
CS 103: Lecture 2 Strong and Weak Ties Dan Sheldon September 15, 2015	 Plan for today Graph theory Review definitions (exercise w/ partner) Thought experiment (giant components) Giant component video Strong and Weak ties
Granovetter (~1970): "Strength of Weak Ties"	Overview of Approach
 People get jobs by hearing about them through friends "Weak Ties": people are more likely to hear about their jobs from "acquantiances" than friends Why? 	How can we explain this using graph theory? Claim: If a node A in a network satisfies the Strong Triadic Closure property and is involved in at least two strong ties, then any local bridge it is involved in must be a weak tie. What??
Overview of Approach	Overview of Approach
 Not apparent that this (hard-to-understand) statement has anything to do with Granovetter's observation Mathematical model Simplification of real world Try to make a precise statement that is predictive of what we observe OK to make the "right" simplifications 	 Map of ideas Triadic Closure: observed structural property of real social networks Bridges / Local Bridges: mathematical definitions for edges that connect disparate parts of graph Strong and Weak Ties: social notion Mathematical statement about networks that corroborates Granovetter's observations.

Strong Triadic Closure	Exercise
 Hypothesis: If A has <i>strong</i> edges to B and C, then the B-C edge is very likely to form Definition (Strong Triadic Closure) Example on board Node A <i>violates</i> the Strong Triadic Closure property if it has strong ties to any two nodes B and C, but B and C are not connected (by either a strong or weak tie). Node A <i>satisfies</i> the Strong Triadic Closure property if it does not violate it. 	ldentify nodes that do and do not satisfy the Strong Triadic Closure property in an example graph.
Local Bridges and Weak Ties	Empirical Support
Now we can make a precise mathematical statement Claim : If a node A in a network satisfies the Strong Triadic Closure property and is involved in at least two strong ties , then any local bridge it is involved in must be a weak tie . Paraphrased: if "Triadic Closure," then "local bridge" ==> "weak tie" If we assume the structural property of triadic closure (that is usually observed in social networks), then any edge that connects disparate parts of the network (according to the mathematical definition of a local bridge) is a weak tie. Proof! (on board)	 Cell phone "who-talks-to-whom" network (Onnela et al.) Tie strength Minutes spent talking to each other More refined than strong vs. weak Local bridges Test if local bridges are are weaker No, define more refined version Compare "local-bridgedness" to tie strength
Empirical Support	Empirical support Plot "Local-bridgedness" vs tie strength. What will it look like?
Define Neighborhood overlap of A-B (local bridgedness) # nodes who are neighbors of both A and B # nodes who are neighbors of at least one of A or B Example on board	$ \begin{array}{c} 0.2 \\ 0.15 \\ 0.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$