Greedy Algorithms

We are moving on to our study of algorithm design techniques:

▶ Greedy
▶ Divide-and-conquer
▶ Dynamic programming
▶ Network flow

Let’s jump right in, then characterize later what is means to be “greedy”.

Interval Scheduling

▶ In the 80s, your only opportunity to watch a specific TV show was the time it was broadcast. Unfortunately, on a given night there might be multiple shows that you want to watch and some of the broadcast times overlap.

Example on board

▶ You want to watch the highest number of shows. Which subset of shows do you pick?
▶ Fine print: assume you like all shows equally, you only have one TV, and you need to watch shows in their entirety.

Greedy Algorithms

▶ Main idea in greedy algorithms is to make one choice at a time in a “greedy” fashion. (Choose the thing that looks best, never look back...)

▶ For shows, we will sort in some “natural order” and add shows to list one by one if they are compatible with the shows already chosen. Concretely:

$$R \leftarrow \text{be the set of all shows sorted by some property}$$
$$A \leftarrow \{\}$$

while R is not empty do
 Take first show \(i\) from \(R\)
 Add \(i\) to \(A\)
 Delete \(i\) and all overlapping shows from \(R\)
end while

Greedy Algorithm for Interval Scheduling

▶ What’s a “natural order”?

▶ Start Time: Consider shows in ascending order of \(s_j\).
▶ Finish Time: Consider shows in ascending order of \(f_j\).
▶ Shortest Time: Consider shows in ascending order of \(f_j - s_j\).
▶ Fewest Conflicts: Let \(c_j\) be number of shows which overlap with show \(j\). Consider shows in ascending order of \(c_j\).

▶ Sorting shows by finish time gives an optimal solution in examples. Let’s try to prove that it will always be optimal.
Analysis

Let A be the set of shows returned by the algorithm when shows are sorted by finish time. What do we need to prove?
- A is compatible (obvious property of algorithm)
- A is optimal

We will prove A is optimal by a “greedy stays ahead” argument

Proof on board.

Ordering by Finish Time is Optimal: “Greedy Stays Ahead”

- Let $A = i_1, \ldots, i_k$ be the intervals selected by the greedy algorithm
- Let $O = j_1, \ldots, j_m$ be the intervals of some optimal solution O
- Assume both are sorted by finish time
- A: |--i_1--||---i_2---| ... |---i_k---|
- O: |---j_1---||---j_2---| ... |----j_m----|
- Could it be the case that $m > k$?
- Observation: $f(i_1) \leq f(j_1)$. The first show in A finishes no later than the first show in O.
- Claim (“greedy stays ahead”): $f(i_r) \leq f(j_r)$ for all $r = 1, 2, \ldots$. The rth show in A finishes no later than the rth show in O.

Induction step:
- Assume inductively that $f(i_{r-1}) \leq f(j_{r-1})$
- Assume for sake of contradiction that $f(i_r) \geq f(j_r)$
- A: |--i_{r-1}--| ... |--i_{r-2}--| |--i_r---|
- O: |---j_{r-1}---| ... |--j_{r-2}---| ----j_r----|
- But it must be the case that j_r is compatible with the first $r - 1$ shows in A, because (using induction hypothesis)
- $s(j_r) \geq f(j_{r-1}) \geq f(i_{r-1})$
- Therefore, the greedy algorithm could have selected j_r instead of i_r. But j_r finishes sooner than i_r, which contradicts the algorithm.
- Therefore, it must be the case that $f(i_r) \leq f(j_r)$

Running Time?

- $R \leftarrow$ be the set of all shows sorted by some property
- $A \leftarrow \{\}$ selected shows
- while R is not empty do
 - Take first show i from R
 - Add i to A
 - Delete i and all overlapping shows from R
- end while
- $\Theta(n \log n)$ — dominated by sort

Running time analysis is usually easy for greedy algorithms

Algorithm Design—Greedy

Greedy: make a single "greedy" choice at a time, don’t look back.

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulate problem</td>
<td>?</td>
</tr>
<tr>
<td>Design algorithm</td>
<td>easy</td>
</tr>
<tr>
<td>Prove correctness</td>
<td>hard</td>
</tr>
<tr>
<td>Analyze running time</td>
<td>easy</td>
</tr>
</tbody>
</table>

Focus is on proof techniques. Next time: another proof technique.
Problem 2: Interval Partitioning

- Suppose you are in charge of UMass classrooms.
- There are n classes to be scheduled on a Monday where class j starts at time s_j and finishes at time f_j.
- Your goal is to schedule all the classes such that the minimum number of classrooms get used throughout the day. Obviously two classes that overlap can’t use the same room.

Possible Greedy Approaches

- Suppose the available classrooms are numbered 1, 2, 3, …
- We could run a greedy algorithm… consider the lectures in some natural order, and assign the lecture to the classroom with the smallest numbered that is available.
- Continued next time…