CS 312: Algorithms

Spring 2018

Discussion 4

Your Name: .

Collaborators: .

You will be randomly assigned groups to work on these problems in discussion section.

Problem 1. Graphs, proofs. The degree of node v in a graph is the number of edges incident to v (equivalently, the number of neighbors of v). Consider the claim and proof below. Identify at least two statements or phrases in the proof that are imprecise or not fully justified.

Claim: Let G be an undirected graph where every node has degree two or more. Then G has a cycle.

Proof: Since every node has two or more neighbors, we can construct a path starting from any node and keep going on that path without ever turning around. The path must eventually loop back on itself, so there is a cycle.

Now discuss with your group how you could make this more precise.

Problem 2. BFS. Recall the definition of BFS. Here is a concrete description from the book pp. 90-91.

	BFS(s):	
	Set $Discovered[s] = true$	
	Set Discovered $[v]$ = false for all other v	
	Set $L[0] = \{s\}$	
	Set $i = 0$	\triangleright layer counter
• Explore out from node <i>s</i> by distance	Set $T = \emptyset$	\triangleright BFS tree
• Layer $i = \text{nodes}$ at distance i from s	while $L[i]$ is not empty do	
• Poturns a tree T	Initialize an empty list $L[i+1]$	\triangleright next layer
• Returns a tree I	for each node $u \in L[i]$ do	
• Runs in $O(n+m)$ time.	for each edge (u, v) incident to u do	
Run BFS on the examples drawn on the board. Clearly identify the tree T , the layers L_0, L_2, \ldots , and the non-tree edges.	if Discovered $[v]$ = false then	
	Set Discovered $[v]$ = true	
	Add edge (u, v) to T	
	Add v to $L[i+1]$	
	end if	
	end for	
	end for	
	Set $i = i + 1$	

end while

Problem 3. (Graph Traversal) K&T Chapter 3, Exercise 4.

This is the "butterfly problem" from the homework. Hint: try to modify BFS.