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Announcements

I HW 1 and 2 back now

I HW 3 assigned today, due next Thursday

I Midterm. . . stay posted

I Blog posts are great!

Plan for today

I Matching markets

I Review
I Market-clearing prices

Review

I Perfect matching
I Constricted set

Explain to a partner

Perfect Matching
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(b) A Perfect Matching

Figure 10.1: (a) An example of a bipartite graph. (b) A perfect matching in this graph,
indicated via the dark edges.

based on preferences, and these preferences will be expressed in network form, but there is

no explicit buying, selling, or price-setting. This first setting will also be a crucial component

of the more complex ones that follow.

Bipartite Graphs. The model we start with is called the bipartite matching problem, and

we can motivate it via the following scenario. Suppose that the administrators of a college

dormitory are assigning rooms to returning students for a new academic year; each room

is designed for a single student, and each student is asked to list several acceptable options

for the room they’d like to get. Students can have di↵erent preferences over rooms; some

people might want larger rooms, quieter rooms, sunnier rooms, and so forth — and so the

lists provided by the students may overlap in complex ways.

We can model the lists provided by the students using a graph, as follows. There is a

node for each student, a node for each room, and an edge connecting a student to a room if

the student has listed the room as an acceptable option. Figure 10.1(a) shows an example

with five students and five rooms (indicating, for instance, that the student named Vikram

has listed each of Rooms 1, 2, and 3 as acceptable options, while the student named Wendy

only listed Room 1).

This type of graph is bipartite, an important property that we saw earlier, in a di↵erent

Perfect matching: each node L assigned to a
single node on the R to which it is connected
by an edge

I Students / rooms
I Baristas / shifts
I Classes / rooms
I Planes / gates

Constricted Set
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(a) Bipartite graph with no perfect
matching
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(b) A constricted set demonstrating
there is no perfect matching

Figure 10.2: (a) A bipartite graph with no perfect matching. (b) A constricted set demon-
strating there is no perfect matching.

and Xin, taken together, has collectively provided only two options for rooms that would

be acceptable to any of them. With three people and only two acceptable rooms, there is

clearly no way to construct a perfect matching — one of these three people would have to

get an option they didn’t want in any assignment of rooms.

We call the set of three students in this example a constricted set, since their edges to

the other side of the bipartite graph “constrict” the formation of a perfect matching. This

example points to a general phenomenon, which we can make precise by defining in general

what it means for a set to be constricted, as follows. First, for any set of nodes S on the

right-hand side of a bipartite graph, we say that a node on the left-hand side is a neighbor

of S if it has an edge to some node in S. We define the neighbor set of S, denoted N(S), to

be the collection of all neighbors of S. Finally, we say that a set S on the right-hand side is

constricted if S is strictly larger than N(S) — that is, S contains strictly more nodes than

N(S) does.

Any time there’s a constricted set S in a bipartite graph, it immediately shows that there

can be no perfect matching: each node in S would have to be matched to a di↵erent node

in N(S), but there are more nodes in S than there are in N(S), so this is not possible.

S = set of nodes on the right
N(S) = set of left nodes with an edge to a
node in S

S is constricted if N(S) is smaller than S



Matching Theorem (König 1931 / Hall 1935)

Matching Theorem: if a bipartite graph has no perfect matching,
then it must contain a constricted set.

Valuations
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Figure 10.3: (a) A set of valuations. Each person’s valuations for the objects appears as a
list next to them. (b) An optimal assignment with respect to these valuations.

So it’s fairly easy to see that constricted sets form one kind of obstacle to the presence of

perfect matchings. What’s also true, though far from obvious, is that constricted sets are in

fact the only kind of obstacle. This is the crux of the following fact, known as the Matching

Theorem.

Matching Theorem: If a bipartite graph (with equal numbers of nodes on the left

and right) has no perfect matching, then it must contain a constricted set.

The Matching Theorem was independently discovered by Denes König in 1931 and Phillip

Hall in 1935 [280]. Without the theorem, one might have imagined that a bipartite graph

could fail to have a perfect matching for all sorts of reasons, some of them perhaps even too

complicated to explain; but what the theorem says is that the simple notion of a constricted

set is in fact the only obstacle to having a perfect matching. For our purposes in this chapter,

we will only need to use the fact that the Matching Theorem is true, without having to go

into the details of its proof. However, its proof is elegant as well, and we describe a proof of

the theorem in Section 10.6 at the end of this chapter.

One way to think about the Matching Theorem, using our example of students and

rooms, is as follows. After the students submit their lists of acceptable rooms, it’s easy for

the dormitory administrators to explain to the students what happened, regardless of the

outcome. Either they can announce the perfect matching giving the assignment of students

to rooms, or they can explain that no assignment is possible by indicating a set of students

who collectively gave too small a set of acceptable options. This latter case is a constricted

set.

