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Greedy Algorithms

We are moving on to our study of algorithm design techniques:

▶ Greedy
▶ Divide-and-conquer
▶ Dynamic programming
▶ Network flow

Let’s jump right in, then characterize later what is means to be “greedy”.



Interval Scheduling
▶ In the 80s, you could only watch a given TV show at the time it was broadcast. You

want to watch the highest number of shows. Which subset of shows do you pick?



Formalizing Interval Scheduling

Let’s formalize the problem

▶ Shows 1, 2, . . . , n (more generally: requests to be fulfilled with a given resource)
▶ sj : start time of show j
▶ fj , also written f(j): finish time of show j

▶ Shows i and j are compatible if they don’t overlap.
▶ Set A of shows is compatible if all pairs in A are compatible.
▶ Set A of shows is optimal if it is compatible and no other compatible set is larger.

Goal: find optimal set of shows



Greedy Algorithms

▶ Main idea in greedy algorithms is to make one choice at a time in a “greedy”
fashion. (Choose the thing that looks best, never look back. . . )

▶ We will sort shows in some “natural order” and choose shows one by one if they’re
compatible with the shows already chosen.
Concretely:

R← set of all shows sorted by some property
A← {} ▷ selected shows
while R is not empty do

take first show i from R
add i to A
delete i and all overlapping shows from R



Clicker

R← set of all shows sorted by some property
A← {} ▷ selected shows
while R is not empty do

take first show i from R
add i to A
delete i and all overlapping shows from R

Suppose an algorithm includes a step that sorts an n items. Then its running time is:

A. O(n log n)
B. Ω(n log n)
C. Θ(n log n)
D. None of the above



What’s a “natural order” ?

▶ Start Time: Consider shows in ascending order of sj?
Not optimal in running example.

▶ Shortest Time: Consider shows in ascending order of fj − sj?
Not optimal in running example.

▶ Fewest Conflicts: Let cj be number of shows which overlap with show j. Consider
shows in ascending order of cj .
Optimal in running example. But not this one:
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. The most obvious rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request
i is for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution.
In a really bad case—say, when the finish time f (i) is the maximum
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. Such a situation
is depicted in Figure 4.1(a).

. This might suggest that we should start out by accepting the request that
requires the smallest interval of time—namely, the request for which
f (i) − s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in
the middle would prevent us from accepting the other two, which form
an optimal solution.

(a)

(b)

(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

▶ Finish Time: Consider shows in ascending order of fj .
We’ll show that this is always optimal!



Analysis

Let A be the set of shows returned by the algorithm when shows are sorted by finish
time. What do we need to prove?

▶ A is compatible (obvious property of algorithm)

▶ A is optimal

We will prove A is optimal by a “greedy stays ahead” argument



Ordering by Finish Time is Optimal: “Greedy Stays Ahead”

▶ Let A = i1, . . . , ik be the intervals selected by the greedy algorithm

▶ Let O = j1, . . . , jm be the intervals of some optimal solution O

▶ Assume both are sorted by finish time

A: |--i1--||---i2---| ... |---ik---|
O: |---j1---||---j2---| ... |----jm----|

▶ Could it be the case that m > k?

▶ Observation: f(i1) ≤ f(j1). The first show in A finishes no later than the first
show in O.

▶ Claim (“greedy stays ahead”): f(ir) ≤ f(jr) for all r = 1, 2, . . ..
The rth show in A finishes no later than the rth show in O.



“Greedy Stays Ahead”

▶ Claim: f(ir) ≤ f(jr) for all r = 1, 2, . . .

▶ Proof by induction on r

▶ Base case (r = 1): ir is the first choice of the greedy algorithm, which has the
earliest overall finish time, so f(ir) ≤ f(jr)



Induction Step

▶ Assume inductively that f(ir−1) ≤ f(jr−1) (r ≥ 2)

A: |--i1--| ... |---i(r-1)---|
O: |---j1---| ... |---j(r-1)---||----jr-----|

▶ jr is compatible with jr−1, so s(jr) ≥ f(jr−1)

▶ f(jr−1) ≥ f(ir−1) by inductive hypothesis

▶ Thus, s(jr) ≥ f(ir−1) and interval jr is in the set of available intervals when trying
to select ir

▶ Since we greedily select the earliest finish time, f(ir) ≤ f(jr), completing the
inductive step



Clicker

A: |--i1--||---i2---| ... |---ik---|
O: |---j1---||---j2---| ... |----jm----|

Recall that k is the number of intervals in the greedy solution and m is the number of
intervals in an optimal solution. What have we just proven?

A. f(ir) ≤ f(jr) for r = 1, 2, . . . , m
B. f(ir) ≤ f(jr) for r = 1, 2, . . . , k
C. The greedy algorithm is optimal.
D. None of the above.



Optimality

A: |--i1--||---i2---| ... |---ik---|
O: |---j1---||---j2---| |---jk---| ... |----jm----|

Can it be the case that k < m?

No. Because “greedy stays ahead”, intervals jk+1 through jm would be compatible with
the greedy solution, and the greedy algorithm would not terminate until adding them.



Running Time?

R← set of all shows sorted by finishing time
A← {}
while R is not empty do

take first show i from R
add i to A
delete i and all overlapping shows from R ▷ O(n)?

Can we make loop better than n2?



Running Time?

R← set of all shows sorted by finishing time
A← {}, end = 0 ▷ most recent end time
for show i from 1 to n do

if si ≥ end then
add i to A; end = fi ▷ O(1)

Θ(n log n) — dominated by sort



Algorithm Design—Greedy

Greedy: make a single “greedy” choice at a time, don’t look back.

Learning goals:

Greedy

Formulate problem
Design algorithm
Prove correctness ✓
Analyze running time
Specific algorithms Dijkstra, MST

Focus is on proof techniques. Next: another proof technique.


