CS 312: Algorithms

Dan Sheldon

Mount Holyoke College

Last Compiled: September 24, 2018

A More General Exploration Strategy

To explore the connected component containing s:

Add any node v for which

> (u,v) is an edge
> u is explored, but v is not

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently
added node until you have to backtrack.
Example.

Recursive DFS

DFS(u)
Mark v as "Explored"
for each edge (u,v) incident to u do
if v is not marked "Explored" then
Recursively invoke DFS(v)
end if
end for

Example on board

DFS Tree

Can also extract tree 7' from DFS.

> (u,v) € T if v explored from u—i.e., DFS(u) calls DFS(v)
Claim: let T' be a depth-first search tree for graph G = (V, E), and
let (z,y) be an edge that is in G but not T' (a “non-tree edge").

Then either z is an ancestor of y or y is an ancestor of x in T'.

Proof on board

DFS and Non-tree edges

Claim: let T' be a depth-first search tree for graph G = (V, E), and
let (z,y) be an edge that is in G but not T' (a “non-tree edge”).
Then either x is an ancestor of y or y is an ancestor of z in T'.

Proof

Suppose not and suppose that x is reached first by DFS.
Before leaving z, we must examine (z,y).

Since (z,y) ¢ T, y must have been explored by this time.
But y was not explored when we arrived at x by assumption.
Thus y was explored during the execution of DFS(z).

Implies x is ancestor of y.

yvVvyVYyVvYYVvYy

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do

BFS(s) > Run BFS starting from s.

end while

Usually OK to assume graph is connected. State if you are doing so
and why it does not trivialize the problem.

Running time? What's the running time of BFS?

Implementation

» How do we implement graph traversal? What is the running
time?

» Preliminaries

> Let m = |E| be the number of edges
> Let n = |V/| be the number of nodes
» Data structure to represent graph? ...

Interlude (Data Structures)

Linked List:
Head Tail
01 02 03 04 05 06
» Always remove items from front (Head)
> Queue: Insert at Tail (FIFO)
» Stack: Insert at Head (LIFO)
> Insert/Removal are O(1) operations.

Graph representation: adjacency lists

Adjacency lists. Each node keeps list of neighbors

= — B « 1515

= — 2 — 1l e]
BB — =]

H |

(1)

a

(2 —(3)
HHA

® N O u oA W oN -

» Each edge stored twice

> Space? ©(m +n)

» Checking if (u,v) is an edge? O(degree(u)) time (degree =
number of neighbors)

Traversal Implementations

Generic approach: maintain set of explored nodes and discovered
nodes

» Explored = have seen this node and explored its outgoing edges

» Discovered = the “frontier”. Have seen the node, but not
explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while

> w is discovered

Note: may put w in A even if already discovered (or even explored).
Seems wasteful, but we'll see why later

Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)

Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while

> w is discovered

BFS: A is a queue (FIFO)
DFS: A is a stack (LIFO)

BFS Implementation

Let A = empty Queue structure of discovered nodes

Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while

> w is discovered

Is this actually BFS? Yes. Proof by example.

BFS Running Time

How many times does each line execute?

Traverse(s)

Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while

BFS Running Time

How many times does each line execute?

Traverse(s)
Putsin A 1
while A is not empty do 2m
Take a node v from A 2m
if v is not marked “explored" then 2m
Mark v as “explored" n
for each edge (v,w) incident tov do 2m
Putwin A 2m
end for
end if
end while

Running time O(m + n)

DFS Implementation

Let A = empty Stack structure of discovered nodes

Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v,w) incident to v do
Put w in A
end for
end if
end while

> w is discovered

Is this actually DFS? Yes
Running time? O(m + n)

Back to Connected Components

while There is some unexplored node s do
BFS(s)
Extract connected component containing s
end while

Running time?

Naive: O(m + n) for each component = O(c(m + n)) if ¢
components.
Better: BFS on component C only works on nodes/edges in C'

> Time for component C: O(#edges in C' + #nodes in C)
> Total time: O(m +n)

Summary

» Graph traversal by BFS/DFS

» Different versions of general exploration strategy

> Produce trees with different properties

> O(m +n) time

» Basic algorithmic primitive — used in many other algorithms

