
CMPSCI 311: Introduction to Algorithms
Second Midterm Practice Exam — SOLUTIONS

November 17, 2016.

Name: ID:

Instructions:

• Answer the questions directly on the exam pages.

• Show all your work for each question. Providing more detail including comments and expla-
nations can help with assignment of partial credit.

• If you need extra space, use the back of a page.

• No books, notes, calculators or other electronic devices are allowed. Any cheating will result
in a grade of 0.

• If you have questions during the exam, raise your hand.

• Hint: To make sure you get as many points as possible, remember that it is often possible
to answer later parts of a question without being able to answer earlier parts of a question.
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Question 1. (10 points) Indicate whether each of the following statements is TRUE or
FALSE. No justification required.

1.1 (2 points): In any max flow in any graph, the flow along every edge equals the capacity.

Solution: FALSE. For example, consider a graph with nodes {s, a, b, c, t} with edges

(s, a), (s, b), (a, c), (b, c), (c, t)

each of capacity one.

1.2 (2 points): Given a bipartite graph, the maximum matching can be found in polynomial time.

Solution: TRUE. Finding the maximum matrching in a bipartite graph is a straightforward
application of max-flow, which can be solved in polynomial time.

1.3 (2 points): The nodes of a bipartite graph can always be colored with two colors such that
endpoints of each edge get different colors.

Solution: TRUE. A graph is bipartite iff it is 2-colorable.

1.4 (2 points): If G is a graph with negative edge weights, the shortest path from s to t has at
most n− 1 edges.

Solution: FALSE. This is true only if G has no cycles whose total weight is negative.

1.5 (2 points): The Subset Sum problem can be solved in polynomial time by dynamic programming.

Solution: FALSE. The Subset Sum problem can be solved in time Θ(nW ) where n is the number
of items and W is the capacity. But W can be exponential in n, so this is only pseudo-polynomial
time, not polynomial.
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Question 2. (10 points) In the first two parts of this question we consider the following
directed, capacitated graph G where the first number on an edge indicates the capacity of that
edge and the second number on an edge indicates the current flow on that edge.
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2.1 (6 points): Let (A,B) be an s-t cut where A = {s, a} and B = {b, t}.

1. What is the capacity of the cut? 4

2. What is the flow across the cut? 2

3. What is the flow out of s? 2

4. What is the capacity of the minimum cut? 3

5. Draw the residual graph corresponding to the above flow:
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2.2 (2 points): What is the value of the maximum flow from s to t?

Solution: 3. This can be achieved by saturating every edge except from the edge (b, a) on which
we place flow 1.

2.3 (2 points): TRUE or FALSE? Suppose (A,B) is a minimum capacity s-t cut in a flow network
G, and let e be an edge from A to B. Suppose the capacity on edge e is doubled. Then the value of
the maximum flow in G necessarily increases.

Solution: FALSE. There could be another minimum cut. For example, consider the graph with
edges (s, a), (a, t), each of capacity one. The maximum flow value is one. The cut ({s}, {a, t}) is a
minimum cut, but if we double the capacity of the edge (s, a), which crosses this cut, the maximum
flow value remains one.
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Question 3. (12 points) Suppose you want to open some coffee shops along one side of a
street. The possible locations are labeled 1, 2, . . . , n in that order and you may open a coffee shop
at any subset of these locations subject to the constraint that no two coffee shops are adjacent.
For example, if n = 5 then the set of locations {1, 3, 5} is allowed but {1, 2, 4} is not. If you open a
coffee shop at location i, you earn profit pi > 0 and if you open coffee shops at a set S of locations,
your total profit is

∑
i∈S pi. You want to find the set of locations that maximizes your total profit.

3.1 (2 points): Your friend suggests a greedy algorithm: consider locations in order of decreasing
profit and add the next location unless you’ve already added an adjacent location. Give an example
with n = 3 and p1, p2, p3 all different where this approach doesn’t maximize your total profit.

p1 = 2 p2 = 4 p3 = 3

Solution: If these were the profits then the greedy algorithm would only open a shop at location
2 whereas it would be more profitable to open shops at locations 1 and 3.

3.2 (2 points): Another friend suggests that considering opening coffee shops at all even locations
or opening coffee shops at all odd locations and picking whichever gives most profit will result in
maximizing your total profit. Give an example with n = 4 where this is not true.

p1 = 10 p2 = 2 p3 = 1 p4 = 11

Solution: If these were the profits then the odd locations would give profit 10 + 1 and the even
locations would give profit 2 + 11. However it would be better to open locations 1 and 4 and get
profit 10 + 11.

3.3 (2 points): Let M [i] be the max total profit you can earn if you are only allowed to choose
locations in the set {1, 2, . . . , i} subject to the constraint that no two are adjacent. If you have
already computed M [1], . . . ,M [i− 1], how can you directly compute M [i]?

