

Collaboration and Academic Honesty	Collaboration and Academic Honesty
 Homework: Collaboration encouraged, but read/attempt on your own first. Writeup must be your own. List collaborators and any sources beyond notes or textbook at the top of each assignment. Honor code violations: Collaborating to write solutions Looking at another student's solutions Sharing your written solutions Use of solutions to same or similar problems found online or elsewhere I will refer every suspected violation to the academic honor board, no matter how "minor". 	 Quizzes: Do entirely on your own. Use book, slides, notes. (I can see on Moodle when each student begins and ends the quiz.) Fourth Hour: Groups assigned randomly each session. Complete exercises with group. Exams: Take-home, open book and notes. No collaboration or outside sources (e.g. web). If in doubt whether something is allowed, ask!
Tips	Stable Matching and College Admissions
 Start HW early! Talk to me, TAs, other students. Establish a weekly routine. Solving algorithms problems is a process. Solve over several days in small chunks, with discussion. Failure mode 1: attempt to complete in one sitting the night before HW is due Failure mode 2: sit and puzzle for many hours by yourself until you solve it Failure mode 3: read the problem, think for 5 minutes, declare it is too hard Solving problems and writing great proofs is a skill. Expect to practice and improve throughout the semester. It's normal to feel uncertain at first, especially about proofs. 	 Suppose there are n colleges c₁, c₂,, c_n and n students s₁, s₂,, s_n. Each college ranks all students and each student ranks all colleges. For simplicity, suppose each college can only admit one student. Example. Can we match students to colleges such that everyone is happy? Not necessarily, e.g., Mount Holyoke is everyone's top choice. Can we match students to colleges in a stable way? Stable: Don't match (c, s) and (c', s') if c and s' would both prefer to be matched with each other. Precise definition + examples on board. Yes! And there's an efficient algorithm to find that matching. Develop algorithm informally
Propose-and-Reject (Gale-Shapley) Algorithm Initially all colleges and students are free while some college is free and hasn't proposed to every student do Choose such a college c Let s be the highest ranked student to whom c has not proposed if s is free then c and s become matched else if s is matched to c' but prefers c to c' then c' becomes unmatched c and s become matched else r s rejects c and c remains free end if end while	 Analyzing the Algorithm Some natural questions: Can we guarantee the algorithm terminates? Can we guarantee every college and student gets a match? Can we guarantee the resulting allocation is stable? Some initial observations: (F1) Once matched, students stay matched and only "upgrade" during the algorithm. (F2) College propose to students in order of college's preferences.

Can we guarantee the algorithm terminates?	Can we guarantee all colleges and students get a match?
 Yes! Proof In every round, some college proposes to some student that they haven't already proposed to. n colleges and n students ⇒ at most n² proposals ⇒ at most n² rounds of the algorithm 	 Yes! Proof by contradiction Suppose not all colleges and students have matches. Then there exists unmatched college c and unmatched student s. s was never matched during the algorithm (by F1) But c proposed to every student (by termination condition) When c proposed to s, she was unmatched and yet rejected c. Contradiction!
Can we guarantee the resulting allocation is stable?	For Next Time
 Yes! Proof by contradiction. Suppose there is an instability (c, s) c is matched to s' but prefers s to s' s is matched to c' but prefers c to c' By (F2), c must have proposed to s before proposing and becoming matched to s' Since s isn't matched to c at the end of the algorithm, she must have rejected c's offer (either immediately or upon receiving a better proposal). By (F1), she prefers her final match c' to c. Contradiction 	 Think about: Would it be better or worse for the students if we ran the algorithm with the students proposing? Can a student get an advantage by lying about their preferences? Read: Chapter 1, course policies Log into Moodle / Piazza, visit the course webpage.