COMPSCI 311 Introduction to Algorithms Lecture 5: Graph Traversal

Dan Sheldon

University of Massachusetts Amherst

Thought experiment. World social graph.

- Is it connected?
- If not, how big is largest connected component?
- Is there a path between you and Shohei Otani?

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search

Explore outward from starting node s by distance. "Expanding wave"

Breadth-First Search: Layers

Explore outward from starting node s.

Define layer L_i = all nodes at distance exactly *i* from *s*.

Layers

Observation: There is a path from s to t if and only if t appears in some layer.

BFS Layers

BFS Implementation

```
BFS(s):
  mark s as "discovered"
  L[0] \leftarrow \{s\}, i \leftarrow 0
  while L[i] is not empty do
      L[i+1] \leftarrow \text{empty list}
      for all nodes v in L[i] do
           for all neighbors w of v do
              if w is not marked "discovered" then
                   mark w as "discovered"
                  put w in L[i+1]
      i \leftarrow i + 1
```

Running time? How many times does each line execute? (For now, assume graph is connected)

 \triangleright Discover s

 \triangleright Explore v

 \triangleright Discover w

BFS Running Time

BFS(s):	
mark s as "discovered"	⊳ 1
$L[0] \leftarrow \{s\}, i \leftarrow 0$	⊳ 1
while $L[i]$ is not empty do	$ hinspace \leq n$
$L[i+1] \leftarrow empty list$	$ hinspace \leq n$
for all nodes v in $L[i]$ do	$\triangleright n$
for all neighbors w of v do	$\triangleright 2m$
if w is not marked "discovered" then	$\triangleright 2m$
mark w as "discovered"	$\triangleright n$
put w in $L[i+1]$	$\triangleright n$
$i \leftarrow i+1$	$\triangleright \leq n$

Running time: $\Theta(m+n)$

BFS Running Time

BFS running time: $\Theta(m+n)$

- Another way to think about it: "touch each node and edge" a constant number of times
- \blacktriangleright Hidden assumption: can iterate over neighbors of v efficiently...

Graph Representation: Adjacency Lists

Each node keeps list of neighbors

- Each edge stored twice
- ► Space? $\Theta(m+n)$
- Time to check if (u, v) is an edge? O(degree(u)) (degree = number of neighbors)
- Time to iterate over all neighbors of v? O(degree(u))

Clicker

Let $q = \sum_{v \in V} \text{degree}(v)$ (this is the sum of degrees of all nodes in the graph) Which one of the following is false?

- A. q is twice the number of edges
- B. q is n times the average degree
- C. $q \text{ is } \Theta(m+n) \text{ if } m \geq n$
- D. None of the above

BFS Tree

We can use BFS to make a tree. (blue: "tree edges", dashed: "non-tree edges")

BFS Tree

```
BFS(s):
  mark s as "discovered"
  L[0] \leftarrow \{s\}, i \leftarrow 0
  T \leftarrow \mathsf{empty}
  while L[i] is not empty do
      L[i+1] \leftarrow \text{empty list}
      for all nodes v in L[i] do
           for all neighbors w of v do
               if w is not marked "discovered" then
                   mark w as "discovered"
                   put w in L[i+1]
                   put (v, w) in T
      i \leftarrow i + 1
```

BFS Tree

Claim: let T be the tree discovered by BFS on graph G = (V, E), and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Claim: let T be the tree discovered by BFS on graph G = (V, E), and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Proof

- \blacktriangleright Let (x, y) be an edge
- Assume x is discovered first and placed in L_i
- ▶ Then $y \in L_j$ for $j \ge i$
- ▶ When neighbors of x are explored, y is either already in L_i or L_{i+1} , or is discovered and added to L_{i+1}

Clicker

Suppose in BFS that the nodes in each layer are explored in a different order (e.g. reverse). Which of the following are true?

- A. The nodes that appear in each layer may change
- B. The BFS tree may change
- C. Both A and B
- D. Neither A nor B

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently added node until you have to backtrack.

