Network Design Problem

- **Given**: an undirected graph $G = (V, E)$ with edge costs (weights) $c_e > 0$. Assume for now that all edge weights are distinct.
- **Find**: subset of edges $T \subseteq E$ such that (V, T) is connected and the total cost of edges in T is as small as possible.
- **Examples on board. Discuss applications.**
- **Call** $T \subseteq E$ a spanning tree if (V, T) is a tree (connected, no cycles).
- **Claim**: in a minimum-cost solution, T is a spanning tree.
- Therefore, we call this the **minimum spanning tree (MST)** problem.

Cuts

- A key to understanding MSTs is a concept called a cut.
- **Definition**: A cut in G is a partition of the nodes into two nonempty subsets $(S, V - S)$.
- **Definition**: Edge $e = (v, w)$ crosses cut $(S, V - S)$ if $v \in S$ and $w \in V - S$.

Proof of Cut Property

- Suppose T is a spanning tree that doesn’t include e. We’ll construct a different spanning tree T' such that $w(T') < w(T)$ and hence T can’t be the MST.
- Since T is a spanning tree, there’s a $u \rightarrow v$ path P in T. Since the path starts in S and ends up outside S, there must be an edge $e' = (u', v')$ on this path where $u' \in S, v' \notin S$.
- Let $T' = T - \{e'\} + \{e\}$. This is still connected, since any path in T that needed e' can be routed via e instead, and it has no cycles, so it is a spanning tree.
- But since e was the lightest edge between S and $V \setminus S$, $w(T') = w(T) - w(e') + w(e) \leq w(T) - w(e') + w(e') = w(T)$

Kruskal’s algorithm

- Armed with the cut property, how can we find a MST?
- Starting with an empty set of edges, which edge do you want to add first? How can you prove it is safe to add?
- What edge do you want to add next? How can you prove it is safe?
- Next?
- Where do you get stuck? How can you fix it?
- **Kruskal’s algorithm**: add edges in order of increasing weight, as long as they don’t cause a cycle.
Kruskal’s algorithm

Assume edges are numbered $e = 1, \ldots, m$
Sort edges by weight so $c_1 \leq c_2 \leq \ldots \leq c_m$
Initialize $T = \{\}$
for $e = 1$ to m
do
if adding e to T does not form a cycle then
$T = T \cup \{e\}$
end if
end for

Exercise: argue correctness (use cut property)

Kruskal’s algorithm proof

- Consider the partial spanning tree T just before edge $e = (u, v)$
- Let S be the connected component containing u
- Then e crosses the cut $(S, V - S)$, otherwise it would create a cycle when added to T
- No other edge crossing $(S, V - S)$ has been considered yet; it could have been added without creating a cycle, and would have connected S to $V - S$
- Therefore, e is the cheapest edge across $(S, V - S)$, so it belongs to every MST
- So, every edge added belongs to the MST
- The final output T is a spanning tree, because the algorithm will not stop until the graph is connected, and by design it creates no cycles
- Therefore, the output is a MST

Prim's Algorithm

- What if we want to grow a tree as a single connected component starting from some vertex s?
- Which edge should we add first? How can you prove it is safe?
- Which edge should we add next? How can you prove it is safe?
- Prim’s algorithm: Let S be the connected component containing s. Add the cheapest edge from S to $V \setminus S$.

Prim's Algorithm proof

- Consider the partial spanning tree T just before edge $e = (u, v)$ is added
- Let S be the connected component containing s
- By construction, e is the cheapest edge across the cut $(S, V - S)$
- Therefore, e belongs to every MST
- So, every edge added belongs to the MST
- The algorithm creates no cycles and does not stop until the graph is connected, therefore, the final output is a spanning tree
- The final output is a minimum-spanning tree

Remove Distinctness Assumption?

- Hack: break ties in weights by perturbing each edge weight by a tiny unique amount.
- Implementation: break ties in an arbitrary but consistent way (e.g., lexicographic order)
- This is correct. There is a slightly more principled way that requires a stronger cut property.
Implementation of Prim’s algorithm

Initialize $T = \{\}$
Initialize $S = \{s\}$

while T is not a spanning tree do
Let $e = (u, v)$ be the minimum-cost edge from S to $V - S$
$T = T \cup \{e\}$
$S = S \cup \{s\}$
end while

What does this remind you of?

Prim Implementation

Set $A = V$. Unattached nodes
Set $a(v) = \infty$ for all nodes. Attachment cost
Set $a(s) = 0$ Set edgeTo(s) = null. Attachment edge

while A not empty do
Nodes left to attach
Extract node $v \in A$ with smallest $a(v)$ value
Set $T = T \cup$ edgeTo(v)
for all edges (v, w) where $w \in A$ do
if $c(v, w) < a(w)$ then
$a(w) = c(v, w)$
edgeTo(w) = (v, w)
end if
end for
end while

Nearly identical to Dijkstra. Priority queue for $A \rightarrow O(m \log n)$

Kruskal Implementation?

Sort edges by weight so $c_1 \leq c_2 \leq \ldots \leq c_m$
Initialize $T = \{\}$
for $e = 1$ to m do
if adding $e = (u, v)$ to T does not form a cycle then
$T = T \cup \{e\}$
end if
end for

Ideas?
BFS to check if u and v in same connected component: $O(mn)$.
(Each BFS is $O(n)$: why?)
Can we do better?

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components of growing spanning tree. Should support:

- find(v): return name of set containing v
- Union(A, B): merge two sets

for $e = 1$ to m do
Let u and v be endpoints of e
if find(u) != find(v) then
Not in same component?
union(u, v) Merge components
end if
end for

Goal: union = $O(1)$, find = $O(\log n) \Rightarrow O(m \log n)$ overall

Union-Find Data Structure

Board work

Conclusion:
- Union is $O(1)$: update one pointer
- Find is $O(\log n)$: follow at most $\log_2(n)$ pointers to find representative of set