
CS 312: Algorithms

Dan Sheldon

Mount Holyoke College

Last Compiled: September 5, 2018

CS 312: Algorithms

I Instructor: Dan Sheldon
I Where: Clapp 306
I When: M/W 2:55-4:10
I Fourth Hour: Friday 2:55-3:45
I TAs: Vivian Le, Nhu Do, Jessica Feng, Steven Hill
I Office hours:

I Dan: Mon 4-5, Wed 12:15-1:15
I TAs: TBD

Computer
Science
Society

• Learn the hottest tech areas

• Interact with experienced students

• Participate in fun, community events

≥

Join us by emailing
deni22i@mtholyoke.edu

What is Algorithm Design?

How do you write a computer program to solve a complex problem?

I Computing similarity between DNA sequences
I Routing packets on the Internet
I Scheduling final exams at a college
I Assign medical residents to hospitals
I Find all occurrences of a phrase in a large collection of

documents
I Finding the smallest number of coffee shops that can be built

in the US such that everyone is within 20 minutes of a coffee
shop.

DNA sequence similarity

I Input: two n-bit strings s1 and s2
I s1 = AGGCTACC
I s2 = CAGGCTAC

I Output: minimum number of insertions/deletions to transform
s1 into s2

I Algorithm: ????
I Even if the objective is precisely defined, we are often not ready

to start coding right away!

What is Algorithm Design?

I Step 1: Formulate the problem precisely
I Step 2: Design an algorithm
I Step 3: Prove the algorithm is correct
I Step 4: Analyze its running time

Important: this is an iterative process, e.g., sometimes you’ll even
want to redesign the algorithm to make it easier to prove that it is
correct.

Course Goals

I Learn how to apply the algorithm design process. . . by practice!
I Learn specific algorithm design techniques

I Greedy
I Divide-and-conquer
I Dynamic Programming
I Network Flows

I Learn to communicate precisely about algorithms

I Proofs, reading, writing, discussion

I Prove when no exact efficient algorithm is possible

I Intractability and NP-completeness

Grading Breakdown

I Participation (10%): Fourth Hour, lecture participation,
Piazza

I Quizzes (10%): Online Moodle quizzes (weekly due Monday
8pm)

I Homework (35%): Homework (weekly due Thu)
I Midterm 1 (15%): Take-home, right before spring break
I Midterm 2 (15%): Take-home, ~first week in April
I Final (15%): Take-home, exam period

Grading

Grade distribution from Spring 2017:

0

1

2

3

4

5

6

7

8

9

<60 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-100 More

Grade	Distribution

Median grade = B. 32%: A-/A. 52% B-/B/B+. 16%: C+ or below

Required Textbook

Course Information

Course websites:

people.cs.umass.edu/~sheldon/
teaching/cs312/

Slides, homework, course
information, pointers to all
other pages

moodle.mtholyoke.edu Quizzes, solutions
piazza.com Discussion forum, contacting

instructors and TA’s
gradescope.com Submitting and returning

homework

Announcements: Check your email daily and log into Piazza
regularly for course announcements.

Policies

I Online Quizzes: Submit before 8pm Monday. Two attempts.
No late submissions. Lowest is dropped.

I Homework: Submit via Gradescope. Points for readability.
Late penalties: 0–24 hours = 33%; 24–48 hours = 66%; 48+
hours = no credit. Three free late days.

Collaboration and Academic Honesty

I Homework: Collaboration encouraged, but read/attempt on
your own first. Writeup must be your own. List collaborators
and any sources beyond notes or textbook at the top of each
assignment.

I Honor code violations:
I Collaborating to write solutions
I Looking at another student’s solutions
I Sharing your written solutions
I Use of solutions to same or similar problems found online
or elsewhere

I I will refer every suspected violation to the academic honor
board, no matter how “minor”.

Collaboration and Academic Honesty

I Quizzes: Do entirely on your own. Use book, slides, notes. (I
can see on Moodle when each student begins and ends the
quiz.)

I Fourth Hour: Groups assigned randomly each session.
Complete exercises with group.

I Exams: Take-home, open book and notes. No collaboration or
outside sources (e.g. web).

I If in doubt whether something is allowed, ask!

Tips

I Start HW early! Talk to me, TAs, other students. Establish a
weekly routine.

I Solving algorithms problems is a process. Solve over several
days in small chunks, with discussion.

I Failure mode 1: attempt to complete in one sitting the night
before HW is due

I Failure mode 2: sit and puzzle for many hours by yourself until
you solve it

I Failure mode 3: read the problem, think for 5 minutes, declare
it is too hard

I Solving problems and writing great proofs is a skill. Expect to
practice and improve throughout the semester. It’s normal to
feel uncertain at first, especially about proofs.

Stable Matching and College Admissions

I Suppose there are n colleges c1, c2, . . . , cn and n students
s1, s2, . . . , sn.

I Each college ranks all students and each student ranks all
colleges. For simplicity, suppose each college can only admit
one student. Example.

I Can we match students to colleges such that everyone is happy?
I Not necessarily, e.g., Mount Holyoke is everyone’s top choice.

I Can we match students to colleges in a stable way?
I Stable: Don’t match (c, s) and (c′, s′) if c and s′ would both

prefer to be matched with each other. Precise definition +
examples on board.

I Yes! And there’s an efficient algorithm to find that matching.
I Develop algorithm informally

Propose-and-Reject (Gale-Shapley) Algorithm

Initially all colleges and students are free
while some college is free and hasn’t proposed to every student
do

Choose such a college c
Let s be the highest ranked student to whom c has not

proposed
if s is free then

c and s become matched
else if s is matched to c′ but prefers c to c′ then

c′ becomes unmatched
c and s become matched

else . s prefers c′

s rejects c and c remains free
end if

end while

Analyzing the Algorithm

I Some natural questions:
I Can we guarantee the algorithm terminates?
I Can we guarantee every college and student gets a match?
I Can we guarantee the resulting allocation is stable?

I Some initial observations:
I (F1) Once matched, students stay matched and only “upgrade"

during the algorithm.
I (F2) College propose to students in order of college’s

preferences.

Can we guarantee the algorithm terminates?

I Yes! Proof. . .
I In every round, some college proposes to some student that

they haven’t already proposed to.
I n colleges and n students =⇒ at most n2 proposals
I =⇒ at most n2 rounds of the algorithm

Can we guarantee all colleges and students get a match?

I Yes! Proof by contradiction. . .
I Suppose not all colleges and students have matches. Then there

exists unmatched college c and unmatched student s.
I s was never matched during the algorithm (by F1)
I But c proposed to every student (by termination condition)
I When c proposed to s, she was unmatched and yet rejected c.

Contradiction!

Can we guarantee the resulting allocation is stable?

I Yes! Proof by contradiction.
I Suppose there is an instability (c, s)

I c is matched to s′ but prefers s to s′

I s is matched to c′ but prefers c to c′

I By (F2), c must have proposed to s before proposing and
becoming matched to s′

I Since s isn’t matched to c at the end of the algorithm, she must
have rejected c’s offer (either immediately or upon receiving a
better proposal). By (F1), she prefers her final match c′ to c.
Contradiction

For Next Time

I Think about:
I Would it be better or worse for the students if we ran the

algorithm with the students proposing?
I Can a student get an advantage by lying about their

preferences?
I Read: Chapter 1, course policies
I Log into Moodle / Piazza, visit the course webpage.

