CS 312: Algorithms Greedy: Exchange Arguments—Scheduling to Minimize Lateness Dan Sheldon Mount Holyoke College	Algorithm Design—Greedy Greedy: make a single "greedy" choice at a time, don't look back. Greedy Formulate problem Pesign algorithm Prove correctness hard Analyze running time Focus is on proof techniques
Last Compiled: October 19, 2018	 Last time: "greedy stays ahead" (inductive proof) This time: exchange argument
<pre>Scheduling to Minimize Lateness • You have a very busy month: n assignments are due, with different deadlines Assignments: 1: (len=1, due=2) 2: (len=2, due=5) 3: (len=3, due=6) 4: (len=2, due=7) Deadlines:</pre>	Scheduling to Minimize LatenessLet's formalize the problem. The input is:• $t_j = \text{length (in days) to complete assignment } j$ (or "job" j)• $d_j = \text{deadline for assignment } j$ What does a schedule look like?• $s_j = \text{start time for assignment } j$ (selected by algorithm)• $f_j = s_j + t_j$ finish timeHow to evaluate a schedule?• Lateness of assignment j is $\ell_j = \begin{cases} 0 & \text{if } f_j \leq d_j \\ f_j - d_j & \text{if } f_j > d_j \end{cases}$ • Maximum lateness $L = \max_j \ell_j$ Goal: find a schedule to make maximum lateness as small as possible
 Possible Greedy Approaches Note: it never hurts to schedule assignments consecutively with no "idle time" ⇒ schedule determined by order of assignments What order should we choose? Shortest Length: ascending order of t_j. Earliest Deadline: ascending order of d_j. Smallest Slack: ascending order of d_j. Only <i>earliest deadline first</i> is optimal in all examples. Let's prove it is always optimal. 	 Exchange Argument (False Start) Assume jobs ordered by deadline d₁ ≤ d₂ ≤ ≤ d_n, so the greedy ordering is simply A = 1, 2,, n. Claim: A is optimal Proof attempt: Suppose for contradiction that A is not optimal. Then, there is an optimal solution O with O ≠ A Since O ≠ A, some pairs of jobs must be out of order (e.g. A = 12345, O = 13254) Suppose we could show this: Pick two jobs in O that are out of order and swap them to match A. Call the new schedule O'. (e.g. O = 13254 → O' = 12354). This swap makes O' strictly better than O. Therefore O is not optimal. Contradiction. Conclude that our assumption was wrong: A is actually optimal. Why won't this work? O' may still be optimal. Example.

Exchange Argument (Correct)	Exchange Argument for Scheduling to Minimize Lateness
Instead we will do this: Suppose O optimal and $O \neq A$. Then we can modify O to get a new solution O' that is: 1. No worse than O 2. Closer to A is some measurable way $O(\text{optimal}) \rightarrow O'(\text{optimal}) \rightarrow O''(\text{optimal}) \rightarrow \ldots \rightarrow A(\text{optimal})$	 Recall A = 1, 2,, n. For S ≠ A, say there is an inversion if i comes before j but j < i. Claim: if S has an inversion, S has a consecutive inversion—one where i comes immediately before j. Main result: let O ≠ A be an optimal schedule. Then O has a consecutive inversion i, j. We can swap i and j to get a new schedule O' such that: 1. Maximum lateness of O' is no bigger than maximum lateness of O 2. O' has one less inversion than O
High-level idea: gradually transform <i>O</i> into <i>A</i> without hurting solution, thus preserving optimality. Concretely: show 1 and 2 above.	Proof: 1. On board / next slide 2. Obvious
Proof of 1	Wrap-Up
Swapping a consecutive inversion (<i>i</i> precedes <i>j</i> ; $d_j \leq d_i$) i	For any optimal $O \neq A$ we showed that we showed that we could transform O to O' such that: 1. O' is still optimal 2. O' has one less inversion than A
► If $k \notin \{i, j\}$, then lateness is unchanged: $\ell'_k = \ell_k$ ► Job j finishes earlier in O' than O : $\ell'_j \le \ell_j$ ► Finish time of i in O' = finish time of j in O . Therefore $\ell'_i = f'_i - d_j = f_j - d_i \le f_j - d_j = \ell_j$	$O(\text{optimal}) \to O'(\text{optimal}) \to O''(\text{optimal}) \to \ldots \to A(\text{optimal})$ Since there are at most $\binom{n}{2}$ inversions, by repeating the process a finite number of times we see that A is optimal.
Conclusion : $\max_k \ell'_k \leq \max_k \ell_k$. Therefore O' is still optimal.	