COMPSCI 311: Introduction to Algorithms Lecture 20: Network Flow Applications

Dan Sheldon

University of Massachusetts Amherst

First Application of Network Flows: Bipartite Matching

- Given a bipartite graph $G = (L \cup R, E)$, a subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- The maximum matching problem is to find the matching with the most edges.
- ▶ We'll design an efficient algorithm for maximum matching in a bipartite graph.

Bipartite Matching

Formulating Matching as Network Flow problem

- Goal: given matching instance $G = (L \cup R, E)$:
 - \blacktriangleright create a flow network G',
 - find a maximum flow f in G'
 - use f to construct a maximum matching M in G.

Exercise

- Convert undirected bipartite graph G to flow network G'
 - Direction of edges?
 - Capacities?
 - Source and sink?

Maximal Matching as Network Flow

- Add a source s and sink t
- For each edge $(u, v) \in E$, add $u \to v$ (directed), capacity 1
- ▶ Add an edge with capacity 1 from s to each node $u \in L$
- Add an edge with capacity 1 from each node $v \in R$ to t.

Clicker

Let G' be the flow network as constructed above and let e be an edge from L to R.

- A. For every flow f, either f(e) = 0 or f(e) = 1.
- B. For every maximum flow f, either f(e) = 0 or f(e) = 1.
- C. There is some maximum flow f such that either f(e) = 0 or f(e) = 1.
- D. B and C
- E. A, B, and C

Maximum Matching: Analysis

- \blacktriangleright Run F-F to get an integral max-flow f
- Set M to the set of edges from L to R with flow f(e) = 1
- \blacktriangleright Claim: The set M is a maximum matching.

Correctness: We will show that for every integer flow of value k we can construct a matching M of size k and vice versa. Therefore, a maximum integer-valued flow yields a maximum matching.

Correctness 1

- 1. Integral flow f of value $k \Rightarrow \mathsf{matching}\ M$ of size k
- Suppose f is a flow of value k
- \blacktriangleright Let M= edges from L to R carrying one unit of flow
- \blacktriangleright There are k such edges, because the net flow across cut between L and R is k, and there are no edges from R to L
- \blacktriangleright There is at most 1 unit of flow entering $u \in L,$ and therefore at most 1 unit of flow leaving u
- Since all flow values are 0 or 1, this means M has at most one edge incident to u.
- \blacktriangleright A similar argument for $v \in L$ means that M has at most one edge incident to v
- Therefore, M is a matching with size k

Correctness 2 (Review on Own)

- 2. Matching M of size $k \Rightarrow$ integral flow f of value k
- Suppose M is a matching of size k
- ▶ Send one unit of flow from s to $u \in L$ if u is matched
- Send one unit of flow from $v \in R$ to t if t is matched
- Send one unit of flow on e if e is in M
- All other edge flow values are zero
- Verify that capacity and flow conservation constraints are satisfied, and that v(f) = k.

Clicker

What is the running time of the Ford-Fulkerson algorithm to find a maximum matching in a bipartite graph with |L| = |R| = n? (Assume each node has at least one incident edge.)

- A. O(m+n)
- B. *O*(*mn*)
- $\mathsf{C.}~O(mn^2)$
- D. $O(m^2n)$

Recall: A matching M is **perfect** if every node appears in (exactly) one edge in M.

Question: When does a bipartite graph have a perfect matching?

- ▶ Clearly, we must have |L| = |R|
- Clearly, every node must have at least one edge
- What other conditions are necessary? Sufficient?

Perfect Matchings in Bipartite Graphs

For $S \subseteq L$, let $N(S) \subseteq R$ be the set of all neighbors of nodes in S

Observation: For a perfect matching we need

$$\forall S \subseteq L, \quad |N(S)| \ge |S| \tag{*}$$

Otherwise we can't match all nodes in ${\boldsymbol S}$

Hall's Marriage Theorem

Assume G is bipartite with |L| = |R| = n.

Simple Observation: If *G* has a perfect matching then:

$$\forall S \subseteq L, \quad |N(S)| \ge |S| \tag{*}$$

Theorem (Hall 1935, earlier by Frobenius, Kőnig): G has a perfect matching **if and** only if (*)

We will prove: if G does not have a perfect matching then (*) does not hold \implies there is some $S \subseteq L$ with |N(S)| < |S|.

Use max-flow / min-cut theorem on bipartite-matching flow network.

Clicker

Consider the flow network construction for bipartite matching. Which of the following is true?

- A. The construction still works if edges from s to L have infinite capacity.
- B. The construction still works if edges from L to R have infinite capacity.
- C. The construction still works if edges from R to t have infinite capacity.

Hall's Marriage Theorem

Picture on board: $G' \le M$ infinite-capacity $L \to R$ edges

- Suppose G does not have a perfect matching
- \blacktriangleright Let (A,B) be the minimum-cut in $G' \implies c(A,B) < n$

• Let
$$S = A \cap L$$

- ▶ All neighbors of nodes in *S* are also in *A*, else an edge of infinite capacity is cut ⇒ $N(S) \subseteq A \cap R$
- The cut capacity is

 $\blacktriangleright \implies |S| > |N(S)|$

$$\begin{split} n > c(A,B) &= |B \cap L| + |A \cap R| \\ &= n - |S| + |A \cap R| \\ &\geq n - |S| + |N(S)| \end{split}$$

Baseball Elimination?

Board work

Bokeh Effect: Blurring Background

Using an expensive camera and appropriate lenses, you can get a "bokeh" effect on portrait photos in which the background is blurred and the foreground is in focus.

Can fake effect using cheap phone cameras and appropriate software

Problem: given set V of pixels, classify each as foreground or background. Assume you have:

Numeric "cost" for assigning each pixel foreground/background
Numeric penalty for assigning neighboring pixels to different classes

Sketch of approach: other slides, board work, demo