CS 312: Divide and Conquer

Dan Sheldon

Algorithm Design Techniques

- ► Greedy
- ► Divide and Conquer
- ► Dynamic Programming
- ► Network Flows

Divide and Conquer: Recipe

- ▶ Divide problem into several parts
- ► Solve each part recursively
- $\,\blacktriangleright\,$ Combine solutions to sub-problems into overall solution

Learning Goals

	Greedy	Divide and Conquer
Formulate problem		
Design algorithm		✓
Prove correctness	\checkmark	
Analyze running time		\checkmark

Motivating Problem: Maximum Subsequence Sum (MSS)

ightharpoonup Input: array A of n numbers, e.g.

$$A=4,-3,5,-2,-1,2,6,-2\\$$

► Find: value of the largest subsequence sum

$$A[i] + A[i+1] + \ldots + A[j]$$

- $\,\blacktriangleright\,$ (empty subsequence allowed and has sum zero)
- ▶ MSS in example? 11 (first 7 elements)

What is a simple algorithm for MSS?

Anyone remember HW2?

```
\begin{array}{l} \mathsf{MSS}(A) \\ \mathsf{Initialize} \ \mathsf{all} \ \mathsf{entries} \ \mathsf{of} \ n \times n \ \mathsf{array} \ B \ \mathsf{to} \ \mathsf{zero} \\ \mathbf{for} \ i = 1 \ \mathsf{to} \ n \ \mathbf{do} \\ \mathsf{sum} = 0 \\ \mathbf{for} \ j = i \ \mathsf{to} \ n \ \mathbf{do} \\ \mathsf{sum} + = A[j] \\ B[i,j] = \mathsf{sum} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{end} \ \mathbf{for} \\ \mathsf{Return} \ \mathsf{maximum} \ \mathsf{entry} \ \mathsf{of} \ B[i,j] \end{array}
```

Running time? $O(n^2)$. Can we do better?

Divide-and-conquer for MSS

- ► Recursive solution for MSS
- ► Idea:
 - ightharpoonup Find MSS L in left half of array
 - ightharpoonup Find MSS R in right half of array
 - lacktriangle Find MSS M for sequence that crosses the midpoint

$$A = \underbrace{\frac{M=11}{4, -3, 5, -2, -1, 2, 6}}_{L=6}, -2$$

- ▶ Return $\max(L, R, M)$
- ▶ How to find L, R, M?

```
MSS(A, left, right)
   \textbf{if } \mathsf{left} == \mathsf{right} \; \textbf{then}
                                                                                                       ▶ Base case
        return \max(A[left], 0)
   \mathsf{mid} = \lfloor \tfrac{\mathsf{left} + \mathsf{right}}{2} \rfloor
                                                                     ▶ Recurse on left and right halves
   L = MSS(\mathring{A}, left, mid)
   R = MSS(A, mid+1, right)
   Set sum = 0 and L' = 0
                                                                         \triangleright Compute L' (left part of M)
   \quad \mathbf{for} \ i = \mathsf{mid} \ \mathsf{down} \ \mathsf{to} \ 1 \ \mathbf{do}
        \mathsf{sum} \mathrel{+}= A[i]
        L' = \max(L', \mathsf{sum})
   Set sum = 0 and R' = 0
                                                                       \triangleright Compute R' (right part of M)
   \quad \textbf{for} \ i \ \mathsf{mid}{+}1 \ \mathsf{to} \ \mathsf{right} \ \mathbf{do}
        sum += A[i]
        R' = \max(R', \mathsf{sum})
   end for
   M=L'+R'

ightharpoonup Compute M
   return \max(L, R, M)
                                                                                                    ⊳ Return max
```

```
MSS(A, left, right)
  \quad \text{if left} == \mathsf{right} \; \textbf{then} \\
      return \max(A[left], 0)
  mid = \lfloor \frac{left + right}{2} \rfloor
                                                      Running time?
  L = MSS(\tilde{A}, left, mid)

ightharpoonup Let T(n) be running time of
  R = MSS(A, mid+1, right)
                                                            \mathsf{MSS} \ \mathsf{on} \ \mathsf{array} \ \mathsf{of} \ \mathsf{size} \ n
  Set sum = 0 and L' = 0
                                                         ► Two recursive calls on arrays
  of size n/2: 2T(n/2)
      sum += A[i]
       L' = \max(L', \mathsf{sum})
                                                         ▶ Work outside of recursive
  end for
                                                             calls: O(n)
  Set sum = 0 and R^\prime = 0
                                                         ► Running time
  \mathbf{for}\ i\ \mathsf{mid}{+}1\ \mathsf{to}\ \mathsf{right}\ \mathbf{do}
      \mathsf{sum} \mathrel{+}= A[i]
                                                              T(n) = 2T(n/2) + O(n)
       R' = \max(R', \mathsf{sum})
  end for
  M = L' + R'
  return \max(L, R, M)
```

Recurrence

▶ Recurrence with convenient base case

$$T(n) = 2T(n/2) + O(n)$$

$$T(2) = O(1)$$

▶ How do we solve the recurrence to find a simple expression for T(n)? First, let's use definition of Big-O:

$$T(n) \le 2T(n/2) + cn$$
$$T(2) \le c$$

▶ What next?

Solving a Recurrence

▶ Idea 1: "unroll" the recurrence

$$T(n) \le 2T(n/2) + cn$$

$$\le 2\left[2T(n/4) + c(n/2)\right] + cn$$

$$= 4T(n/4) + 2cn$$

$$\le 4\left[2T(n/8) + c(n/2)\right] + 2cn$$

$$= 8T(n/8) + 3cn$$

➤ This will work. There is a more visual / systematic way called a recursion tree

Solving a Recurrence

- ▶ Idea 2: recursion tree (same idea, different organization)
- ► Board work
- ▶ Conclusion: $T(n) \le cn \log n$

Solving a Recurrence

- ▶ Idea 3: "guess and verify"
 - Guess solution
 - ▶ Prove by (strong) induction
 - ► We'll do this later...

A More General Recurrence

$$T(n) \le q \cdot T(n/2) + cn$$

- ▶ What does the algorithm look like?
 - $\,\blacktriangleright\, q$ recursive calls to itself on problems of half the size
 - lacksquare O(n) work outside of the recursive calls
- ightharpoonup Exercises: q=1, q>2
- ▶ Useful fact (geometric sum): if $r \neq 1$ then

$$1 + r + r^2 + \ldots + r^d = \frac{1 - r^{d+1}}{1 - r} = \frac{r^{d+1} - 1}{r - 1}$$

Summary

Useful general recurrence and its solutions:

$$T(n) \le q \cdot T(n/2) + cn$$

- 1. q = 1: T(n) = O(n)
- 2. q = 2: $T(n) = O(n \log n)$
- 3. q > 2: $T(n) = O(n^{\log_2 q})$

Algorithms with these running times?

- 1. ???
- 2. MSS, Mergesort
- 3. Integer multiplication (next time)