First Application of Network Flows: Bipartite Matching

- Given a bipartite graph $G = (L \cup R, E)$, a subset of edges $M \subseteq E \subseteq L \times R$ is a matching if each node appears in at most one edge in M.
- The maximum matching problem is to find the matching with the most edges.
- We’ll design an efficient algorithm for maximum matching in a bipartite graph.

Formulating it as a network flow problem

- **Goal**: given matching instance $G = (L \cup R, E)$, create a flow network G', find a maximum flow f in G', and use f to construct a maximum matching M in G. Exercise.
 - Add a source s and sink t
 - For each edge $(u, v) \in E$, add a directed edge from u to v with capacity 1
 - Add an edge with capacity 1 from s to each node $u \in L$
 - Add an edge with capacity 1 from each node $v \in R$ to t
 - Run F-F to get an integral max-flow f
 - Set M to the set of edges from L to R with flow $f(e) = 1$
 - **Claim**: The set M is a maximum matching.

Analysis

Let’s prove that:

1. Integer flow f in G' \implies matching M in G with $|M| = v(f)$
2. Matching M in G \implies flow f in G' with $v(f) = |M|$

Therefore, max-flow f in G' \iff maximum matching M in G

Proof of 1: given f, construct M

- $M =$ edges from L to R carrying one unit of flow
- Capacity constraints \implies at most 1 unit of flow leaving $u \in L$
- Flow values are all 0 or 1 \implies M has at most one edge incident to u
- Similar argument for $v \in L$
- Therefore, M is a matching, and clearly $|M| = v(f)$.

Second Application of Network Flows: Image Segmentation

- Using an expensive camera and appropriate lenses, you can get a “bokeh” effect on portrait photos in which the background is blurred and the foreground is in focus.

 ![Image Segmentation Example](image.png)

- But using cheap cameras in phones and appropriate software you can fake this effect...
Formulating the problem

Problem: given set V of pixels, classify each as foreground or background. Assume you have:
- Numeric “cost” for assigning each pixel foreground/background
- Numeric penalty for assigning neighboring pixels to different classes

Sketch of approach: other slides, board work, demo.

Divide-And-Conquer

- Solving recurrences, e.g., $T(n) \leq 2T(n/2) + O(n)$
 - Recursion tree, unrolling
 - “Guess and verify”: proof by induction
 - Master theorem Suppose $T(n) = aT(n/b) + O(n^d)$. Then:
 $$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{d/n}) & \text{if } d < \log_b a \end{cases}$$
- Designing algorithms
 - Often: divide input into equal sized chunks, solve each recursively, combine to solve original problem
 - Can be more subtle—e.g., integer multiplication
 - Tip: don’t think about what happens inside recursion. “Magic”

Sequence Alignment: 2D OPT array $OPT(i, j)$

- Subset Sum: “add a variable”
 $$OPT(j, w) = \max \left\{ \begin{array}{l} OPT(j - 1, w), \\ w_j + OPT(j - 1, w - w_j) \end{array} \right\}$$
 - Running time $O(nW) - nW$ array entries, constant time per entry
- Shortest paths with negative edge weights (Bellman-Ford)
 $$OPT(i, v) = \min \left\{ OPT(i - 1, v), \ min_{w \in V} (c_{v,w} + OPT(i - 1, w)) \right\}$$
 - $O(n^3) - n^2$ array entries, constant time per entry
- Know how to design, analyze DP algorithms. Know about shortest paths in graphs with negative edge weights.

Network Flow

- Problem formulation and definitions
 - Flow network: directed graph, capacities, sources s, sink t
 - Flow: assign flow $f[e]$ on each edge; capacity and flow conservation constraints
- Ford-Fulkerson
 - Initialize flow f to all zeros
 - Residual graph G_f
 - Repeatedly find $s \to t$ path P in G_f, use to augment f, update G_f
 - Stop when no $s \to t$ paths remain in G_f
- Analysis
 - Always maintain a flow: use facts of residual graph and augment operation, verify that definition of flow still holds
 - Termination and running time: flow increases by one in each iteration, and cannot exceed total capacity leaving s
 - Correctness: Max-Flow Min-Cut Theorem

Dynamic Programming

- Another design technique based on recursion
- Identify recursive structure of problem by writing recurrence for optimal value
- “Turn the crank” to convert recurrence to iterative algorithm
- Weighted interval scheduling
 - Binary choice: $j \in O, j \not\in O$
 - $OPT(j) = \max\{OPT(j - 1), w_j + OPT(p(j))\}$
 - Running time $O(n) - n$ array entries, constant time per entry
- Rod cutting
 - Multi-way choice: position $i \in \{1, \ldots, n\}$ of first cut
 - $OPT(j) = \max_{1 \leq i \leq a} \{p_i + OPT(j - i)\}$
 - Running time $O(n^2) - n$ array entries, $O(n)$ time per entry

Midterm Review

- Sketch of approach: other slides, board work, demo.
Max-Flow Min-Cut Theorem

- $v(f) \leq c(A, B)$ for any flow f and any s-t cut $c(A, B)$
- Upon termination, Ford-Fulkerson produces a flow f and cut (A, B) such that $v(f) = c(A, B)$, so f is a max-flow and (A, B) is a min-cut
- The cut (A, B) is found by letting A = set of nodes reachable from s in residual graph

Know content of this week’s discussion. Be able to reason about flows, cuts in specific graphs. Understand principles and implications of Max-Flow Min-Cut Theorem.