COMPSCI 311: Introduction to Algorithms

Lecture 16: Dynamic Programming - Sequence Alignment

Dan Sheldon

University of Massachusetts Amherst

Dynamic Programming Recipe

- Step 1: Devise simple recursive algorithm
 - ► Flavor: make "first choice", then recursively solve subproblem
- Step 2: Write recurrence for optimal value
- Step 3: Design bottom-up iterative algorithm
 - Weighted interval scheduling: first-choice is binary
 - ► Rod-cutting: first choice has *n* options
 - Subset Sum: need to "add a variable" (one more dimension)
 - Now: similarity between sequences

Sequence Alignment

Example. TAIL vs TALE

For two strings $X=x_1x_2\ldots x_m, Y=y_1y_2\ldots y_n$, an alignment M is a matching between $\{1,\ldots,m\}$ and $\{1,\ldots,n\}$.

M is valid if

- \blacktriangleright Matching. Each element appears in at most one pair in M.
- ▶ No crossings. If $(i, j), (k, \ell) \in M$ and i < k, then $j < \ell$.

Cost of M:

- ▶ Gap penalty. For each unmatched character, you pay δ .
- ▶ Alignment cost. For a match (i, j), you pay $C(x_i, y_j)$.

$$cost(M) = \delta(m + n - 2|M|) + \sum_{(i,j) \in M} C(x_i, y_j).$$

Sequence Alignment

Problem. Given strings X,Y gap-penalty δ and cost matrix C, find valid alignment of minimal cost.

Example 1. TAIL vs TALE, $\delta=0.5$, $C(x,y)=\mathbf{1}[x\neq y]$.

Example 2. TAIL vs TALE, $\delta=10$, $C(x,y)=\mathbf{1}[x\neq y]$.

Example Recap

Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x, y) = \mathbf{1}[x \neq y]$.

TAIL- I not matched (gap)

TA-LE E not matched (gap)

Example 2. TAIL vs TALE, $\delta = 10$, $C(x, y) = \mathbf{1}[x \neq y]$.

TAIL

TALE

Applications

Genomics

- ▶ Biologists use genetic similarity to determine evolutionary relationships.
- ► Genetic similarity = cost of aligning DNA sequences

Spell-checkers, diff program, search engines.

▶ "preffered": (0) proffered (1) preferred (2) referred . . .

Clicker

Consider the longest common subsequence (LCS) problem: given two strings X and Y, find the longest substring (not necessarily contiguous) common to both. Is LCS a special case of sequence alignment?

- A. Yes, with gap penalty $\delta = 0$ and alignment cost $\mathbf{1}[x \neq y]$
- B. Yes, with gap penalty $\delta = 1$, and alignment cost ∞ if $x \neq y$, else 0
- C. Yes, with gap penalty $\delta=0$, and alignment cost ∞ if $x\neq y$, else 0
- D. No

Clicker

Suppose we try to align X= "banana" with Y= "ana". Assume $\delta>0$ and the cost of a match is zero. In an optimal alignment:

- A. Y will match the first occurrence of "ana" in X.
- B. Y will match the second occurrence of "ana" in X.
- C. Y may match any occurrence of "ana" in X.
- D. The optimal alignment depends on values of δ and the mismatch cost.

Toward an Algorithm

Let O be optimal alignment. Is pair (m, n) matched in O?

- ▶ If $(m,n) \in O$ we can align $x_1x_2...x_{m-1}$ with $y_1y_2...y_{n-1}$.
- ▶ If $(m,n) \notin O$ then either x_m or y_n must be unmatched (by no crossing).

Value OPT(m, n) of optimal alignment is one of:

- $C(x_m, y_n) + OPT(m-1, n-1).$
- \triangleright $\delta + \mathrm{OPT}(m-1,n)$.
- \triangleright $\delta + \mathrm{OPT}(m, n-1)$.

If m unmatched If n unmatched

If (m,n) matched

Recurrence

Let OPT(i, j) be optimal alignment cost of $x_1x_2...x_i$ and $y_1y_2...y_j$.

$$OPT(i, j) = \min \begin{cases} C(x_i, y_j) + OPT(i - 1, j - 1) \\ \delta + OPT(i - 1, j) \\ \delta + OPT(i, j - 1) \end{cases}$$

And (i,j) is in optimal alignment \iff first term is the minimum.

Base case?