M [i] = max(M [i− 1],M [i− 2] + pi)

3.4 (4 points): Write pseudo-code for an efficient dynamic programing algorithm that finds the
max total profit. What is the running time of your algorithm? You don’t need to prove correctness.

Solution: The running time is O(n) and the pseudo-code is:

1. Set M [0] = 0 and M [1] = p1

2. For i = 2 to n: M [i] = max(M [i− 1],M [i− 2] + pi)

3. Return M [n]

3.5 (2 points): Extra Credit: How could you use your algorithm if the street was circular and
this meant that location 1 and location n were neighboring?
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Solution: If 1 and n are neighboring, we can’t pick both locations. So solve the problem restricted
to locations {1, 2, . . . , n − 1} and restricted to locations {2, 3, . . . , n}. Return whichever solution
yields the most profit.
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Question 4. (10 points) Let T = (V,E) be a balanced binary tree with n = 2k − 1 nodes
including a root named r. Suppose every node v ∈ V has an associated weight w(v) that can be
either positive or negative. We say T ′ = (V ′, E′) is a rooted subtree of T if

1. V ′ ⊆ V and E′ ⊆ E.

2. r ∈ V ′ and whenever u is a node in T ′ then the parent of u is also in V ′.

3. Whenever u, v ∈ V ′ and (u, v) in an edge of T then (u, v) is an edge of T ′.

We say the weight of T ′ is
∑

v∈V ′ w(v).

4.1 (2 points): If n = 3, how many rooted subtrees does T have?

Solution: If n = 3 there are 4 rooted subtrees, so T (3) = 4 (root, root+left, root+right, all
three).

4.2 (2 points): Solve the recurrence f(n) ≤ 2f(n/2)+c and f(1) = c where c is a positive constant.

Solution: The recurrence solves to f(n) = O(n). Unraveling the recurrence gives,

log2∑
i=0

2ic ≤ 2c× 2log2 n = 2cn

Or you can count how much work is done per edge in the tree, which is O(1) per edge, but there
are n edges.

4.3 (6 points): Design and analyze an efficient algorithm for finding the rooted subtree of maximum
weight. Remember to explain why your algorithm is correct and give the running time.

Solution: The algorithm is by divide and conquer. Find the rooted subtree of maximum weight
on the left and right and then we can combine in O(1) time as follows. Take max of w(r) (the weight
of the root), w(r) + bestL (weight of the root plus best rooted subtree on the left), w(r) + bestR
(weight of the root plus best rooted subtree on the left), and w(r) + bestL + bestR (weight of the
root plus best rooted subtree on both sides). You should also return a representation of the subtree,
but building this subtree requires O(1) operations given the subtrees that achieve bestL and bestR.
The running time is given by the recurrence in the previous part, which solves to O(n).
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Question 5. (10 points) Here we consider finding the length of the shortest path between
all pairs of nodes in an undirected, weighted graph G. For simplicity, assume that the n nodes are
labeled 1, 2, . . . , n, that the weight wij of any edge e = (i, j) is positive and that there is an edge
between every pair of nodes. In this question, the goal is to solve this via dynamic programming.
Note that the algorithm you will develop is not the Bellman-Ford algorithm.

5.1 (2 points): Let D[i, j, k] be the length of the shortest path from node i to node j in which the
intermediate nodes on the path are all in the set {1, 2, . . . , k}. Note that D[i, i, k] = 0 for all i and
k and that D[i, j, 0] = wij for all i 6= j. A formula for D[i, j, k] with two missing arguments is:

D[i, j, k] = min
(
D[i, j, k − 1], D[i, k, k − 1] + D[k, j, k − 1]

)
when k ≥ 0. Fill in the two missing arguments.

Solution: The intuition is that the shortest path from i to j that may only use nodes {1, 2, . . . , k}
as internal nodes, either goes via node k (in which case it has length D[i, k, k − 1] + D[k, j, k − 1])
or it doesn’t go via node k (in which it has length D[i, j, k − 1]).

5.2 (4 points): Write pseudo-code for an efficient dynamic programming (using the above formula)
to compute the shortest path between every pair of nodes. Hint: You need to specify how each
D[i, j, k] is computed, the order in which they are computed, and the final output.

Solution:

1. For all 1 ≤ i, k ≤ n: set D[i, i, k] = 0.

2. For all 1 ≤ i, j ≤ n, i 6= j: set D[i, j, 0] = wij .

3. For k = 1 to n:

(a) For all 1 ≤ i, j ≤ n, i 6= j: set D[i, j, k] = min
(
D[i, j, k−1], D[i, k, k−1]+D[k, j, k − 1]

)
4. For all 1 ≤ i < j ≤ n: Output D[i, j, n] as the distance between i and j

5.3 (2 points): What is the running time of your algorithm? Justify your answer.

Solution: O(n3) since all lines get run O(n2) times except 3a which gets run O(n3) times.

7



8


