	Master Theorem
CS 312: Algorithms More Divide and Conquer	Consider the general recurrence: $T(n) \leq aT\Big(\frac{n}{b}\Big) + cn^d$
Dan Sheldon Mount Holyoke College Last Compiled: October 29, 2018	This solves to: $T(n) = \begin{cases} \Theta(n^d) & \text{if } \log_b a < d \\ \Theta(n^d \log n) & \text{if } \log_b a = d \\ \Theta(n^{\log_b a}) & \text{if } \log_b a > d \end{cases}$ Intuition: work at each level of the recursion tree is (1) decreasing exponentially, (2) staying the same, (3) increasing exponentially.
Integer Multiplication	Warm-Up: Addition
 Motivation: multiply two 30-digit integers? 153819617987625488624070712657 x 925421863832406144537293648227 	Input: two <i>n</i> -digit binary integers <i>x</i> and <i>y</i> Goal: compute $x + y$ Let's do everything in base-10 instead of binary to make examples more familiar. Grade-school algorithm: 1854 + 3242
Integer Multiplication Problem Input: two <i>n</i> -digit base-10 integers <i>x</i> and <i>y</i> Goal: compute <i>xy</i> Can anyone think of an algorithm?	Grade-School Algorithm (Long Multiplication) Example: n = 3 287 x 132 574 861 287 37884
	$287 \times 132 = (2 \times 287) + 10 \cdot (3 \times 287) + 100 \cdot (1 \times 287)$ Running time? $\Theta(n^2)$ But xy has at most $2n$ digits. Can we do better?

Divide and Conquer: First Try

Idea: split x and y in half (assume n is a power of 2)

$$x = \underbrace{3380}_{x_1} \underbrace{2367}_{x_0}$$
$$y = \underbrace{4508}_{y_1} \underbrace{1854}_{y_0}$$

Then use distributive law

$$xy = (10^{n/2}x_1 + x_0) \times (10^{n/2}y_1 + y_0)$$

= $10^n x_1 y_1 + 10^{n/2} (x_1 y_0 + x_0 y_1) + x_0 y_0$

Have reduced the problem to multiplications of $n/2\mbox{-digit}$ integers and additions of $n\mbox{-digit}$ numbers

Better Divide and Conquer

Same starting point:

 $xy = 10^{n}x_{1}y_{1} + 10^{n/2}(x_{1}y_{0} + x_{0}y_{1}) + x_{0}y_{0}$

Trick: use three multiplications to compute the following:

 $A = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$ $B = x_1y_1$ $C = x_0y_0$

Then

 $xy = 10^{n}B + 10^{n/2}(A - B - C) + C$

Total: three multiplications of $n/2\mbox{-digit}$ integers, six additions

Closest Pair of Points

Another beautiful divide and conquer algorithm

Divide and Conquer: First Try

Recursive algorithm:

$$xy = 10^{n} x_{1} y_{1} + 10^{n/2} (x_{1} y_{0} + x_{0} y_{1}) + x_{0} y_{0}$$

Running time? Four multiplications of n/2 digit numbers plus three additions of at most $n\mbox{-}{\rm digit}$ numbers

$$\begin{split} T(n) &\leq 4T\Big(\frac{n}{2}\Big) + cn \\ &= O(n^{\log_2 4}) \\ &= O(n^2) \end{split}$$

We did not beat the grade-school algorithm. :(

Better Divide and Conquer

Total: three multiplications of $n/2\mbox{-digit}$ integers, six additions of at most $n\mbox{-digit}$ integers

$$T(n) \le 3T\left(\frac{n}{2}\right) + cn$$
$$= O(n^{\log_2 3})$$
$$\approx O(n^{1.59})$$

We beat long multiplication!

Idea can be generalized to be even faster (split \boldsymbol{x} and \boldsymbol{y} into \boldsymbol{k} parts instead of two)

Fastest known integer multiplication algorithm is $O(n \log n)$ — also by divide-and-conquer (Fast Fourier transform),

Closest Pair of Points

- ▶ Problem 1: Given *n* points on a line $p_1, p_2, ..., p_n \in \mathbb{R}$, find the closest pair: $\min_{i \neq j} |p_i p_j|$.
 - Compare all pairs $O(n^2)$
 - ▶ Better algorithm? Sort the points and compare adjacent pairs. O(n log n)

Problem 2: Now what if the points are in \mathbb{R}^2 ?

- Compare all pairs $O(n^2)$
- Sort? Points can be close in x-coordinate and far in y, and vice-versa
- We'll do it in $O(n \log n)$ steps using divide-and-conquer.

Problem Formulation	Recursive Algorithm
 Input: set of points P = {p₁,,p_n} where p_i = (x_i, y_i) Assumption: we can iterate over points in order of x- or y-coordinate in O(n) time. Pre-generate data structures to support this in O(n log n) time. 	 Find vertical line L to divide points into sets P_L and P_R of size n/2. O(n) Recursively find minimum distance in P_L and P_R. δ_L = minimum distance between p, q ∈ P_L, p ≠ q. T(n/2) δ_R = same for P_R. T(n/2) δ_M = minimum distance between p ∈ P_L, q ∈ P_R. ?? Return min(δ_L, δ_R, δ_M). Naive Step 3 takes Ω(n²) time. But if we do it in O(n) time we get T(n) ≤ 2T(n/2) + O(n) ⇒ T(n) = O(n log n)
Making Step 3 Efficient	
▶ Goal: given δ_L , δ_R , compute $\min(\delta_L, \delta_R, \delta_M)$	
• Observation: Let $\delta = \min(\delta_L, \delta_R)$. If $p \in P_L, q \in P_R$ differ by at least δ in either the <i>x</i> - or <i>y</i> -coordinate, they cannot be the overall closest pair, so we can ignore the pair (p, q) .	
Let S be the set of points within distance δ from L. We only need to consider pairs that are both in S.	

- For a given point $p \in S$, how many points q are within δ units of p in the y coordinate?
 - ► Claim: at most 12
 - ▶ Algorithm: iterate through points $p \in S$ in order of y coordinate and compare p to 12 adjacent points in this order. O(n).
- Intuition: the set S is "nearly one-dimensional". Points cannot be packed in tightly, because two points on the same side of L are at least distance δ apart. Proof sketch on board.