Divide and Conquer: Recipe

- Divide problem into several parts
- Solve each part recursively
- Combine solutions to sub-problems into overall solution

Comparison

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulate problem</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Design algorithm</td>
<td>easy</td>
<td>hard</td>
</tr>
<tr>
<td>Prove correctness</td>
<td>hard</td>
<td>easy</td>
</tr>
<tr>
<td>Analyze running time</td>
<td>easy</td>
<td>hard</td>
</tr>
</tbody>
</table>

Motivating Problem: Maximum Subsequence Sum (MSS)

- **Input:** array A of n numbers, e.g.

 $$A = [4, -3, 5, -2, 1, 2, 6, -2]$$

- **Find:** value of the largest subsequence sum

 (empty subsequence allowed and has sum zero)

- **MSS in example?** 11 (first 7 elements)

What is a simple algorithm for MSS?

Anyone remember HW2?

MSS(A)

1. Initialize all entries of $n \times n$ array B to zero
2. for $i = 1$ to n
 1. sum = 0
 2. for $j = i$ to n
 1. sum += $A[j]$
 2. $B[i, j] = $ sum
 end for
3. end for
4. Return maximum entry of $B[i, j]$

Running time? $O(n^2)$. Can we do better?
Divide-and-conquer for MSS

- Recursive solution for MSS
 - **Idea:**
 - Find MSS \(L \) in left half of array
 - Find MSS \(R \) in right half of array
 - Find MSS \(M \) for sequence that crosses the midpoint

\[
A = \frac{4, -3, 5}{-2, 6, -2}, \quad L = 6, \quad R = 8
\]

\[
M = \frac{11, 4, -3, 5}{-2, 2, 6, -2}
\]

- Return \(\max(L, R, M) \)

MSS(\(A, \) left, right)
if \(\text{left} == \text{right} \) then
return \(\max(A[\text{left}], 0) \)
end if

\[
\text{mid} = \lfloor \frac{\text{left} + \text{right}}{2} \rfloor
\]

\[
L = \text{MSS}(A, \text{left}, \text{mid})
\]

\[
R = \text{MSS}(A, \text{mid}+1, \text{right})
\]

Set \(\text{sum} = 0 \) and
for \(i = \text{mid} \) down to 1 do
\[
\text{sum} += A[i]
\]
\[
L' = \max(L', \text{sum})
\]
end for

Set \(\text{sum} = 0 \) and \(R' = 0 \)
for \(i = \text{mid}+1 \) to right do
\[
\text{sum} += A[i]
\]
\[
R' = \max(R', \text{sum})
\]
end for

\[
M = L' + R'
\]
return \(\max(L, R, M) \)

Running time?
- Let \(T(n) \) be running time of MSS on array of size \(n \)
- Two recursive calls on arrays of size \(n/2 \): \(2T(n/2) \)
- Work outside of recursive calls: \(O(n) \)
- Running time
\[
T(n) = 2T(n/2) + O(n)
\]

Recurrence

- Recurrence with convenient base case
 \[
 T(n) = 2T(n/2) + O(n)
 \]
 \[
 T(2) = O(1)
 \]
- How do we solve the recurrence to find a simple expression for \(T(n) \)?
 First, let’s use definition of Big-O:
 \[
 T(n) \leq 2T(n/2) + cn
 \]
 \[
 T(2) \leq c
 \]
- What next?

Solving a Recurrence

- **Idea 1:** “unroll” the recurrence
 \[
 T(n) \leq 2T(n/2) + cn
 \]
 \[
 \leq 2 \left[2T(n/4) + c(n/2) \right] + cn
 \]
 \[
 \leq 2 \left[2 \left(2T(n/8) + c(n/4) \right) + c(n/2) \right] + cn
 \]
- This will work, but can get messy in a hurry…

Solving a Recurrence

- **Idea 2:** recursion tree (same idea, different organization)
 - Board work
 - **Conclusion:** \(T(n) \leq cn \log n \)
Solving a Recurrence

- Idea 3: “guess and verify”
 - Guess solution
 - Prove by (strong) induction
 - Board work

A More General Recurrence

\[T(n) \leq q \cdot T(n/2) + cn \]

- What does the algorithm look like?
 - \(q \) recursive calls to itself on problems of half the size
 - \(O(n) \) work outside of the recursive calls
- Exercises: \(q = 1, q > 2 \)
- Useful fact (geometric sum): if \(r \neq 1 \) then
 \[
 1 + r + r^2 + \ldots + r^d = \frac{1 - r^{d+1}}{1 - r} = \frac{r^{d+1} - 1}{r - 1}
 \]

Summary

Useful general recurrence and its solutions:

\[T(n) \leq q \cdot T(n/2) + cn \]

1. \(q = 1 \): \(T(n) = O(n) \)
2. \(q = 2 \): \(T(n) = O(n \log n) \)
3. \(q > 2 \): \(T(n) = O(n \log_2 q) \)

Algorithms with these running times?

1. ???
2. MSS, Mergesort
3. Integer multiplication (next time)