MST

What to know:
- Definitions: spanning tree, MST, cut
- Cut property: lightest edge across any cut belongs to every MST
- Prim’s algorithm: maintain a set \(S \) of explored nodes. Add cheapest edge from \(S \) to \(V - S \). Repeat.
- Kruskal’s algorithm: consider edges in order of cost. Add edge if it does not create a cycle.

Greedy Algorithms

- Greedy algorithms are "short sighted" algorithms that take each step based on what looks good in the short term.
- **Example**: Kruskal’s Algorithm adds lightest edge that doesn’t complete a cycle when building an MST.
- **Example**: When maximizing the number of non-overlapping TV shows we always added the show that finished earliest out of the remaining shows.

Graph Algorithms: BFS and DFS Trees

- BFS from node \(s \):
 - Partitions nodes into layers \(L_0 = \{s\}, L_1, L_2, L_3 \ldots \)
 - \(L_i \) defined as neighbors of nodes in \(L_{i-1} \) that aren’t already in \(L_0 \cup L_1 \cup \ldots \cup L_{i-1} \).
 - \(L_i \) is set of nodes at distance exactly \(i \) from \(s \)
 - Returns tree \(T \): for any edge \((u, v)\) in graph, \(u \) and \(v \) are in same layer or adjacent layer
 - Can be used to test whether \(G \) is bipartite, find shortest path from \(s \) to \(t \)
- DFS from node \(s \)
 - Returns DFS tree \(T \) rooted at \(s \)
 - For any edge \((u, v)\), \(u \) is an ancestor of \(v \) in the tree or vice versa.
 - Both run in time \(O(m + n) \)
 - Both can be used to find connected components of graph, test whether there is a path from \(s \) to \(t \)

Related “Traversal” Algorithms

- Algorithms that grow a set \(S \) of explored nodes from starting node \(s \)
 - BFS (traversal): add all nodes \(v \) that are neighbors of some node \(u \in S \). Repeat.
 - Dijkstra (shortest paths): add node \(v \) with smallest value of \(d(u) + \ell(u, v) \) for some node \(u \) in \(S \), where \(d(u) \) is distance from \(s \) to \(u \). Repeat.
 - Prim (MST): add node \(v \) with smallest value of \(c(u, v) \) where \(u \in S \). Repeat.
Bipartite, Directed Graphs

- An undirected graph G is bipartite if its nodes can be colored red and blue such that no edge has two endpoints of the same color.
- G is bipartite if and only if it does not contain an odd cycle.
- G is bipartite if and only if, after running BFS from any node, there is no edge between two nodes in the same layer.
- A directed graph is acyclic (a DAG) if there is no directed cycle.
- There is no directed cycle if and only if there is a topological ordering.
- Can find a topological order using the fact that a DAG has a node with no incoming edges.

Asymptotic Analysis

Given two positive functions $f(n)$ and $g(n)$:

- $f(n)$ is $O(g(n))$
 - if and only if $\exists c \geq 0, n_0 \geq 0$ s.t. $f(n) \leq cg(n)$ for all $n \geq n_0$
- $f(n)$ is $\Omega(g(n))$
 - if and only if $\exists c \geq 0, n_0 \geq 0$ s.t. $f(n) \geq cg(n)$ for all $n \geq n_0$
- $f(n)$ is $\Theta(g(n))$
 - if and only if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$
- Know how to apply definitions, compare functions, use to analyze running time of algorithms

Stable Matching

- Colleges, students, preference lists, instability
- Have working knowledge of definitions and algorithm