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ABSTRACT
Search engines can automatically reformulate user queries
in a variety of ways, often leading to multiple queries that
are candidates to replace the original. However, selecting
a replacement can be risky: a reformulation may be more
effective than the original or significantly worse, depending
on the nature of the query, the source of reformulation can-
didates, and the corpus. In this paper, we explore methods
to mitigate this risk by issuing several versions of the query
(including the original) and merging their results. We focus
on reformulations generated by random walks on the click
graph, a method that can produce very good reformulations
but is also variable and prone to topic drift. Our primary
contribution is LambdaMerge (λ-Merge), a supervised merg-
ing method that is trained to directly optimize a retrieval
metric (such as NDCG or MAP) using features that describe
both the reformulations and the documents they return. In
experiments on Bing data and GOV2, λ-Merge outperforms
the original query and several unsupervised merging meth-
ods. λ-Merge also outperforms a supervised method to pre-
dict and select the best single formulation, and is competi-
tive with an oracle that always selects the best formulation.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Query formulation

General Terms
Experimentation, Measurement

Keywords
LambdaMerge, Query reformulation, Query expansion, Learn-
ing to rank

∗Work performed while at MSR Cambridge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$5.00.

1. INTRODUCTION
Consider the user query ‘jupiters mass’. A search engine

has a variety of ways to generate possible reformulations
of this query, for example, by using information from past
user sessions [16, 17], co-click analysis [6, 32] or anchor text
analysis [9]. In this case, a co-click random walk suggests the
reformulations ‘jupiter mass’, ‘mass of jupiter’ and ‘jupiter
facts’.

Slightly different query formulations may yield very dif-
ferent top-ranked results when issued to a search engine,
and these results may vary significantly in quality and rele-
vance to the user’s information need. For example, the query
‘jupiters mass’ is missing an apostrophe, so it may yield poor
results depending on the retrieval algorithms employed. The
query ‘mass of jupiter’ is a good reformulation in this case,
because it uses a more common phrasing and is more likely
to exactly match the text in an expository page that con-
tains the desired information. However, results depend in
a complex way on the algorithms, corpus and index used
for retrieval, so it is extremely challenging to know ahead of
time which formulation will yield the best results.

Topic drift is a significant risk when attempting to choose
a query reformulation. The query ‘jupiter facts’ has a dif-
ferent (broader) meaning than the original query that per-
tained specifically to the mass of Jupiter. Even if the search
engine returns very good results for ‘jupiter facts’, the user
may not be satisfied by the results. It is important for a re-
formulation method to avoid topic drift whenever possible.

This discussion highlights the fact that it can be difficult
even for a human to judge the quality of formulations and to
diagnose topic drift. However, in the context of a particular
retrieval system one may evaluate the quality of a reformu-
lation by retrieval performance: issue the query, judge the
relevance of the results with respect to the original query,
and then measure the quality of the results list using an
evaluation measure such as NDCG [15] or MAP. Reformu-
lations with high evaluation scores can be considered good
reformulations.

Using Reformulations. Once multiple reformulations have
been generated, the conventional approach would be to se-
lect one, issue that query formulation to the search engine,
and return the results. The previous discussion highlights
the risks inherent in this approach: issuing only the original
query forgoes the relevance improvements from reformula-
tions such as ‘mass of jupiter’. However, if one chooses to
abandon the user’s original query this may degrade rele-



vance in some cases (e.g., topic drift from reformulation like
‘jupiter facts’). Bad reformulations may give results that
seem inexplicable to the user.

This paper presents methods to mitigate the aforemen-
tioned risks by issuing multiple formulations of the query
to the search engine and merging the top-k results of each
to produce a final ranked list. There are a number of ad-
vantages to this approach. First, properties of the results
lists convey important information about the quality of a
reformulation that is not available prior to retrieval, such
as score distribution (to predict retrieval performance) and
overlap with the other results lists (to diagnose drift). This
information can guide the merging process. Second, results
are always obtained for the original query, so it is possible
to fall back to those if the reformulations are detected to be
bad. Finally, merging is a strictly more powerful method
for combining the results from multiple queries than select-
ing of a single query, so it is theoretically capable of greater
performance improvements. For example, consider a set of
five query formulations that each returns a single distinct
relevant document: a perfect single-query system can only
return one relevant document, while a merging system can
potentially return all five.

