Scheduling to Minimize Lateness

- You have a very busy month: n assignments are due, with different deadlines

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>---</td>
</tr>
<tr>
<td>2:</td>
<td>---</td>
</tr>
<tr>
<td>3:</td>
<td>---</td>
</tr>
<tr>
<td>4:</td>
<td>---</td>
</tr>
</tbody>
</table>

- How should you schedule your time to “minimize lateness”?

Possible Greedy Approaches

- **Note**: it never hurts to schedule assignments consecutively with no “idle time” ⇒ schedule determined by order of assignments

- What order should we choose?
 - **Shortest Length**: ascending order of t_j.
 - **Earliest Deadline**: ascending order of d_j.
 - **Smallest Slack**: ascending order of $d_j - t_j$.

- Only earliest deadline first is optimal in all examples. Let’s prove it is always optimal.

Exchange Argument (False Start)

Assume jobs ordered by deadline $d_1 \leq d_2 \leq \ldots \leq d_n$, so the greedy ordering is simply

\[
A = 1, 2, \ldots, n
\]

Claim: A is optimal

Proof attempt: Suppose for contradiction that A is not optimal. Then, there is an optimal solution O with $O \neq A$

- Since $O \neq A$, there must be two jobs i and j that are out of order in O (e.g. $O = 1, 3, 2, 4$)
- Let’s swap i and j and show we get a better solution O'
 \[\implies O \text{ is not optimal}. \text{ Contradiction, so } A \text{ must be optimal.} \]

Problem? O' may still be optimal. Example.
Exchange Argument (Correct)

Suppose O optimal and $O \neq A$. Then we can modify O to get a new solution O' that is:

1. No worse than O
2. Closer to A in some measurable way

O(optimal) → O'(optimal) → O''(optimal) → ... → A(optimal)

High-level idea: gradually transform O into A without hurting solution, thus preserving optimality.

Concretely: show 1 and 2 above.

Exchange Argument for Scheduling to Minimize Lateness

Recall $A = 1, 2, \ldots, n$. For $S \neq A$, say there is an inversion if i comes before i but $j < i$. Claim: if S has an inversion, S has a consecutive inversion—one where i comes immediately before j.

Main result: let $O \neq A$ be an optimal schedule. Then O has a consecutive inversion i, j. We can swap i and j to get a new schedule O' such that:

1. Maximum lateness of O' is no bigger than maximum lateness of O
2. O' has one less inversion than O

Proof:

1. On board / next slide
2. Obvious

Wrap-Up

For any optimal $O \neq A$ we showed that we could transform O to O' such that:

1. O' is still optimal
2. O' has one less inversion than A

O(optimal) → O'(optimal) → O''(optimal) → ... → A(optimal)

Since there are at most $\binom{n}{2}$ inversions, by repeating the process a finite number of times we see that A is optimal.

Proof of 1

Swapping a consecutive inversion (i precedes j; $d_j \leq d_i$)

Consider the lateness ℓ'_k of each job k in O':

- If $k \notin \{i, j\}$, then lateness is unchanged: $\ell'_k = \ell_k$
- Job j finishes earlier in O' than O: $\ell'_j \leq \ell_j$
- Finish time of i in O' = finish time of j in O. Therefore
 \[\ell'_i = f'_i - d_i = f_j - d_i \leq f_j - d_j = \ell_j \]

Conclusion: $\max_k \ell'_k \leq \max_k \ell_k$. Therefore O' is still optimal.