You make work in groups, but you must write solutions yourself. List collaborators on your submission.

If you are asked to design an algorithm, please provide: (a) the pseudocode or a precise English description of the algorithm, (b) an explanation of the intuition for the algorithm, (c) a proof of correctness, (d) the running time of your algorithm and (e) justification for your running time analysis.

Submission instructions. This assignment is due by 8:00pm on Friday, March 10 in Gradescope (as a pdf file). Please review the course policy about Gradescope submissions on the course website.

NOTE: Before doing problems 2 and 3, read about the Cycle Property starting on the lower half of page 147 in the book. You will need to use the Cycle Property in both problems.

1. (10 points) Connectivity in Weighted Graphs. Let $G = (V, E, W)$ be a connected weighted graph where each edge e has an associated non-negative weight $w(e)$. We call a subset of edges $F \subseteq E$ unseparating if the graph $G' = (V, E \setminus F)$ is connected. This means that if you remove all of the edges F from the original edge set, this new graph is still connected. For a set of edges $E' \subseteq E$ the weight of the set is just the sum of the weights of the individual edges that is $w(E') = \sum_{e \in E'} w(e)$. Give a polynomial time algorithm to find the unseparating set with maximum weight.

2. (20 points) K&T Chapter 4, Exercise 9. This problem explores a variation of the network design problem: designing a spanning network for which the most expensive edge is as cheap as possible. Specifically, let $G = (V, E)$ be a connected graph with n vertices, m edges, and positive edge costs that you may assume are all distinct. Let $T = (V, E')$ be a spanning tree of G; we define the bottleneck edge of T to be the edge of T with the greatest cost. A spanning tree T of G is a minimum-bottleneck spanning tree if there is no spanning tree T' of G with a cheaper bottleneck edge.

(a) Is every minimum-bottleneck tree of G a minimum spanning tree of G? Prove or give a counterexample.

(b) Is every minimum spanning tree of G a minimum-bottleneck tree of G? Prove or give a counterexample.

3. (20 points) K&T Chapter 4, Exercise 10. (minor variation in part (b))

Let $G = (V, E)$ be an (undirected) graph with costs $c_e \geq 0$ on the edges $e \in E$. Assume you are given a minimum-cost spanning tree T in G. Now assume that a new edge is added to G, connecting two nodes v and w with cost c. You may assume that edge costs are distinct.

(a) Give an efficient algorithm to test if T remains the minimum-cost spanning tree with the new edge added to G (but not to the tree T). Make your algorithm run in time $O(|E|)$. Can you do it in $O(|V|)$ time? Please note any assumptions you make about what data structure is used to represent the tree T and the graph G.

(b) Suppose T is no longer the minimum-cost spanning tree. Give a linear-time algorithm (time $O(|E|)$) to update the tree T to a lower cost spanning tree.

4. (0 points) How long did it take you to complete this assignment?