
COMPSCI 311: Introduction to Algorithms
Lecture 14: Dynamic Programming

Dan Sheldon

University of Massachusetts Amherst



Algorithm Design Techniques

▶ Greedy

▶ Divide and Conquer

▶ Dynamic Programming

▶ Network Flows



Learning Goals

Greedy Divide and Conquer
Dynamic

Programming

Formulate problem
Design algorithm ✓ ✓
Prove correctness ✓
Analyze running time ✓
Specific algorithms Dijkstra, MST Bellman-Ford



Weighted Interval Scheduling

▶ TV scheduling problem: n shows, can only watch one at a time. New twist: show
j has value vj . Want a set of shows S with no overlap and highest total value.

▶ Example on board

▶ Greedy? No longer optimal.



Problem Formulation

▶ Show (job) j has value vj , start time sj , finish time fj

▶ Assume shows sorted by finishing time f1 ≤ f2 ≤ . . . ≤ fn

▶ Shows i and j are compatible if they don’t overlap

▶ Goal: subset of non-overlapping jobs with maximum value



Dynamic Programming Recipe

▶ Step 1: Devise simple recursive algorithm for value of optimal solution
▶ Flavor: make “first choice”, then recursively solve remaining part of the problem.

(Problem: solve redundant subproblems → exponential time)

▶ Step 2: Write recurrence for optimal value

▶ Step 3: Design bottom-up iterative algorithm

▶ Epilogue: Recover optimal solution



Step 1: Recursive Algorithm

▶ Observation: Let O be the optimal solution. Either n ∈ O or n /∈ O. In either
case, we can reduce the problem to a smaller instance of the same problem.

▶ Recursive algorithm to compute value of optimal subset of first j shows

Compute-Value(j)
Base case: if j = 0 return 0

Case 1: j ∈ O
Let i < j be highest-numbered show compatible with j
val1 = vj + Compute-Value(i)

Case 2: j /∈ O
val2 = Compute-Value(j − 1)

return max(val1, val2)



Clicker

Compute-Value(j)
if j = 0 return 0
Let i < j be highest-numbered show compatible with j
val1 = vj + Compute-Value(i)
val2 = Compute-Value(j − 1)
return max(val1, val2)

The worst-case running time of this recursive solution is

A. O(n log n)

B. O(n2)

C. O(1.618n)

D. O(2n)



Running Time?

▶ Recursion tree

▶ ≈ 2n subproblems ⇒ exponential time

▶ Only n unique subproblems. Save work by ordering computation to solve each
problem once.



Step 2: Recurrence

A recurrence expresses the optimal value for a problem of size j in terms of the optimal
value of subproblems of size i < j.

Let OPT(j) = value of optimal solution on first j shows

OPT(0) = 0
OPT(j) = max{vj + OPT(pj)︸ ︷︷ ︸

Case 1

, OPT(j − 1)︸ ︷︷ ︸
Case 2

}

▶ pj : highest-numbered show i < j that is compatible with j



Recursive Algorithm vs. Recurrence

▶ Compute-Value(j)
If j = 0 return 0
val1 = vj + Compute-Value(pj)
val2 = Compute-Value(j − 1)
return max(val1, val2)

▶ Recurrence
OPT(j) = max{vj + OPT(pj), OPT(j − 1)}
OPT(0) = 0

▶ Direct correspondence between the algorithm and recurrence
▶ Tip: start by writing the recursive algorithm and translating it to a recurrence

(replace method name by “OPT”). After some practice, skip straight to the
recurrence



Step 3: Iterative “Bottom-Up” Algorithm

Idea: compute the optimal value of every unique subproblem in order from smallest
(base case) to largest (original problem). Use recurrence for each subproblem.

