Big-O: Motivation

What is the running time of this algorithm? How many “primitive steps” are executed for an input of size \(n \)?

```java
sum = 0
for i = 1 to n
do
  for j = 1 to n
do
  end for
end for
```

The running time is \(T(n) = 2n^2 + n + 1 \).

For large values of \(n \), \(T(n) \) is less than some multiple of \(n^2 \). We say \(T(n) \) is \(O(n^2) \) and we typically don’t care about other terms.

Big-O: What it Is and Isn’t

- **Is**: a way to categorize growth rate of (non-negative) functions relative to other functions.
- **Is not**: “the running time of my function”

Correct usage:
- The running time of my algorithm in input of size \(n \) is \(T(n) \). Statement about algorithm only.
- \(T(n) \) is \(O(n^3) \). Statement about the function \(T(n) \) only.
- The running time of my algorithm is \(O(n^3) \). About algorithm and \(T(n) \).

Incorrect usage:
- \(O(n^3) \) is the running time of my algorithm

Algorithm design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm’s running time

Big-O: Formal Definition

Definition: The function \(T(n) \) is \(O(f(n)) \) if there exist constants \(c \geq 0 \) and \(n_0 \geq 0 \) such that

\[
T(n) \leq cf(n) \quad \text{for all} \quad n \geq n_0
\]

We say that \(f \) is an asymptotic upper bound for \(T \).

Examples:
- If \(T(n) = n^2 + 100000n \) then \(T(n) \) is \(O(n^2) \)
- If \(T(n) = n^3 + n \log n \) then \(T(n) \) is \(O(n^3) \)
- If \(T(n) = 2\sqrt{n} \log n \) then \(T(n) \) is \(O(n) \)
- If \(T(n) = n^3 \) then \(T(n) \) is \(O(n^3) \) but it’s also \(O(n^3), O(n^5) \) etc.

Properties of Big-O Notation

Claim (Transitivity): If \(f \) is \(O(g) \) and \(g \) is \(O(h) \), then \(f \) is \(O(h) \).

Proof: we know from the definition that

\[
\begin{align*}
 f(n) &\leq cg(n) \quad \text{for all} \quad n \geq n_0 \\
 g(n) &\leq ch(n) \quad \text{for all} \quad n \geq n'_0
\end{align*}
\]

Therefore

\[
\begin{align*}
 f(n) &\leq cg(n) \\
 &\leq c(c'h(n)) \quad \text{if} \quad n \geq n_0 \quad \text{and} \quad n \geq n'_0 \\
 &\leq c^{c'}h(n) \quad \text{if} \quad n \geq \max(n_0, n'_0)
\end{align*}
\]

Know how to do proofs using Big-O definition.
Properties of Big-O Notation

Claims (Additivity):
- If \(f \) is \(O(h) \) and \(g \) is \(O(h) \), then \(f + g \) is \(O(h) \).
- If \(f_1, f_2, \ldots, f_k \) are each \(O(h) \), then \(f_1 + f_2 + \ldots + f_k \) is \(O(h) \).
- If \(f \) is \(O(g) \), then \(f + g \) is \(O(g) \).

We’ll go through a couple of examples...

Other Useful Facts: Log vs. Poly vs. Exp

Fact: \(\log_b(n) \) is \(O(n^d) \) for all \(b \) and \(d \)

All polynomials grow faster than logarithm of any base

Fact: \(n^d \) is \(O(r^n) \) when \(r > 1 \)

Exponential functions grow faster than polynomials

Big-O sorting

Which grows faster?

\[
\begin{align*}
(n \log n)^3 & \text{ vs. } n^{4/3} \\
(\log n)^3 & \text{ vs. } n^{1/3} \\
\log n & \text{ vs. } n^{1/9}
\end{align*}
\]

- We know \(\log n \) is \(O(n^d) \) for all \(d \)
- \(\Rightarrow \) \(\log n \) is \(O(n^{1/9}) \)
- \(\Rightarrow \) \(n(\log n)^3 \) is \(O(n^{4/3}) \)

Apply transformations (monotone, invertible) to both functions. Try taking log.

