
CS 312: Algorithms

Dan Sheldon

Mount Holyoke College

Last Compiled: September 24, 2018

A More General Exploration Strategy

To explore the connected component containing s:

s

u v

Add any node v for which

I (u, v) is an edge
I u is explored, but v is not

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently
added node until you have to backtrack.
Example.

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Recursive DFS

DFS(u)
Mark u as "Explored"
for each edge (u, v) incident to u do

if v is not marked "Explored" then
Recursively invoke DFS(v)

end if
end for

Example on board

DFS Tree

Can also extract tree T from DFS.

I (u, v) ∈ T if v explored from u—i.e., DFS(u) calls DFS(v)

Claim: let T be a depth-first search tree for graph G = (V, E), and
let (x, y) be an edge that is in G but not T (a “non-tree edge”).
Then either x is an ancestor of y or y is an ancestor of x in T .

Proof on board

DFS and Non-tree edges

Claim: let T be a depth-first search tree for graph G = (V, E), and
let (x, y) be an edge that is in G but not T (a “non-tree edge”).
Then either x is an ancestor of y or y is an ancestor of x in T .
Proof

I Suppose not and suppose that x is reached first by DFS.
I Before leaving x, we must examine (x, y).
I Since (x, y) /∈ T , y must have been explored by this time.
I But y was not explored when we arrived at x by assumption.
I Thus y was explored during the execution of DFS(x).
I Implies x is ancestor of y.

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do
BFS(s) . Run BFS starting from s.

end while

Usually OK to assume graph is connected. State if you are doing so
and why it does not trivialize the problem.

Running time? What’s the running time of BFS?

Implementation

I How do we implement graph traversal? What is the running
time?

I Preliminaries
I Let m = |E| be the number of edges
I Let n = |V | be the number of nodes
I Data structure to represent graph? . . .

Interlude (Data Structures)

Linked List:

Head

o1 o2 o3 o4 o5 o6

Tail

I Always remove items from front (Head)
I Queue: Insert at Tail (FIFO)
I Stack: Insert at Head (LIFO)
I Insert/Removal are O(1) operations.

Graph representation: adjacency lists
Adjacency lists. Each node keeps list of neighbors

9

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.

・Two representations of each edge.

・Space is Θ(m + n).

・Checking if (u, v) is an edge takes O(degree(u)) time.

・Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

I Each edge stored twice
I Space? Θ(m + n)
I Checking if (u, v) is an edge? O(degree(u)) time (degree =

number of neighbors)

Traversal Implementations

Generic approach: maintain set of explored nodes and discovered
nodes

I Explored = have seen this node and explored its outgoing edges

I Discovered = the “frontier”. Have seen the node, but not
explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Note: may put w in A even if already discovered (or even explored).
Seems wasteful, but we’ll see why later

Generic Graph Traversal

Let A = data structure of discovered nodes
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

BFS: A is a queue (FIFO)
DFS: A is a stack (LIFO)

BFS Implementation

Let A = empty Queue structure of discovered nodes
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Is this actually BFS? Yes. Proof by example.

BFS Running Time

How many times does each line execute?

Traverse(s)
Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A
end for

end if
end while

BFS Running Time

How many times does each line execute?

Traverse(s)
Put s in A 1
while A is not empty do 2m

Take a node v from A 2m
if v is not marked “explored" then 2m

Mark v as “explored" n
for each edge (v, w) incident to v do 2m

Put w in A 2m
end for

end if
end while

Running time O(m + n)

DFS Implementation

Let A = empty Stack structure of discovered nodes
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Is this actually DFS? Yes
Running time? O(m + n)

Back to Connected Components

while There is some unexplored node s do
BFS(s)
Extract connected component containing s

end while

Running time?

Naive: O(m + n) for each component ⇒ O(c(m + n)) if c
components.

Better: BFS on component C only works on nodes/edges in C

I Time for component C: O(#edges in C + #nodes in C)
I Total time: O(m + n)

Summary

I Graph traversal by BFS/DFS
I Different versions of general exploration strategy
I Produce trees with different properties
I O(m + n) time
I Basic algorithmic primitive — used in many other algorithms

