
CS 312: Algorithms
Greedy: Exchange Arguments—Scheduling to Minimize Lateness

Dan Sheldon

Mount Holyoke College

Last Compiled: October 19, 2018

Algorithm Design—Greedy

Greedy: make a single “greedy” choice at a time, don’t look back.

Greedy
Formulate problem ?
Design algorithm easy
Prove correctness hard
Analyze running time easy

Focus is on proof techniques

I Last time: “greedy stays ahead” (inductive proof)
I This time: exchange argument

Scheduling to Minimize Lateness

I You have a very busy month: n assignments are due, with
different deadlines
Assignments:

1: |---| (len=1, due=2)
2: |---|---| (len=2, due=5)
3: |---|---|---| (len=3, due=6)
4: |---|---| (len=2, due=7)

Deadlines:
d1 d2 d3 d4

|---|---|---|---|---|---|---|---|---|
0 1 2 3 4 5 6 7 8 9

I How should you schedule your time to “minimize lateness”?

Scheduling to Minimize Lateness
Let’s formalize the problem. The input is:

I tj = length (in days) to complete assignment j (or “job” j)
I dj = deadline for assignment j

What does a schedule look like?

I sj = start time for assignment j (selected by algorithm)
I fj = sj + tj finish time

How to evaluate a schedule?

I Lateness of assignment j is `j =
{

0 if fj ≤ dj

fj − dj if fj > dj

I Maximum lateness L = maxj `j

Goal: find a schedule to make maximum lateness as small as
possible

Possible Greedy Approaches

I Note: it never hurts to schedule assignments consecutively
with no “idle time” ⇒ schedule determined by order of
assignments

I What order should we choose?
I Shortest Length: ascending order of tj .
I Earliest Deadline: ascending order of dj .
I Smallest Slack: ascending order of dj − tj .

I Only earliest deadline first is optimal in all examples. Let’s
prove it is always optimal.

Exchange Argument (False Start)
Assume jobs ordered by deadline d1 ≤ d2 ≤ ... ≤ dn, so the greedy
ordering is simply A = 1, 2, . . . , n.
Claim: A is optimal

Proof attempt: Suppose for contradiction that A is not optimal.
Then, there is an optimal solution O with O 6= A

I Since O 6= A, some pairs of jobs must be out of order (e.g.
A = 12345, O = 13254)

I Suppose we could show this:
I Pick two jobs in O that are out of order and swap them to

match A. Call the new schedule O′. (e.g.
O = 13254→ O′ = 12354).

I This swap makes O′ strictly better than O.
I Therefore O is not optimal. Contradiction. Conclude that our

assumption was wrong: A is actually optimal.

Why won’t this work? O′ may still be optimal. Example.

Exchange Argument (Correct)

Instead we will do this:

Suppose O optimal and O 6= A. Then we can modify O to get a
new solution O′ that is:

1. No worse than O
2. Closer to A is some measurable way

O(optimal)→ O′(optimal)→ O′′(optimal)→ . . . → A(optimal)

High-level idea: gradually transform O into A without hurting
solution, thus preserving optimality.
Concretely: show 1 and 2 above.

Exchange Argument for Scheduling to Minimize Lateness
Recall A = 1, 2, . . . , n. For S 6= A, say there is an inversion if i
comes before j but j < i. Claim: if S has an inversion, S has a
consecutive inversion—one where i comes immediately before j.

Main result: let O 6= A be an optimal schedule. Then O has a
consecutive inversion i, j. We can swap i and j to get a new
schedule O′ such that:

1. Maximum lateness of O′ is no bigger than maximum lateness
of O

2. O′ has one less inversion than O

Proof:

1. On board / next slide
2. Obvious

Proof of 1
Swapping a consecutive inversion (i precedes j; dj ≤ di)

|-------i-------|---j---| O

dj di |---j---|-------i-------| O'
-----|-----|-->

Consider the lateness `′
k of each job k in O′:

I If k /∈ {i, j}, then lateness is unchanged: `′
k = `k

I Job j finishes earlier in O′ than O: `′
j ≤ `j

I Finish time of i in O′ = finish time of j in O. Therefore

`′
i = f ′

i − dj = fj − di ≤ fj − dj = `j

Conclusion: maxk `′
k ≤ maxk `k. Therefore O′ is still optimal.

Wrap-Up

For any optimal O 6= A we showed that we showed that we could
transform O to O′ such that:

1. O′ is still optimal
2. O′ has one less inversion than A

O(optimal)→ O′(optimal)→ O′′(optimal)→ . . .→ A(optimal)

Since there are at most
(n

2
)
inversions, by repeating the process a

finite number of times we see that A is optimal.

