ©(n?)
But zy has at most 2n digits. Can we do better?




Divide and Conquer: First Try

Idea: split 2 and y in half (assume n is a power of 2)

w

380

T 0

o
Y]
&
3

xr =

{
{

<

I
{»Jk
(@]
o
oo
—
{oo
(SN
N

Then use distributive law
zy = (10™2z; + z0) x (10™%y; + yo)

= 10"z1y1 + 102 (2130 + zoy1) + Toyo

Have reduced the problem to multiplications of n/2-digit integers
and additions of n-digit numbers

Divide and Conquer: First Try

Recursive algorithm:
zy = 10"z1y1 + 102 (2190 + zoy1) + Toyo

Running time? Four multiplications of n/2 digit numbers plus three
additions of at most n-digit numbers

T(n )§4T( ) +en
= O(nlss)
=0(n?)

We did not beat the grade-school algorithm. :(

Better Divide and Conquer

Same starting point:

xy = 10"z1y1 + 102 (2190 + zoy1) + Toyo

Trick: use three multiplications to compute the following:

A= (21 +20)(y1 + Y0) = T1y1 + T1Y0 + Toy1 + ToYo
B =1y
C = zoyo
Then
zy=10"B+10"*(A—B—-C)+C

Total: three multiplications of n/2-digit integers, six additions

Better Divide and Conquer

Total: three multiplications of n/2-digit integers, six additions of at
most n-digit integers

T(n)

IN

3T ( ) +cn
= O(n'%2?)
O( 159)

We beat long multiplication!

Idea can be generalized to be even faster (split « and y into k parts
instead of two)

Fastest known integer multiplication algorithm is O(nlogn) — also
by divide-and-conquer (Fast Fourier transform),

Closest Pair of Points

Another beautiful divide and conquer algorithm

Closest Pair of Points

» Problem 1: Given n points on a line p1,pa,...,pn € R, find
the closest pair: min;.; [p; — pjl.
» Compare all pairs O(n?)

> Better algorithm? Sort the points and compare adjacent pairs.
O(nlogn)

» Problem 2: Now what if the points are in R??

> Compare all pairs O(n?)

» Sort? Points can be close in x-coordinate and far in y, and
vice-versa

» We'll do it in O(nlogn) steps using divide-and-conquer.




Problem Formulation

> Input: set of points P = {p1,...,pn} Where p; = (x;,v;)

» Assumption: we can iterate over points in order of z- or y-
coordinate in O(n) time. Pre-generate data structures to
support this in O(nlogn) time.

Recursive Algorithm

1. Find vertical line L to divide points into sets Py, and Pg of size
n/2. O(n)
2. Recursively find minimum distance in P, and Pg.

» 07, = minimum distance between p,q € Pp,p # q. T'(n/2)
> 0p = same for Pr. T(n/2)

3. dp = minimum distance between p € Pr,q € Pr. 77
4. Return min(dz,0R, dar).

Naive Step 3 takes Q(n?) time. But if we do it in O(n) time we get

T(n) <2T(n/2) 4+ O(n) = T(n) = O(nlogn)

Making Step 3 Efficient

» Goal: given dr, dr, compute min(dz, dr, dnr)

» Observation: Let 6 = min(dz,dr). If p € Pr,q € Pg differ by
at least 0 in either the z- or y-coordinate, they cannot be the
overall closest pair, so we can ignore the pair (p,q).

> Let S be the set of points within distance ¢ from L. We only
need to consider pairs that are both in S.

» For a given point p € S, how many points ¢ are within § units
of p in the y coordinate?
» Claim: at most 12

» Algorithm: iterate through points p € S in order of y coordinate
and compare p to 12 adjacent points in this order. O(n).

> Intuition: the set S is “nearly one-dimensional”. Points cannot
be packed in tightly, because two points on the same side of L
are at least distance § apart. Proof sketch on board.




