CS 312: Algorithms

Fall 2018

Fourth Hour 6

Your Name:

Collaborators:

You will be randomly assigned groups to work on these problems in discussion section.

Problem 1. Construction. You're running a company contracted to build dorms at Mount Holyoke. Each dorm has a foundation, a living space, and a roof. These three components must be built in that order. The college has designed each dorm and each dorm component will need a certain amount of time to build; these times are known in advance.

Dorm	Foundation Time	Living Space Time	Roof Time
Anderson	2 days	2 days	3 days
Burleson	3 days	2 days	2 days
Ciesielski	4 days	3 days	2 days

Your company has only one excavator so it can only work on one foundation at any given time. However, the company has many different work crews, and can work on any number of living spaces and roofs in parallel with a foundation.

You want to build your dorms in an order such that the last dorm to finish being built will complete as soon as possible.

- (a) Say your contract requires you to build Anderson, Burleson, and Ciesielski. What is an ordering where the last dorm to finish completes as soon as possible?
- (b) Consider the general problem where thee are n dorms and for dorm i, the time to build the foundation, living space, and roof, respectively, are f_i , l_i , and r_i . Which of the following greedy rules produces an optimal solution?
 - Order dorms by increasing foundation time f_i
 - Order dorms by decreasing foundation time f_i
 - Order dorms by increasing living space plus roof time $l_i + r_i$
 - Order dorms by decreasing living space plus roof time $l_i + r_i$
- (c) Now let's prove that the rule you selected is optimal by an exchange argument. Let A be the greedy solution. If O is an optimal solution and $O \neq A$, argue that you can modify O to get a new solution O' that is closer to A and no worse than O (so still optimal). Define an inversion as pair of dorms (i, j) that are out of order with respect to greedy solution. Define a *consecutive inversion* as a pair of dorms where i is scheduled immediately before j in O, but j comes before i in A.
 - True or false? If O has an inversion, it has a consecutive inversion.

Now suppose that O is an optimal solution with a consecutive inversion i and j. If we swap i and j it is clear that we get a new schedule O' with one less inversion.

• Show that the overall finish time of O' is no later than the overall finish time of O.

This means that O' is still optimal. To complete the exchange argument, we note that there are at most $\binom{n}{2}$ inversions. Therefore, if O is not equal to A, we can apply this argument at most $\binom{n}{2}$ times to transform O into A while preserving optimality at every step, therefore proving that A is optimal.

(d) What is the running time of this algorithm?

Problem 2. A Puzzle (for fun).

You are to cut out some pieces of paper.

You must be able to place your pieces of paper on an 8x8 checkerboard so that they exactly cover the checkerboard, minus *any* one square.

That is, once your pieces are cut, if I identify to you *any* of the squares on the checkerboard, you must be able to arrange all your pieces of paper (flat, not folded) on the checkerboard so that:

- the pieces of paper don't overlap
- the pieces of paper don't cover any area outside the checkerboard
- the pieces of paper cover all of the checkerboard except the square I chose

The problem: figure out how to do this with three pieces of paper.

For example, it is easy to see how to do this with 63 pieces of paper — use 63 1x1 squares of paper. Or, 32 pieces — use a 4x8 piece and 31 1x1 pieces...