


Generic Graph Traversal	BFS Implementation
Let $A = data$ structure of discovered nodes	Let $A = $ empty Queue structure of discovered nodes
Traverse(s)	
Put s in A	Traverse(s)
while A is not empty do	Put s in A
Take a node v from A	while A is not empty do Take a node v from A
if v is not marked "explored" then	if v is not marked "explored" then
Mark v as "explored"	Mark v as "explored"
for each edge (v, w) incident to v do	for each edge (v, w) incident to v do
Put w in A $\triangleright w$ is discovered end for	Put w in A $\triangleright w$ is discovered
end if	end for
end while	end if
	end while
BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)	Is this actually BFS? Yes. Proof by example.
BFS Running Time	BFS Running Time
How many times does each line execute?	How many times does each line execute?
	Traverse(s)
Traverse(s)	Put s in $A = 1$
Put s in A	while A is not empty do $2m$
while A is not empty do	Take a node v from $A = 2m$
Take a node v from A	if v is not marked "explored" then $2m$
if v is not marked "explored" then Mark v as "explored"	Mark v as "explored" n
for each edge (v, w) incident to v do	for each edge (v, w) incident to v do $2m$ Put w in A $2m$
Put w in A	end for
end for	end if
end if	end while
end while	Running time $O(m+n)$
DFS Implementation	Back to Connected Components
Let $A = \text{empty Stack}$ structure of discovered nodes	while There is some unexplored node s do
Traverse(s)	BFS(s)
Put s in A	Extract connected component containing s
while A is not empty do	end while
Take a node v from A	
if v is not marked "explored" then	Running time?
Mark v as "explored" for each edge (v, w) incident to v do	Naive: $O(m+n)$ for each component $\Rightarrow O(c(m+n))$ if c
Put w in A $\triangleright w$ is discovered	components.
end for	
end if	Better: BFS on component C only works on nodes/edges in C
end while	▶ Time for component C: $O(\#$ edges in $C + \#$ nodes in $C)$
Is this actually DFS? Yes Running time? $O(m + n)$	► Total time: $O(m+n)$

Summary

- ► Graph traversal by BFS/DFS

 - Different versions of general exploration strategy
 Produce trees with different properties
 O(m + n) time
 Basic algorithmic primitive used in many other algorithms