WeightedIS
Initialize array M of size n to hold optimal values
M [0] = 0 ▷ Value of empty set
for j = 1 to n do

M [j] = max(vj + M [pj ], M [j − 1])

▶ Example



Step 3: Observations

WeightedIS
Initialize array M of size n to hold optimal values
M [0] = 0 ▷ Value of empty set
for j = 1 to n do

M [j] = max(vj + M [pj ], M [j − 1])

▶ Iterative algorithm is a direct “wrapping” of recurrence in appropriate for loop.
▶ Pay attention to dependence on previously-computed entries of M to know in what

order to iterate through array.
▶ Running time? O(n)



Memoization

Intermediate approach: keep recursive function structure,
but store value in array on first computation, and reuse it

Initialize array M of size n to empty, M[0] = 0
function Mfun(j)
if M[j] = empty then

M[j] = max(vj + Mfun(pj), Mfun(j − 1))
return M[j]

▶ Can help if we have recursive structure but unsure of iteration order, or as
intermediate step in converting to iteration



Clicker

The asymptotic running time of the memoized algorithm is

A. the same as the initial recursive solution.

B. between the initial recursive solution and the iterative version.

C. the same as the iterative version.



Epilogue: Recovering the Solution (1)

Idea: modify the algorithm to save best choice for each subproblem

WeigthedIS
Initialize array M [0 . . . n] to hold optimal values
Initialize array choose[1 . . . n] to hold choices
M [0] = 0
for j = 1 to n do

M [j] = max(vj + M [pj ], M [j − 1])
Set choose[j] = 1 if first value is bigger, and 0 otherwise



Epilogue: Recovering the Solution (2)

Then trace back from end and "execute" the choices
Use algorithm above to fill in M and choose arrays
O = {}
j = n
while j > 0 do

if choose(j) == 1 then
O = O ∪ {j}
j = pj

else
j = j − 1

▶ Tip: first write algorithm to compute optimal value, then modify to compute actual
solution



Review

▶ Recursive algorithm → recurrence → iterative algorithm

▶ Three ways of expressing value of optimal solutions of subproblems
▶ Compute-Value(j). Recursive algorithm: arguments identify subproblems.
▶ OPT(j). Used in recurrence; matches recursive algorithm.
▶ M [j]. Array to hold optimal values for each distinct subproblem, filled in during

iterative algorithm.



Key Step: Identify Subproblems

▶ Finding solution means: make “first choice”, then recursively solve a smaller
instance of same problem.

▶ First example: Weighted Interval Scheduling
▶ Binary first choice: j ∈ O or j /∈ O?

▶ Next example: rod cutting
▶ First choice has n options



Rod Cutting

▶ Input: steel rod of length n, can be cut into integer lengths, get price p(i) for piece
of length i

▶ Goal: subdivide to maximize total value

▶ Example / problem formulation on board



First decision?

Choose length i of first piece, then recurse on smaller rod



Step 1: Recursive Algorithm

CutRod(j)
if j = 0 then return 0
v = 0
for i = 1 to j do

v = max
(
v, p[i] + CutRod(j − i)

)
return v

▶ Running time for CutRod(n)? Θ(2n)



Step 2: Recurrence

OPT(j) = max
1≤i≤j

{
pi + OPT(j − i)

}
OPT(0) = 0



From Recurrence to Algorithm

OPT(j) = max
1≤i≤j

{
pi + OPT(j − i)

}
OPT(0) = 0

What size memoization array M? What order to fill? The recurrence provides all of the
information needed to design an iterative algorithm.

▶ Cutrod(·), OPT(·), and M [·] have same argument: index j of unique subproblems
▶ Range of values of j determines size of M . M [0..n]
▶ Fill M so RHS values are computed before LHS. Fill from 0 to n



Step 3: Iterative Algorithm

CutRod-Iterative
Initialize array M [0..n]
Set M [0] = 0
for j = 1 to n do

v = 0
for i = 1 to j do

v = max
(
v, p[i] + M [j − i]

)
Set M [j] = v

▶ Note: body of for loop identical to recursive algorithm, directly implements
recurrence

▶ Running time? Θ(n2)



Epilogue: Recover Optimal Solution

Idea: Modify algorithm to record choices that lead to optimal value for each
subproblem, then trace back from the end and “execute” the choices, starting with the
largest problem.

Step 1: Run previous algorithm to fill in M array, but with the following modification:
let first-cut[j] be the index i that leads to the largest value when computing M [j].

Step 2: Trace back from end and execute choices.
cuts = {}
j = n ▷ Remaining length
while j > 0 do

j = j − first-cut[j]
cuts = cuts ∪ {first-cut[j]}


