

Definitions	Definitions
 Connected component: maximal subset of nodes such that a path exists between each pair in the set maximal = if a new node is added to the set, there will no longer be a path between each pair 	 Tree: connected graph with no cycles Q: Is this equivalent to trees you saw in Data Structures? A: More or less. Rooted tree: tree with parent-child relationship Pick root r and "orient" all edges away from root Parent of v = predecessor on path from r to v
Directed Graphs Graphs can be <i>directed</i> , which means that edges point <i>from</i> one node <i>to</i> another, to encode an asymmetric relationship. We'll talk more about directed graphs later. Graphs are <i>undirected</i> if not otherwise specified.	Graph Traversal Thought experiment. World social graph. • Is it connected? • If not, how big is largest connected component? • Is there a path between you and Barack Obama? How can you tell algorithmically? Answer: graph traversal! (BFS/DFS)
Breadth-First Search Explore outward from starting node <i>s</i> by distance. "Expanding wave"	Breadth-First Search: Layers Explore outward from starting node s . Define layer L_i = all nodes at distance exactly i from s . Layers > $L_0 = \{s\}$ > L_1 = nodes with edge to L_0 > L_2 = nodes with an edge to L_1 that don't belong to L_0 or L_1 > > L_{i+1} = nodes with an edge to L_i that don't belong to any earlier layer.

all nodes, not already discovered, that have an edge to some node in the previous layer Observation: There is a path from \boldsymbol{s} to \boldsymbol{t} if and only if \boldsymbol{t} appears in some layer.