Dotted edges: to already explored nodes

DFS: Recursive Implementation

 $\begin{aligned} \mathsf{DFS}(u) \\ & \mathsf{mark} \ u \text{ as "explored"} \\ & \mathsf{for all} \ \mathsf{edges} \ (u,v) \ \mathsf{do} \\ & \mathsf{if} \ v \text{ is not "explored" then} \\ & \mathsf{call} \ \mathsf{DFS}(v) \ \mathsf{recursively} \end{aligned}$

DFS: Running Time

How to analyze if algorithm is recursive? Same: count executions of each line, across *all* recursive calls

$\begin{array}{c|c} \mathsf{DFS}(u) & & & & & \\ \mathsf{mark} \ u \ \mathsf{as} \ "\mathsf{explored"} & & & & \triangleright \ n \\ \mathsf{for} \ \mathsf{all} \ \mathsf{edges} \ (u,v) \ \mathsf{do} & & & \triangleright \ 2m \\ & & & \mathsf{if} \ v \ \mathsf{is} \ \mathsf{not} \ "\mathsf{explored"} \ \mathsf{then} & & & \triangleright \ 2m \\ & & & & \mathsf{call} \ \mathsf{DFS}(v) \ \mathsf{recursively} & & & \triangleright \ n \end{array}$

Running time: O(m+n) same as BFS

DFS Tree

 $\begin{array}{l} T \leftarrow \mathsf{empty} \\ \mathsf{DFS}(u) \\ \mathsf{mark} \ u \ \mathsf{as} \ "\mathsf{explored"} \\ \mathsf{for} \ \mathsf{all} \ \mathsf{edges} \ (u,v) \ \mathsf{do} \\ \mathsf{if} \ v \ \mathsf{is} \ \mathsf{not} \ "\mathsf{explored"} \ \mathsf{then} \\ \mathsf{put} \ (u,v) \ \mathsf{in} \ T \\ \mathsf{call} \ \mathsf{DFS}(v) \ \mathsf{recursively} \end{array}$

Claim: Non-tree edges lead to (indirect) ancestors

DFS: Non-tree edges lead to ancestors

Claim: Let T be the tree discovered by DFS, and let (x, y) be an edge of G that is not in T. Then one of x or y is an ancestor of the other.

Proof:

- Let x be the first of the two nodes explored
- ls y explored at beginning of DFS(x)? No.
- At some point *during* DFS(x), we examine the edge (x, y). Is y explored then? Yes, otherwise we would put (x, y) in T
- ▶ ⇒ y was explored *during* DFS(x)
- $\blacktriangleright \Rightarrow y$ is a descendant of x

Generic Traversal Implementations

Generic approach: maintain set of explored nodes and discovered nodes

- Explored = have seen this node and explored its outgoing edges
- Discovered = the "frontier". Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

```
Let A = data structure of discovered nodes
Traverse(s)
  put s in A
  while A is not empty do
     take a node v from A
     if v is not marked "explored" then
         mark v "explored"
         for each edge (v, w) incident to v do
            put w in A
```

 $\triangleright w$ is discovered

```
BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)
```

Clicker

```
put s in A

while A is not empty do

take a node v from A

if v is not marked "explored" then

mark v "explored"

for each edge (v, w) incident to v do

put w in A
```

 $\triangleright w$ is discovered

Suppose we run this traversal code and every node is marked explored before it terminates. Which of the following is false?

- A. Every node is marked "explored" exactly once.
- B. A single node could be put into A more than once.
- C. If $w \neq s$, the number of times that node w is put into A is degree(w).
- D. It's possible that there exist nodes x and y with no path from x to y.

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do Traverse(s) \triangleright Run BFS/DFS starting from s. Extract connected component containing s

Running time? Still O(m+n)

Traversal of each component takes time proportional to the numbers of nodes + edges in *that* component

Advice: usually OK to assume graph is connected. State if you are doing so and why it does not trivialize the problem.

Summary

- Graph traversal by BFS/DFS: basic algorithmic primitive used in many other algorithms
 - ▶ Is there a path from u to v?
 - Find all connected components
 - Produce trees with different properties, sometimes useful in algorithms
- ▶ $\Theta(m+n)$ time
- Different versions of general exploration strategy