Algorithm Design

- Formulate the problem precisely
- Design an algorithm
- Prove correctness
- Analyze running time

Sometimes you can’t find an efficient algorithm.

Example: Network Design

- Input: undirected graph $G = (V, E)$ with edge costs
- Minimum spanning tree problem: find min-cost subset of edges so there is a path between any $u, v \in V$.
 > $O(m \log n)$ greedy algorithm
- Minimum Steiner tree problem: find min-cost subset of edges so there is a path between any $u, v \in W$ for specified terminal set W.
 > No polynomial-time algorithm is known.

Example: Knapsack Problem

- Input: n items with costs and weights, capacity W
- Goal: select items to maximize total cost without exceeding W
- Fractional knapsack: select fraction in $[0, 1]$ of each item
 > $O(n \log n)$ greedy algorithm
- 0-1 Knapsack: select all or none of each item
 > $O(nW)$ pseudo-polynomial time algorithm
 > No polynomial time algorithm known!

Tractability

- Working definition of efficient: polynomial time
 > $O(n^d)$ for some d.
- Huge class of natural and interesting problems for which
 > We don’t know any polynomial time algorithm
 > We can’t prove that none exists
- Goal: develop mathematical tools to say when a problem is hard or “intractable”

Preview of Landscape: Classes of Problems

- P: solvable in polynomial time
- NP: includes most problems we don’t know about
- EXP: solvable in exponential time
NP-Completeness

- **NP-complete**: problems that are “as hard as” every other problem in NP.
- A polynomial time algorithm for any NP-complete problem implies one for every problem in NP.

P ≠ NP?

Two possibilities:

- We don’t know which is true, but think P ≠ NP
- $1M prize if you can find out (Clay Institute Millenium Problems)

Outline

- **Goal**: develop technical tools to make this precise
- **Polynomial-time reductions**: what it means for one problem to be “as hard as” another
- **Define NP**: characterize mystery problems
- **NP-completeness**: some problems in NP are “as hard as” all others

Polynomial-Time Reduction

- Problem Y is **polynomial-time reducible** to Problem X
 - solveY(yInput)
 - Construct xInput // poly-time
 - foo = solveX(xInput) // poly # of calls
 - return yes/no based on foo // poly-time

- ...if any instance of Problem Y can be solved using
 1. A polynomial number of standard computational steps
 2. A polynomial number of calls to a black box that solves problem X

- **Notation** Y ≤P X

First Reduction: Independent Set and Vertex Cover

Given a graph G = (V, E),

1. If Y ≤P X and X ∈ P, then Y ∈ P
2. If Y ≤P X and Y ∉ P then X ∉ P

- 1: design algorithms, 2: prove hardness

First Reduction: Independent Set and Vertex Cover

- S ⊆ V is an **independent set** if no nodes in S share an edge.
 - Examples: \{3, 4, 5\}, \{1, 4, 5, 6\}
- S ⊆ V is a **vertex cover** if every edge has at least one endpoint in S.
 - Examples: \{1, 2, 6, 7\}, \{2, 3, 7\}

IND. SET. Does G have independent set of size at least k?

VERTEX COVER. Does G have a vertex cover of size at most k?
Independent Set and Vertex Cover

- **Claim:** \(S \) is independent set if and only if \(V - S \) is a vertex cover.

1. \(S \) independent set \(\Rightarrow \) \(V - S \) vertex cover
 - Consider any edge \((u, v)\)
 - \(S \) independent \(\Rightarrow \) either \(u \notin S \) or \(v \notin S \)
 - I.e., either \(u \in V - S \) or \(v \in V - S \)
 - \(\Rightarrow V - S \) is a vertex cover
2. \(V - S \) vertex cover \(\Rightarrow \) \(S \) independent set
 - Similar.

Vertex Cover \(\leq P \) Independent Set

- **Claim:** **Vertecx Cover** \(\leq P \) **Independent Set**
- **Reduction:**
 - On **Independent Set** instance \(\langle G, k \rangle \)
 - Construct **Independent Set** instance \(\langle G, n - k \rangle \)
 - Return Yes if \(\text{solveIS}(\langle G, n - k \rangle) = \text{Yes} \)

- **Correctness** for Yes output:
 - Suppose \(G \) has independent set \(S \) with \(\geq k \) nodes
 - Then \(T = V - S \) is a vertex cover with \(\leq n - k \) nodes
 - The algorithm correctly outputs Yes

- **Correctness** for No output:
 - Suppose \(G \) has no independent set \(S \) with \(\geq k \) nodes
 - Then there is no vertex cover with \(T \) with \(\leq n - k \) nodes,
 otherwise \(S = V - T \) is an independent set with \(\geq k \) nodes.
 - The algorithm correctly outputs No

Aside: Decision versus Optimization

- For intractability and reductions we will focus on decision problems (Yes/No answers)
- Algorithms have typically been for optimization (find biggest/smallest)
- Can reduce optimization to decision and vice versa. Discuss.

Reduction Strategies

- Reduction by equivalence (Vertex Cover and Independent Set)
- Reduction to a more general case
- Reduction by “gadgets”

Reduction to General Case: Set Cover

Problem. Given a set \(U \) of \(n \) elements, subsets \(S_1, \ldots, S_m \subset U \), and a number \(k \), does there exist a collection of at most \(k \) subsets \(S_i \) whose union is \(U \)?

- **Example:** \(U = \{ A, B, C, D, E \} \) is the set of all skills, there are five people with skill sets:
 \[
 S_1 = \{ A, C \}, \quad S_2 = \{ B, E \}, \quad S_3 = \{ A, C, E \}
 \]
 \[
 S_4 = \{ D \}, \quad S_5 = \{ B, C, E \}
 \]
 - Find a small team that has all skills, \(S_1, S_4, S_5 \)

Theorem. **Vertex Cover** \(\leq P \) **Set Cover**
Reduction of Vertex Cover to Set Cover

Reduction.
- Given Vertex Cover instance \((G, k)\)
- Construct Set Cover instance \((U, S_1, \ldots, S_m, k)\) with \(U = E\) and \(S_v = \) the set of edges incident to \(v\)
- Return \text{Yes} iff \(\text{solveSC}((U, S_1, \ldots, S_m, k)) = \text{Yes}\)

Proof
- Straightforward to see that \(S_v, \ldots, S_v\ell\) is a set cover of size \(\ell\) if and only if \(v_1, \ldots, v_\ell\) is a vertex cover of size \(\ell\)
- This implies the algorithm correctly outputs \text{Yes} if \(G\) has a vertex cover of size \(\leq k\) and \text{No} otherwise
- Polynomial \# of steps outside of \text{solveSC}
- Only one call to \text{solveSC}

A Bad Reduction

Reduction.
- Given Vertex Cover instance \((G, k)\)
- Construct Set Cover instance \((U, S_0, S_1, \ldots, S_m, k)\) as before but with additional set \(S_0 = U\)
- Return \text{Yes} iff \(\text{solveSC}((U, S_0, S_1, \ldots, S_m, k)) = \text{Yes}\)

Analysis
- \textbf{“Yes” instance:} \(G\) has a vertex cover of size \(\leq k\)
 - \(U\) has a set cover of size \(\leq k\)
 - Output is \text{Yes}—correct
- \textbf{“No” instance:} \(G\) does not have a vertex cover of size \(\leq k\)
 - \(U\) does have a set cover of size \(\leq k\) for \(k \geq 1\)
 - Output is \text{Yes}—incorrect