
CS 312: Divide and Conquer

Dan Sheldon

Algorithm Design Techniques

I Greedy
I Divide and Conquer
I Dynamic Programming
I Network Flows

Divide and Conquer: Recipe

I Divide problem into several parts
I Solve each part recursively
I Combine solutions to sub-problems into overall solution

Learning Goals

Greedy Divide and Conquer
Formulate problem
Design algorithm X
Prove correctness X
Analyze running time X

Motivating Problem: Maximum Subsequence Sum (MSS)

I Input: array A of n numbers, e.g.

A = 4,−3, 5,−2,−1, 2, 6,−2

I Find: value of the largest subsequence sum

A[i] + A[i + 1] + . . . + A[j]

I (empty subsequence allowed and has sum zero)
I MSS in example? 11 (first 7 elements)

What is a simple algorithm for MSS?

Anyone remember HW2?

MSS(A)
Initialize all entries of n× n array B to zero
for i = 1 to n do

sum = 0
for j = i to n do

sum += A[j]
B[i, j] = sum

end for
end for
Return maximum entry of B[i, j]

Running time? O(n2). Can we do better?



Divide-and-conquer for MSS

I Recursive solution for MSS
I Idea:

I Find MSS L in left half of array
I Find MSS R in right half of array
I Find MSS M for sequence that crosses the midpoint

A =
M=11︷ ︸︸ ︷

4,−3, 5︸ ︷︷ ︸
L=6

,−2,−1, 2, 6︸︷︷︸
R=8

,−2

I Return max(L, R, M)
I How to find L, R, M?

MSS(A, left, right)
if left == right then . Base case

return max(A[left], 0)
end if

mid = b left+right
2 c . Recurse on left and right halves

L = MSS(A, left, mid)
R = MSS(A, mid+1, right)

Set sum = 0 and L′ = 0 . Compute L′ (left part of M)
for i = mid down to 1 do

sum += A[i]
L′ = max(L′, sum)

end for

Set sum = 0 and R′ = 0 . Compute R′ (right part of M)
for i mid+1 to right do

sum += A[i]
R′ = max(R′, sum)

end for
M = L′ + R′ . Compute M

return max(L, R, M) . Return max

MSS(A, left, right)
if left == right then

return max(A[left], 0)
end if

mid = b left+right
2 c

L = MSS(A, left, mid)
R = MSS(A, mid+1, right)

Set sum = 0 and L′ = 0
for i = mid down to 1 do

sum += A[i]
L′ = max(L′, sum)

end for

Set sum = 0 and R′ = 0
for i mid+1 to right do

sum += A[i]
R′ = max(R′, sum)

end for
M = L′ + R′

return max(L, R, M)

Running time?
I Let T (n) be running time of

MSS on array of size n

I Two recursive calls on arrays
of size n/2: 2T (n/2)

I Work outside of recursive
calls: O(n)

I Running time

T (n) = 2T (n/2) + O(n)

Recurrence

I Recurrence with convenient base case

T (n) = 2T (n/2) + O(n)
T (2) = O(1)

I How do we solve the recurrence to find a simple expression for
T (n)? First, let’s use definition of Big-O:

T (n) ≤ 2T (n/2) + cn

T (2) ≤ c

I What next?

Solving a Recurrence

I Idea 1: “unroll” the recurrence

T (n) ≤ 2T (n/2) + cn

≤ 2
[
2T (n/4) + c(n/2)

]
+ cn

= 4T (n/4) + 2cn

≤ 4
[
2T (n/8) + c(n/2)

]
+ 2cn

= 8T (n/8) + 3cn

≤ . . .

I This will work. There is a more visual / systematic way called
a recursion tree

Solving a Recurrence

I Idea 2: recursion tree (same idea, different organization)
I Board work
I Conclusion: T (n) ≤ cn log n



Solving a Recurrence

I Idea 3: “guess and verify”
I Guess solution
I Prove by (strong) induction
I We’ll do this later...

A More General Recurrence

T (n) ≤ q · T (n/2) + cn

I What does the algorithm look like?
I q recursive calls to itself on problems of half the size
I O(n) work outside of the recursive calls

I Exercises: q = 1, q > 2
I Useful fact (geometric sum): if r 6= 1 then

1 + r + r2 + . . . + rd = 1− rd+1

1− r
= rd+1 − 1

r − 1

Summary

Useful general recurrence and its solutions:

T (n) ≤ q · T (n/2) + cn

1. q = 1: T (n) = O(n)
2. q = 2: T (n) = O(n log n)
3. q > 2: T (n) = O(nlog2 q)

Algorithms with these running times?

1. ???
2. MSS, Mergesort
3. Integer multiplication (next time)


