
COMPSCI 311 Introduction to Algorithms
Lecture 5: Graph Traversal

Dan Sheldon

University of Massachusetts Amherst

Graph Traversal

Thought experiment. World social graph.

▶ Is it connected?
▶ If not, how big is largest connected component?
▶ Is there a path between you and Shohei Otani?

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search
Explore outward from starting node s by distance. “Expanding wave”

2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most e�cient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you

Breadth-First Search: Layers

Explore outward from starting node s.

Define layer Li = all nodes at distance exactly i from s.

Layers

▶ L0 = {s}
▶ L1 = nodes with edge to L0
▶ L2 = nodes with an edge to L1 that don’t belong to L0 or L1
▶ . . .
▶ Li+1 = nodes with an edge to Li that don’t belong to any earlier layer.

Observation: There is a path from s to t if and only if t appears in some layer.

BFS Layers

MIT

LINC

CASE

CARN

HARV

BBNUTAH

SRI SDC RAND

UCLASTANUCSB

Layer 0

Layer 1

Layer 2

Layer 3

BFS Implementation

BFS(s):
mark s as "discovered"
L[0]← {s}, i← 0 ▷ Discover s
while L[i] is not empty do

L[i + 1]← empty list
for all nodes v in L[i] do

for all neighbors w of v do ▷ Explore v
if w is not marked "discovered" then

mark w as "discovered" ▷ Discover w
put w in L[i + 1]

i← i + 1

Running time? How many times does each line execute?
(For now, assume graph is connected)

BFS Running Time

BFS(s):
mark s as "discovered" ▷ 1
L[0]← {s}, i← 0 ▷ 1
while L[i] is not empty do ▷ ≤ n

L[i + 1]← empty list ▷ ≤ n
for all nodes v in L[i] do ▷ n

for all neighbors w of v do ▷ 2m
if w is not marked "discovered" then ▷ 2m

mark w as "discovered" ▷ n
put w in L[i + 1] ▷ n

i← i + 1 ▷ ≤ n

Running time: Θ(m + n)

BFS Running Time

BFS running time: Θ(m + n)

▶ Another way to think about it: “touch each node and edge” a constant number of
times

▶ Hidden assumption: can iterate over neighbors of v efficiently. . .

Graph Representation: Adjacency Lists
Each node keeps list of neighbors

9

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.

・Two representations of each edge.

・Space is Θ(m + n).

・Checking if (u, v) is an edge takes O(degree(u)) time.

・Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

▶ Each edge stored twice
▶ Space? Θ(m + n)
▶ Time to check if (u, v) is an edge? O(degree(u))

(degree = number of neighbors)
▶ Time to iterate over all neighbors of v? O(degree(u))

Clicker

Let q =
∑

v∈V degree(v) (this is the sum of degrees of all nodes in the graph)

Which one of the following is false?

A. q is twice the number of edges
B. q is n times the average degree
C. q is Θ(m + n) if m ≥ n
D. None of the above

BFS Tree
We can use BFS to make a tree. (blue: “tree edges”, dashed: “non-tree edges”)

MIT

LINC

CASE

CARN

HARV

BBNUTAH

SRI SDC RAND

UCLASTANUCSB

BFS Tree

BFS(s):
mark s as "discovered"
L[0]← {s}, i← 0
T ← empty
while L[i] is not empty do

L[i + 1]← empty list
for all nodes v in L[i] do

for all neighbors w of v do
if w is not marked "discovered" then

mark w as "discovered"
put w in L[i + 1]
put (v, w) in T

i← i + 1

BFS Tree

MIT

LINC

CASE

CARN

HARV

BBNUTAH

SRI SDC RAND

UCLASTANUCSB

Claim: let T be the tree discovered by BFS on graph G = (V, E), and let (x, y) be any
edge of G. Then the layer of x and y in T differ by at most 1.

BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph G = (V, E), and let (x, y) be any
edge of G. Then the layer of x and y in T differ by at most 1.

Proof

▶ Let (x, y) be an edge
▶ Assume x is discovered first and placed in Li

▶ Then y ∈ Lj for j ≥ i
▶ When neighbors of x are explored, y is either already in Li or Li+1, or is discovered

and added to Li+1

Clicker
MIT

LINC

CASE

CARN

HARV

BBNUTAH

SRI SDC RAND

UCLASTANUCSB

Suppose in BFS that the nodes in each layer are explored in a different order
(e.g. reverse). Which of the following are true?

A. The nodes that appear in each layer may change

B. The BFS tree may change

C. Both A and B

D. Neither A nor B

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently added node until you
have to backtrack.

1

2 3

4 5 8

6

7
1

2

3

5

4 6

7

8

Dotted edges: to already explored nodes

DFS: Recursive Implementation

DFS(u)
mark u as "explored"
for all edges (u, v) do

if v is not "explored" then
call DFS(v) recursively

DFS: Running Time

How to analyze if algorithm is recursive? Same: count executions of each line, across
all recursive calls

DFS(u)
mark u as "explored" ▷ n
for all edges (u, v) do ▷ 2m

if v is not "explored" then ▷ 2m
call DFS(v) recursively ▷ n

Running time: O(m + n) same as BFS

DFS Tree

T ← empty
DFS(u)

mark u as "explored"
for all edges (u, v) do

if v is not "explored" then
put (u, v) in T
call DFS(v) recursively

1

2

3

5

4 6

7

8

Claim: Non-tree edges lead to (indirect) ancestors

DFS: Non-tree edges lead to ancestors

Claim: Let T be the tree discovered by DFS, and let (x, y) be an edge of G that is not
in T . Then one of x or y is an ancestor of the other.

Proof:

▶ Let x be the first of the two nodes explored
▶ Is y explored at beginning of DFS(x)? No.
▶ At some point during DFS(x), we examine the edge (x, y). Is y explored then?

Yes, otherwise we would put (x, y) in T
▶ ⇒ y was explored during DFS(x)
▶ ⇒ y is a descendant of x

Generic Traversal Implementations

Generic approach: maintain set of explored nodes and
discovered nodes

▶ Explored = have seen this node and explored its outgoing edges

▶ Discovered = the “frontier”. Have seen the node, but not explored its outgoing
edges.

Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)
put s in A
while A is not empty do

take a node v from A
if v is not marked "explored" then

mark v "explored"
for each edge (v, w) incident to v do

put w in A ▷ w is discovered

BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)

Clicker

put s in A
while A is not empty do

take a node v from A
if v is not marked "explored" then

mark v "explored"
for each edge (v, w) incident to v do

put w in A ▷ w is discovered

Suppose we run this traversal code and every node is marked explored before it
terminates. Which of the following is false?

A. Every node is marked “explored” exactly once.
B. A single node could be put into A more than once.
C. If w ̸= s, the number of times that node w is put into A is degree(w).
D. It’s possible that there exist nodes x and y with no path from x to y.

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do
Traverse(s) ▷ Run BFS/DFS starting from s.
Extract connected component containing s

Running time? Still O(m + n)

▶ Traversal of each component takes time proportional to the numbers of nodes +
edges in that component

Advice: usually OK to assume graph is connected. State if you are doing so and why it
does not trivialize the problem.

Summary

▶ Graph traversal by BFS/DFS: basic algorithmic primitive used in many other
algorithms
▶ Is there a path from u to v?
▶ Find all connected components
▶ Produce trees with different properties, sometimes useful in algorithms

▶ Θ(m + n) time

▶ Different versions of general exploration strategy