Consequences of Additivity

- OK to drop lower order terms. E.g., if
 \[
 f(n) = 4.1n^3 + 23n + n \log n
 \]
 then \(f(n) \) is \(O(n^3) \)
- Polynomials: Only highest degree term matters. E.g., if
 \[
 f(n) = a_0 + a_1n + a_2n^2 + \ldots + a_dn^d, \quad a_d > 0
 \]
 then \(f(n) \) is \(O(n^d) \)

Logarithm review

Definition: \(\log_b(a) \) is the unique number \(c \) such that \(b^c = a \)

Informally: the number of times you can divide \(a \) into \(b \) parts until each part has size one

Properties:
- Log of product \(\rightarrow \) sum of logs
 \[
 \log(xy) = \log x + \log y
 \]
- \(\log_b(x^k) = k \log_b x \)

\(\log_b(\cdot) \) is inverse of \(b^{(\cdot)} \)

- \(\log_b(b^n) = n \)
- \(b^{\log_b(n)} = n \)

When using big-O, it’s OK not to specify base. Assume \(\log_2 \) if not specified.

Big-Ω Motivation

Algorithm \(\text{foo} \)

\[
\begin{align*}
\text{for } i=1 \text{ to } n & \text{ do }
\text{for } j=1 \text{ to } n & \text{ do }
\text{do something...}
\text{end for}
\text{end for}
\text{end for}
\end{align*}
\]

Fact: run time is \(O(n^3) \)

What is wrong?

Algorithm \(\text{bar} \)

\[
\begin{align*}
\text{for } i=1 \text{ to } n & \text{ do }
\text{for } j=1 \text{ to } n & \text{ do }
\text{do something else.}
\text{end for}
\text{end for}
\text{end for}
\end{align*}
\]

Fact: run time is \(O(n^3) \)

Conclusion: \(\text{foo} \) and \(\text{bar} \) have the same asymptotic running time.
More Big-Ω Motivation

Algorithm sum-product
sum = 0
for i = 1 to n do
 for j = i to n do
 sum += A[i]*A[j]
 end for
end for

What is the running time of sum-product?
Easy to see it is \(O(n^2) \). Could it be better? \(O(n) \)?

Big-Ω

Informally: \(T \) grows at least as fast as \(f \)

Definition: The function \(T(n) \) is \(\Omega(f(n)) \) if there exist constants \(c \geq 0 \) and \(n_0 \geq 0 \) such that
\[
T(n) \geq cf(n) \quad \text{for all } n \geq n_0
\]
\(f \) is an asymptotic lower bound for \(T \)

Exercise review

Hard way
- Count exactly how many times the loop executes
 \[
 1 + 2 + \ldots + n = \frac{n(n + 1)}{2} = \Omega(n^2)
 \]

Easy way
- Ignore all loop executions where \(i > n/2 \) or \(j < n/2 \)
- The inner statement executes at least \((n/2)^2 = \Omega(n^2) \) times

Big-Θ example

How do we correctly compare the running time of these algorithms?

Algorithm foo
for i = 1 to n do
 for j = 1 to n do
 do something...
 end for
end for

Algorithm bar
for i = 1 to n do
 for j = 1 to n do
 for k = 1 to n do
 do something else..
 end for
 end for
end for

Answer: foo is \(\Theta(n^2) \) and bar is \(\Theta(n^3) \). They do not have the same asymptotic running time.
Additivity Revisited

Suppose \(f \) and \(g \) are two (non-negative) functions and \(f = O(g) \)

Old version: Then \(f + g = O(g) \)
New version: Then \(f + g = \Theta(g) \)

Example:
\[
\frac{n^2}{g} + 42n + n \log n \leq f \quad \text{is} \quad \Theta(n^2)
\]