- $ightharpoonup \mathrm{OPT}(0,j) = j\delta$
- $ightharpoonup \mathrm{OPT}(i,0) = i\delta$

align $X = \emptyset$ to $Y = y_1 \dots y_j$ similar

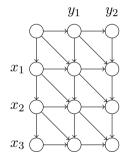
Sequence Alignment Pseudocode

```
\begin{aligned} & \text{align}(X,Y) \\ & \text{Initialize } M[0..m,0..n] = \text{null} \\ & M[i,0] = i\delta, \ M[0,j] = j\delta \text{ for all } i,j \\ & \text{for } j = 1,\dots,n \text{ do} \\ & \text{for } i = 1,\dots,m \text{ do} \\ & v_1 = C(x_i,y_j) + M[i-1,j-1] \\ & v_2 = \delta + M[i-1,j] \\ & v_3 = \delta + M[i,j-1] \\ & M[i,j] \leftarrow \min\{v_1,v_2,v_3\} \end{aligned}
```

- ▶ Blue = recurrence, rest = DP "boilerplate"
- ightharpoonup Running time? $\Theta(mn)$
- **Example.** TALE and TAIL, $\delta = 1, C(x, y) = 2 \cdot \mathbf{1}[x \neq y]$.

Sequence Alignment

- Recovering optimal matching: store each choice, trace back.
- ▶ Related to shortest path in weighted directed graph.



Graph has $\sim mn$ nodes and $\sim 3mn$ edges.

Clicker

Dijkstra's algorithm runs in $O(|E|\log|V|) \implies O(mn\log(mn))$ time for a graph with $\Theta(mn)$ nodes and edges. Sequence alignment takes only O(mn) time. What can we conclude?

- A. We could use dynamic programming to compute shortest paths in any graph asymptotically faster than Dijkstra's algorithm.
- B. By the multiplicativity property of big-O, the $\log |V|$ factor is dominated by |E|, so Dijkstra's running time is O(|E|) = O(mn).
- C. The graph in sequence alignment is a special case where we can compute shortest paths faster.
- D. Dijkstra's algorithm only works on undirected graphs.

Can We Use Less Space?

We've focused on time complexity, but space matters too!

```
Two sequences of length 10^5: mn = 10^{10} (10 GB) for j = 1, \dots, n do for i = 1, \dots, m do v_1 = C(x_i, y_j) + M[i - 1, j - 1] v_2 = \delta + M[i - 1, j] v_3 = \delta + M[i, j - 1] M[i, j] \leftarrow \min\{v_1, v_2, v_3\}
```

Can we save space?

- Computing column $M[\cdot, j]$ only needs $M[\cdot, j-1]$ \Longrightarrow keep just two columns (currrent, previous) \Longrightarrow linear space O(m+n)
- But: can only compute cost, not recover alignment!

Sequence Alignment in Linear Space

Hirschberg's algorithm: clever combination of DP and divide-and-conquer

Goal: find shortest path from $(0,0) \rightarrow (m,n)$

Board work

- 1. $\mathrm{OPT}(i,j) = f(i,j) = \mathrm{length}$ of shortest path from $(0,0) \to (i,j)$
- 2. For any j, can compute $f(\cdot,j)$ in O(mn) time and O(m+n) space
- 3. Let $g(i,j) = \text{length of shortest path from } (i,j) \to (m,n)$
- 4. For any j, can compute $g(\cdot,j)$ in O(mn) time and O(m+n) space
- 5. Key idea: find one node on shortest path. Fix j=n/2 and find q to maximize

$$f(q, n/2) + g(q, n/2)$$

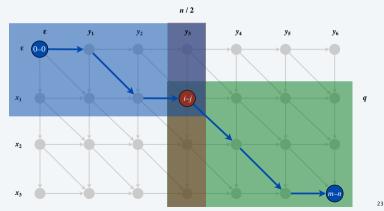
- \implies node (q, n/2) is on shortest path.
- 6. Recursively find shortest-path from $(0,0) \rightarrow (q,n/2)$
- 7. Recursively find shortest-path from $(q, n/2) \rightarrow (m, n)$.
- 8. Time T(m,n)=T(q,n/2)+T(m-q,n/2)+O(mn). Solves to O(mn) (recursion tree)

Space still O(m+n).

Hirschberg's algorithm

Divide. Find index q that minimizes f(q, n/2) + g(q, n/2); save node i-j as part of solution.

Conquer. Recursively compute optimal alignment in each piece.



Sequence Alignment: Summary

Align sequences X, Y

- ► Binary choice
- Recurse on prefixes
- ightharpoonup O(mn) time
- ightharpoonup O(m+n) space: more subtle
 - ► DP + Divide and Conquer

More sequences:

- RNA secondary structure
- match max. # of bases
- problem substructure: over intervals