Valuations
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Figure 10.3: (a) A set of valuations. Each person’s valuations for the objects appears as a
list next to them. (b) An optimal assignment with respect to these valuations.

So it’s fairly easy to see that constricted sets form one kind of obstacle to the presence of

perfect matchings. What’s also true, though far from obvious, is that constricted sets are in

fact the only kind of obstacle. This is the crux of the following fact, known as the Matching

Theorem.

Matching Theorem: If a bipartite graph (with equal numbers of nodes on the left

and right) has no perfect matching, then it must contain a constricted set.

The Matching Theorem was independently discovered by Denes König in 1931 and Phillip

Hall in 1935 [280]. Without the theorem, one might have imagined that a bipartite graph

could fail to have a perfect matching for all sorts of reasons, some of them perhaps even too

complicated to explain; but what the theorem says is that the simple notion of a constricted

set is in fact the only obstacle to having a perfect matching. For our purposes in this chapter,

we will only need to use the fact that the Matching Theorem is true, without having to go

into the details of its proof. However, its proof is elegant as well, and we describe a proof of

the theorem in Section 10.6 at the end of this chapter.

One way to think about the Matching Theorem, using our example of students and

rooms, is as follows. After the students submit their lists of acceptable rooms, it’s easy for

the dormitory administrators to explain to the students what happened, regardless of the

outcome. Either they can announce the perfect matching giving the assignment of students

to rooms, or they can explain that no assignment is possible by indicating a set of students

who collectively gave too small a set of acceptable options. This latter case is a constricted

set.

Value 12 + 6 + 5 = 23

Optimal Assignment
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So it’s fairly easy to see that constricted sets form one kind of obstacle to the presence of

perfect matchings. What’s also true, though far from obvious, is that constricted sets are in

fact the only kind of obstacle. This is the crux of the following fact, known as the Matching

Theorem.

Matching Theorem: If a bipartite graph (with equal numbers of nodes on the left

and right) has no perfect matching, then it must contain a constricted set.

The Matching Theorem was independently discovered by Denes König in 1931 and Phillip

Hall in 1935 [280]. Without the theorem, one might have imagined that a bipartite graph

could fail to have a perfect matching for all sorts of reasons, some of them perhaps even too

complicated to explain; but what the theorem says is that the simple notion of a constricted

set is in fact the only obstacle to having a perfect matching. For our purposes in this chapter,

we will only need to use the fact that the Matching Theorem is true, without having to go

into the details of its proof. However, its proof is elegant as well, and we describe a proof of

the theorem in Section 10.6 at the end of this chapter.

One way to think about the Matching Theorem, using our example of students and

rooms, is as follows. After the students submit their lists of acceptable rooms, it’s easy for

the dormitory administrators to explain to the students what happened, regardless of the

outcome. Either they can announce the perfect matching giving the assignment of students

to rooms, or they can explain that no assignment is possible by indicating a set of students

who collectively gave too small a set of acceptable options. This latter case is a constricted

set.

Total valuation of an assignment:
sum of each individual’s valuation

Optimal assignment:
assignment that maximizes total
valuation

Is this assignment optimal? Yes.

Do people get most preferred
rooms? No.

Prices and Payoffs

Introduce prices as a mechanism to resolve contention

Setup on board

I Sellers
I Prices
I Buyers
I Valuations
I Payoff

Preferred-sellers

Definitions

I Say that i is a preferred seller of j if buying from i maximizes
j’s payoff

I Preferred-seller graph: graph with an edge form each buyer to
all preferred sellers

Examples on board

Market-clearing prices

Defintion: A set of prices is market-clearing if there is a perfect
matching in the preferred seller graph (can sell all goods using
preferred sellers).

Questions

I Can we always find market-clearing prices? (yes)
I What properties do they have? (optimality!)



Optimality of Market-Clearing Prices

Claim: for any set of market-clearing prices, a perfect matching in
the preferred-seller graph is an optimal assignment of sellers to
buyers (highest possible total valuation)

Proof on board

Existence of Market-Clearning Prices

Claim: for any set of buyer valuations, there is a set of
market-clearing prices.

Proof by algorithm!

Algorithm to find Market-Clearing Prices

Start with all prices equal to zero, then adjust the prices in a
sequence of rounds.

In each round, do the following:

I Construct preferred-seller graph
I If there is a perfect matching, done
I Otherwise, find a constricted set S of buyers, with neighbors

N(S)
I Each seller in N(S) raises price by one
I Reduce all prices by same amount until smallest prices is zero (if

needed)

Execute the algorithm on the board

Does this always work?

Clearly, if the algorithm terminates, it produces a set of
market-clearing prices?

But can it go on forever?

We will now prove that it cannot. proof on board


