Dynamic Programming Recipe

- Devise recursive form for solution
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without redundancy.

Comparison

<table>
<thead>
<tr>
<th>Formulate problem</th>
<th>Greedy</th>
<th>Divide and Conquer</th>
<th>Dynamic Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design algorithm</td>
<td>easy</td>
<td>hard</td>
<td>hard</td>
</tr>
<tr>
<td>Prove correctness</td>
<td>hard</td>
<td>easy</td>
<td>easy</td>
</tr>
<tr>
<td>Analyze running time</td>
<td>easy</td>
<td>hard</td>
<td>easy</td>
</tr>
</tbody>
</table>

Weighted Interval Scheduling

- Television scheduling problem: Given n shows with start time s_i and finish time f_i, watch as many shows as possible, with no overlap.
- A Twist: Each show has a value v_i and want a set of shows S, with no overlap and maximum value $\sum_{i \in S} v_i$.
- Greedy? Example on board.
- Notation:
 - s_j, f_j: start and finish time of show (job) j
 - v_j: value of show j
 - Assume shows sorted by finishing time $f_1 \leq f_2 \leq \ldots \leq f_n$
 - Shows i and j are compatible if they don’t overlap

Weighted Interval Scheduling: Recursive Algorithm

- Observation: Let O be the optimal solution. Either $n \in O$ or $n \notin O$. In either case, we can reduce the problem to a smaller instance of the same problem.
- Recursive algorithm to find value of optimal subset of first j shows

\[
\text{Compute-Value}(j) \\
\text{Base case: if } j = 0 \text{ return } 0 \\
\text{Case 1: } j \in O \\
\text{Let } i < j \text{ be highest-numbered show compatible with } j \\
\text{val1} = v_j + \text{Compute-Value}(i) \\
\text{Case 2: } j \notin O \\
\text{val2} = \text{Compute-Value}(j - 1) \\
\text{return } \max(\text{val1}, \text{val2})
\]
Extracting the Solution

- Finding the solution itself is a simple modification of the same algorithm

Compute-Solution(j)
- **Base case**: if $j = 0$ return \emptyset
- **Case 1**: $j \in O$
 Let $i < j$ be highest-numbered show compatible with j
 $O_1 = \{j\} \cup $ Compute-Solution(i)
- **Case 2**: $j \notin O$
 $O_2 = $ Compute-Solution($j - 1$)
 return the solution O_1 or O_2 that has higher value
- **Advice**: first develop algorithm to compute optimal value; usually easy to modify it to compute the actual solution

Recurrence

- A recurrence is a mathematical way of expressing the value of an optimal solution.
- **Definitions**
 - $OPT(j) =$ value of optimal solution on first j shows
 - p_j: highest-numbered show that is compatible with j
 - **Recurrence**

 $OPT(0) = 0$
 $OPT(j) = \max\{v_j + OPT(p_j), OPT(j - 1)\}$

Recursive Algorithm vs. Recurrence

- Compute-Value(j)
 - If $j = 0$ return 0
 - $val1 = v_j + $ Compute-Value(p_j)
 - $val2 = $ Compute-Value($j - 1$)
 - return $\max(val1, val2)$
- **Recurrence**

 $OPT(j) = \max\{v_j + OPT(p_j), OPT(j - 1)\}$

Running Time?

- **Board work**: running time of recursive solution
- **Recap**
 - **Recursion tree**
 - $\approx 2^n$ subproblems \Rightarrow exponential time
 - Only n unique subproblems. Save work by ordering computation to solve each problem once.

Iterative “Bottom-Up” Algorithm

- WeighedIS
 - Initialize array M of size n to hold optimal values
 - $M[0] = 0$ → Value of empty set
 - for $j = 1$ to n do
 - $M[j] = \max(v_j + M[p_j], M[j - 1])$
 - end for
- **Example execution**
- **Comment**: usually direct “wrapping” of recurrence in appropriate for loop. Pay attention to dependence on previously-computed entries of M to know which direction to iterate.

Review

- Recursive algorithm \rightarrow recurrence \rightarrow iterative algorithm
- Three ways of expressing value of optimal solution for smaller problems
 - Compute-Value(j). Recursive algorithm—arguments identify subproblems.
 - $OPT(j)$. Mathematical expression. Write a recurrence for this that matches recursive algorithm.
Dynamic Programming Recipe

- Devise recursive form for solution. **Flavor:** make “first choice”, then recursively solve a smaller instance of same problem.
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without redundancy.

Dynamic Programming

- First example: Weighted Interval Scheduling
 - Binary first choice: $j \in O$ or $j \notin O$?
- Next time: rod-cutting or segmented least squares
 - First choice has n options