Dynamic Programming Recipe

- **Step 1:** Devise simple recursive algorithm
 - Flavor: make “first choice”, then recursively solve remaining part of the problem
- **Step 2:** Write recurrence for optimal value
- **Step 3:** Design bottom-up iterative algorithm
 - Weighted interval scheduling: first-choice is binary
 - Rod-cutting: first choice has \(n \) options
 - Subset Sum: need to “add a variable”

Rod Cutting

- **Formulate problem on board**

- **Problem Input:**
 - Steel rod of length \(n \), can be cut into integer lengths
 - Price \(p(i) \) for a rod of length \(i \)

- **Goal**
 - Cut rods into lengths \(i_1, \ldots, i_k \) such that \(i_1 + i_2 + \ldots i_k = n \).
 - Maximize value \(p(i_1) + p(i_2) + \ldots + p(i_n) \)

First choice?

- **Choose length \(i \) of first piece, then recurse on smaller rod**

Steps 1 and 2

Step 1: Recursive Algorithm.

\[
\text{CutRod}(j) \\
\quad \text{if } j = 0 \text{ then return } 0 \\
\quad v = 0 \\
\quad \text{for } i = 1 \text{ to } j \text{ do} \\
\quad \quad v = \max (v, p[i] + \text{CutRod}(j - i)) \\
\quad \text{end for} \\
\quad \text{return } v \\
\]

- **Running time for CutRod(\(n \))? \(\Theta(2^n) \)**

Step 2: Recurrence

\[
\text{OPT}(j) = \max_{1 \leq i \leq j} \{p_i + \text{OPT}(j - i)\} \\
\text{OPT}(0) = 0
\]

Step 3: Iterative Algorithm

- **Array \(M[0..n] \) where \(M[i] \) holds value of OPT(\(i \)). Order to fill \(M \)? From 0 to \(n \).**

\[
\text{CutRod-Iterative} \\
\text{Initialize array } M[0..n] \\
\text{Set } M[0] = 0 \\
\text{for } j = 1 \text{ to } n \text{ do} \\
\quad \text{for } i = 1 \text{ to } j \text{ do} \\
\quad \quad v = 0 \\
\quad \quad \text{for } i = 1 \text{ to } j \text{ do} \\
\quad \quad \quad v = \max (v, p[i] + M[j - i]) \\
\quad \quad \text{end for} \\
\quad \text{Set } M[j] = v \\
\text{end for}
\]

- **Running time? \(\Theta(n^2) \)**
 - Note: body of for loop identical to recursive algorithm, directly implements recurrence
Epilogue: Recover Optimal Solution

Run previous algorithm to fill in M array

cuts = {}

while $j > 0$
do
 $i^* = \text{null}$, $v = 0$. i^* is the selected cut, v is its value
 for $i = 1$ to j
do
 if $p[i] + M[j - i] > v$ then
 $i^* = i$
 $v = p[i] + M[i]$
 end if
 end for
 $j = j - i^*$
end while

Problem Formulation

▶ Example on board

▶ Input
 ▶ Items 1, 2, . . . , n
 ▶ Weights w_i for all items (integers)
 ▶ Capacity W

▶ Goal: select a subset S whose total weight is as large as possible without exceeding W.

▶ Subset Sum: need to “add a variable” to recurrence

Step 1: Recursive Algorithm, First Try

▶ Let O be optimal solution on items $\{1, 2, \ldots, j\}$. Is $j \in O$ or not?

▶ SubsetSum(j)
 if $j = 0$ then return 0
 ▶ Case 1: $j \notin O$
 val1 = ???
 ▶ Case 2: $j \in O$
 val2 = 0
 if $w_j \leq W$ then
 val2 = ???
 end if
 end if
 return max(val1, val2)

Step 1: Recursive Algorithm, Add a Variable

▶ Find value of optimal solution O on items $\{1, 2, \ldots, j\}$ when the remaining capacity is w

▶ SubsetSum(j, w)
 if $j = 0$ then return 0
 ▶ Case 1: $j \notin O$
 val1 = SubsetSum($j - 1, w$)
 ▶ Case 2: $j \in O$
 val2 = 0
 if $w_j \leq w$ then
 val2 = $w_j + \text{SubsetSum}(j - 1, w - w_j)$
 end if
 end if
 return max(val1, val2)

Recurrence

▶ Let $OPT(j, w)$ be the maximum weight of any subset of items $\{1, \ldots, j\}$ that does not exceed w

\[
OPT(j, w) = \max \left\{ \begin{array}{c} OPT(j - 1, w), \\
 w_j + OPT(j - 1, w - w_j) \end{array} \right\}
\]

▶ Unless $w_j > w$, then $OPT(j, w) = OPT(j - 1, w)$

▶ Base case: $OPT(0, w) = 0$ for all $w = 0, 1, \ldots, W$.

Questions

▶ Do we need a base case for $OPT(j, 0)$?
▶ What is overall optimum to original problem? $OPT(n, W)$
Step 3: Iterative Algorithm

- SubsetSum(n, W)
 - Initialize array $M[0..n, 0..W]$
 - Set $M[0, w] = 0$ for $w = 0, \ldots, W$
 - for $j = 1$ to n
 - for $w = 1$ to W
 - Use recurrence from previous slide to compute $M[j, w]$
 - end for
 - end for
 - return $M[n, W]$

- Example on board.

- Running Time? $\Theta(nW)$. Note: this is “pseudopolynomial”. Not strictly polynomial, because it can be exponential in the number of bits used to represent the values.