	Network Design Problem
CS 312: Minimum Spanning Trees Dan Sheldon	 Given: an undirected graph G = (V, E) with edge costs (weights) c_e > 0 Assume for now that all edge weights are distinct. Find: subset of edges T ⊆ E such that (V, T) is connected and the total cost of edges in T is as small as possible Examples on board. Discuss applications. Call T ⊆ E a spanning tree if (V, T) is a tree (connected, no cycles) Claim: in a minimum-cost solution, T is a spanning tree. Therefore, we call this the minimum spanning tree (MST) problem.
Cuts	Cut Property (IMPORTANT)
 A key to understanding MSTs is a concept called a cut. Definition: A cut in G is a partition of the nodes into two nonempty subsets (S, V − S). Definition: Edge e = (v, w) crosses cut (S, V − S) if v ∈ S and w ∈ V − S. 	 Theorem (cut property): Let e = (v, w) be the minimum-weight edge crossing cut (S, V - S) in G. Then e belongs to every minimum spanning tree of G. Illustration and proof on board Terminology: e is the cheapest or lightest edge across the cut It is safe to add e to a MST We will see two different greedy algorithms based on the cut property: Kruskal's algorithm and Prim's algorithm.
Proof of Cut Property	Kruskal's algorithm
 Suppose T is a spanning tree that doesn't include e. We'll construct a different spanning tree T' such that w(T') < w(T) and hence T can't be the MST. Since T is a spanning tree, there's a u → v path P in T. Since the path starts in S and ends up outside S, there must be an edge e' = (u', v') on this path where u' ∈ S, v' ∉ S. Let T' = T - {e'} + {e}. This is still connected, since any path in T that needed e' can be routed via e instead, and it has no cycles, so it is a spanning tree. But since e was the lightest edge between S and V \ S, w(T') = w(T) - w(e') + w(e) ≤ w(T) 	 Armed with the cut property, how can we find a MST? Starting with an empty set of edges, which edge do you want to add first? How can you prove it is safe to add? What edge do you want to add next? How can you prove it is safe? Next? Where do you get stuck? How can you fix it? Kruskal's algorithm: add edges in order of increasing weight, as long as they don't cause a cycle.

Kruskal's algorithm	Kruskal's algorithm proof
Assume edges are numbered $e = 1,, m$ Sort edges by weight so $c_1 \le c_2 \le \le c_m$ Initialize $T = \{\}$ for $e = 1$ to m do if adding e to T does not form a cycle then $T = T \cup \{e\}$ end if end for Exercise: argue correctness (use cut property)	 Consider the partial spanning tree T just before edge e = (u, v) Let S be the connected component containing u Then e crosses the cut (S, V - S), otherwise it would create a cycle when added to T No other edge crossing (S, V - S) has been considered yet; it could have been added without creating a cycle, and would have connected S to V - S Therefore, e is the cheapest edge across (S, V - S), so it belongs to every MST So, every edge added belongs to the MST The final output T is a spanning tree, because the algorithm will not stop until the graph is connected, and by design it creates no cycles Therefore, the output is a MST
Prim's Algorithm	Prim's Algorithm
 What if we want to grow a tree as a single connected component starting from some vertex s? Which edge should we add first? How can you prove it is safe? Which edge should we add next? How can you prove it is safe? Prim's algorithm: Let S be the connected component containing s. Add the cheapest edge from S to V \ S. 	Initialize $T = \{\}$ Initialize $S = \{s\}$ while $ S \le n$ do Let $e = (u, v)$ be the minimum-cost edge from S to $V - S$ $T = T \cup \{e\}$ $S = S \cup \{v\}$ end while Exercise: prove correctness
Prims's algorithm proof	Remove Distinctness Assumption?
 Consider the partial spanning tree T just before edge e = (u, v) is added Let S be the connected component containing s By construction, e is the cheapest edge across the cut (S, V - S) Therefore, e belongs to every MST So, every edge added belongs to the MST The algorithm creates no cycles and does not stop until the graph is connected, therefore, the final output is a spanning tree The final output is a minimum-spanning tree 	 Hack: break ties in weights by perturbing each edge weight by a tiny unique amount. Implementation: break ties in an arbitrary but consistent way (e.g., lexicographic order) This is correct. There is a slightly more principled way that requires a stronger cut property.

Implementation of Prim's algorithm	Prim Implementation
Initialize $T = \{\}$ Initialize $S = \{s\}$ while T is not a spanning tree do Let $e = (u, v)$ be the minimum-cost edge from S to $V - S$ $T = T \cup \{e\}$ $S = S \cup \{s\}$ end while What does this remind you of?	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Kruskal Implementation?	Kruskal Implementation: Union-Find
Sort edges by weight so $c_1 \le c_2 \le \ldots \le c_m$ Initialize $T = \{\}$ for $e = 1$ to m do if adding $e = (u, v)$ to T does not form a cycle then $T = T \cup \{e\}$ end if end for Ideas? BFS to check if u and v in same connected component: $O(mn)$. (Each BFS is $O(n)$: why?) Can we do better?	Idea: use clever data structure to maintain connected components of growing spanning tree. Should support:• find(v): return name of set containing v• Union(A, B): merge two setsfor $e = 1$ to m do Let u and v be endpoints of e if find(u) != find(v) then \triangleright Not in same component? $T = T \cup \{e\}$ Union(find(u), find(v)) \triangleright Merge components end if end forGoal: union = $O(1)$, find = $O(\log n) \Rightarrow O(m \log n)$ overall
Union-Find Data Structure	Applications, Generalizations, History
 Board work Conclusion: Union is O(1): update one pointer Find is O(log n): follow at most log₂(n) pointers to find representative of set 	See other slides, web demo.