
CS 312: Minimum Spanning Trees

Dan Sheldon

Network Design Problem

I Given: an undirected graph G = (V, E) with edge costs (weights)
ce > 0. . Assume for now that all edge weights are distinct.

I Find: subset of edges T ⊆ E such that (V, T) is connected and
the total cost of edges in T is as small as possible

I Examples on board. Discuss applications.

I Call T ⊆ E a spanning tree if (V, T) is a tree (connected, no
cycles)

I Claim: in a minimum-cost solution, T is a spanning tree.

I Therefore, we call this the minimum spanning tree (MST)
problem.

Cuts

I A key to understanding MSTs is a concept called a cut.

I Definition: A cut in G is a partition of the nodes into two
nonempty subsets (S, V − S).

I Definition: Edge e = (v, w) crosses cut (S, V − S) if v ∈ S and
w ∈ V − S.

Cut Property (IMPORTANT)

I Theorem (cut property): Let e = (v, w) be the
minimum-weight edge crossing cut (S, V − S) in G. Then e
belongs to every minimum spanning tree of G.

I Illustration and proof on board

I Terminology:
I e is the cheapest or lightest edge across the cut
I It is safe to add e to a MST

I We will see two different greedy algorithms based on the cut
property: Kruskal’s algorithm and Prim’s algorithm.

Proof of Cut Property

I Suppose T is a spanning tree that doesn’t include e. We’ll
construct a different spanning tree T ′ such that w(T ′) < w(T)
and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T . Since
the path starts in S and ends up outside S, there must be an
edge e′ = (u′, v′) on this path where u′ ∈ S, v′ 6∈ S.

I Let T ′ = T − {e′}+ {e}. This is still connected, since any path
in T that needed e′ can be routed via e instead, and it has no
cycles, so it is a spanning tree.

I But since e was the lightest edge between S and V \ S,

w(T ′) = w(T)− w(e′) + w(e) ≤ w(T)

Kruskal’s algorithm

I Armed with the cut property, how can we find a MST?
I Starting with an empty set of edges, which edge do you want

to add first? How can you prove it is safe to add?
I What edge do you want to add next? How can you prove it is

safe?
I Next?
I Where do you get stuck? How can you fix it?

I Kruskal’s algorithm: add edges in order of increasing weight, as
long as they don’t cause a cycle.

Kruskal’s algorithm

Assume edges are numbered e = 1, . . . , m
Sort edges by weight so c1 ≤ c2 ≤ . . . ≤ cm

Initialize T = {}
for e = 1 to m do

if adding e to T does not form a cycle then
T = T ∪ {e}

end if
end for

Exercise: argue correctness (use cut property)

Kruskal’s algorithm proof

I Consider the partial spanning tree T just before edge e = (u, v)
I Let S be the connected component containing u
I Then e crosses the cut (S, V − S), otherwise it would create a

cycle when added to T
I No other edge crossing (S, V − S) has been considered yet; it

could have been added without creating a cycle, and would
have connected S to V − S

I Therefore, e is the cheapest edge across (S, V − S), so it
belongs to every MST

I So, every edge added belongs to the MST
I The final output T is a spanning tree, because the algorithm will

not stop until the graph is connected, and by design it creates no
cycles

I Therefore, the output is a MST

Prim’s Algorithm

I What if we want to grow a tree as a single connected component
starting from some vertex s?
I Which edge should we add first? How can you prove it is safe?
I Which edge should we add next? How can you prove it is safe?

I Prim’s algorithm: Let S be the connected component
containing s. Add the cheapest edge from S to V \ S.

Prim’s Algorithm

Initialize T = {}
Initialize S = {s}
while |S| ≤ n do

Let e = (u, v) be the minimum-cost edge from S to V − S
T = T ∪ {e}
S = S ∪ {v}

end while

Exercise: prove correctness

Prims’s algorithm proof

I Consider the partial spanning tree T just before edge e = (u, v) is
added
I Let S be the connected component containing s
I By construction, e is the cheapest edge across the cut

(S, V − S)
I Therefore, e belongs to every MST

I So, every edge added belongs to the MST
I The algorithm creates no cycles and does not stop until the graph

is connected, therefore, the final output is a spanning tree
I The final output is a minimum-spanning tree

Remove Distinctness Assumption?

I Hack: break ties in weights by perturbing each edge weight by a
tiny unique amount.

I Implementation: break ties in an arbitrary but consistent way
(e.g., lexicographic order)

I This is correct. There is a slightly more principled way that
requires a stronger cut property.

Implementation of Prim’s algorithm

Initialize T = {}
Initialize S = {s}
while T is not a spanning tree do

Let e = (u, v) be the minimum-cost edge from S to V − S
T = T ∪ {e}
S = S ∪ {s}

end while

What does this remind you of?

Prim Implementation

Set A = V . Unattached nodes
Set a(v) =∞ for all nodes . Attachment cost
Set a(s) = 0
Set edgeTo(s) = null . Attachment edge
while A not empty do . Nodes left to attach

Extract node v ∈ A with smallest a(v) value
Set T = T ∪ edgeTo(v)
for all edges (v, w) where w ∈ A do

if c(v, w) < a(w) then . Cheaper edge to w?
a(w) = c(v, w)
edgeTo(w) = (v, w)

end if
end for

end while

Nearly identical to Dijkstra. Priority queue for A → O(m log n)

Kruskal Implementation?

Sort edges by weight so c1 ≤ c2 ≤ . . . ≤ cm

Initialize T = {}
for e = 1 to m do

if adding e = (u, v) to T does not form a cycle then
T = T ∪ {e}

end if
end for

Ideas?

BFS to check if u and v in same connected component: O(mn).
(Each BFS is O(n): why?)

Can we do better?

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components
of growing spanning tree. Should support:

I find(v): return name of set containing v
I Union(A, B): merge two sets
for e = 1 to m do

Let u and v be endpoints of e
if find(u) != find(v) then . Not in same component?

T = T ∪ {e}
Union(find(u), find(v)) . Merge components

end if
end for

Goal: union = O(1), find = O(log n) ⇒ O(m log n) overall

Union-Find Data Structure

Board work

Conclusion:

I Union is O(1): update one pointer
I Find is O(log n): follow at most log2(n) pointers to find

representative of set

Applications, Generalizations, History

See other slides, web demo.

