
CS 312: Algorithms
More Divide and Conquer

Dan Sheldon

Mount Holyoke College

Last Compiled: October 29, 2018

Master Theorem

Consider the general recurrence:

T (n) ≤ aT
(n
b

)
+ cnd

This solves to:

T (n) =

Θ(nd) if logb a < d

Θ(nd logn) if logb a = d

Θ(nlogb a) if logb a > d

Intuition: work at each level of the recursion tree is (1) decreasing
exponentially, (2) staying the same, (3) increasing exponentially.

Integer Multiplication

Motivation: multiply two 30-digit integers?
153819617987625488624070712657

x 925421863832406144537293648227

I Multiply two 300-digit integers?

I Cannot do this in Java with built-in data types

I 64-bit unsigned integer can only represent integers up to ~20
digits (264 ≈ 1020)

Warm-Up: Addition

Input: two n-digit binary integers x and y
Goal: compute x+ y

Let’s do everything in base-10 instead of binary to make examples
more familiar.
Grade-school algorithm:

1854
+ 3242

5096

Running time? Θ(n)

Integer Multiplication Problem

Input: two n-digit base-10 integers x and y
Goal: compute xy
Can anyone think of an algorithm?

Grade-School Algorithm (Long Multiplication)

Example: n = 3

287
x 132

574

861
287

37884

287× 132 = (2× 287) + 10 · (3× 287) + 100 · (1× 287)

Running time? Θ(n2)
But xy has at most 2n digits. Can we do better?

Divide and Conquer: First Try

Idea: split x and y in half (assume n is a power of 2)

x = 3380︸ ︷︷ ︸
x1

2367︸ ︷︷ ︸
x0

y = 4508︸ ︷︷ ︸
y1

1854︸ ︷︷ ︸
y0

Then use distributive law

xy = (10n/2x1 + x0)× (10n/2y1 + y0)
= 10nx1y1 + 10n/2(x1y0 + x0y1) + x0y0

Have reduced the problem to multiplications of n/2-digit integers
and additions of n-digit numbers

Divide and Conquer: First Try

Recursive algorithm:

xy = 10nx1y1 + 10n/2(x1y0 + x0y1) + x0y0

Running time? Four multiplications of n/2 digit numbers plus three
additions of at most n-digit numbers

T (n) ≤ 4T
(n

2
)

+ cn

= O(nlog2 4)
= O(n2)

We did not beat the grade-school algorithm. :(

Better Divide and Conquer

Same starting point:

xy = 10nx1y1 + 10n/2(x1y0 + x0y1) + x0y0

Trick: use three multiplications to compute the following:

A = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

B = x1y1

C = x0y0

Then
xy = 10nB + 10n/2(A−B − C) + C

Total: three multiplications of n/2-digit integers, six additions

Better Divide and Conquer

Total: three multiplications of n/2-digit integers, six additions of at
most n-digit integers

T (n) ≤ 3T
(n

2
)

+ cn

= O(nlog2 3)
≈ O(n1.59)

We beat long multiplication!

Idea can be generalized to be even faster (split x and y into k parts
instead of two)

Fastest known integer multiplication algorithm is O(n logn) — also
by divide-and-conquer (Fast Fourier transform),

Closest Pair of Points

Another beautiful divide and conquer algorithm

Closest Pair of Points

I Problem 1: Given n points on a line p1, p2, . . . , pn ∈ R, find
the closest pair: mini 6=j |pi − pj |.

I Compare all pairs O(n2)
I Better algorithm? Sort the points and compare adjacent pairs.
O(n logn)

I Problem 2: Now what if the points are in R2?
I Compare all pairs O(n2)
I Sort? Points can be close in x-coordinate and far in y, and

vice-versa
I We’ll do it in O(n logn) steps using divide-and-conquer.

Problem Formulation

I Input: set of points P = {p1, . . . , pn} where pi = (xi, yi)

I Assumption: we can iterate over points in order of x- or y-
coordinate in O(n) time. Pre-generate data structures to
support this in O(n logn) time.

Recursive Algorithm

1. Find vertical line L to divide points into sets PL and PR of size
n/2. O(n)

2. Recursively find minimum distance in PL and PR.
I δL = minimum distance between p, q ∈ PL, p 6= q. T (n/2)
I δR = same for PR. T (n/2)

3. δM = minimum distance between p ∈ PL, q ∈ PR. ??
4. Return min(δL, δR, δM).

Naive Step 3 takes Ω(n2) time. But if we do it in O(n) time we get

T (n) ≤ 2T (n/2) +O(n) =⇒ T (n) = O(n logn)

Making Step 3 Efficient
I Goal: given δL, δR, compute min(δL, δR, δM)

I Observation: Let δ = min(δL, δR). If p ∈ PL, q ∈ PR differ by
at least δ in either the x- or y-coordinate, they cannot be the
overall closest pair, so we can ignore the pair (p, q).

I Let S be the set of points within distance δ from L. We only
need to consider pairs that are both in S.

I For a given point p ∈ S, how many points q are within δ units
of p in the y coordinate?

I Claim: at most 12
I Algorithm: iterate through points p ∈ S in order of y coordinate

and compare p to 12 adjacent points in this order. O(n).

I Intuition: the set S is “nearly one-dimensional”. Points cannot
be packed in tightly, because two points on the same side of L
are at least distance δ apart. Proof sketch on board.