Our main contribution is a supervised merging approach
called λ-Merge that learns a scoring function to rank doc-
uments from multiple reformulations by combining features
that indicate document quality (such as retrieval score) with
features that indicate the quality of the reformulation and its
results (such as score distribution or overlap with other re-
sults lists). We demonstrate that this approach outperforms
a number of baselines and in some cases performs as well as
a selection oracle that chooses between the original query
and its reformulations. The main advantages of λ-Merge
are that: (1) it is trained to directly optimize a retrieval
metric such as NDCG or MAP, (2) the flexible architecture
of the scoring function can use both query-document and
results-list based performance prediction features, and (3)
λ-Merge can handle reformulations that are worse than the
original query and still improve performance significantly.

Our experiments utilize reformulations from two-step ran-
dom walks on the click graph [6]. These reformulations vary
greatly in quality. Although some are significantly better
than the original query, they are worse than the original
query on average. Because of this, simple unsupervised
merging baselines that treat all reformulations equally —
such as the well-known CombSUM algorithm [23] — de-
grade performance. However, we devise a simple unsuper-
vised modification to CombSUM called CombRW that is
able to outperform the original query (in NDCG@5) by us-
ing the random walk probabilities of the reformulations as
merging weights. This suggests that merging can be success-
ful, but it is important to take into account some measure
of reformulation quality, and it motivates the architecture
of λ-Merge presented in Section 3.2.

We also compare λ-Merge to a supervised baseline [2] that
uses linear regression to predict the quality of each refor-
mulation, and then selects the single formulation with the
highest predicted performance. We show that λ-Merge sig-
nificantly outperforms both CombRW and this supervised
approach, and is even competitive with an oracle selection
method that always chooses the single best formulation.
These observations demonstrate that supervision alone is

not enough in our setting, and that merging has significant
advantages over a system that selects a single query.

In the remaining sections, we demonstrate how blending
the results of different query reformulations can improve re-
trieval effectiveness. In particular, we discuss the limitations
of current baselines and show that they are consistently out-
performed by our supervised merging technique (λ-Merge).

2. RELATED WORK
Our work draws on multiple areas of information retrieval

(IR) research, including query reformulation, learning to
rank, result merging, and performance prediction. This sec-
tion briefly introduces each of these areas and discusses rel-
evant literature from each.

Query reformulation. Reformulation methods modify the
user’s query to boost the quality of search results. Tra-
ditional query reformulation methods in IR are based on
pseudo-relevance (blind) feedback, which expands a given
query by first retrieving its top-k documents, and then ex-
tracting document terms to add to the query [20, 26]. How-
ever, query reformulation is not limited to expansion. Stud-
ies show that performance improvement can be achieved
by dropping [16] or substituting terms based on previous
queries [9, 17, 29]. It is also possible to perform multiple re-
finements to a query (e.g. expansion and spell-correction) [13].

Candidate reformulations for a query can be collected
from sources such as user session rewrites [16, 17], anchor-
text [18, 9], word co-occurrence in documents [27, 30], click
graphs [6, 32] or combination of multiple sources [13]. In
this work, we follow the methodology of Craswell and Szum-
mer [6] to generate reformulation candidates from click logs.
The authors proposed a random walk model on the bipar-
tite Query-URL click graph. This graph has a node for each
query and URL that appears in a large usage log, with edges
connecting a query to each URL that was clicked by some
user in response to that query. For any query or URL node in
the graph, the model outputs a probability distribution over
other “nearby” nodes (including both queries and URLs).
Craswell and Szummer focused on retrieval, and hence used
the procedure to find a probability distribution over URLs
given a query in order to rank the URLs. The resulting
ranking has enhanced recall relative to a direct click-based
ranking, because the results may include URLs that were
not directly connected to the given query. Empirically the
model was also shown to be robust to noise and to maintain
good precision.

The same click-based random walk algorithm can also be
used to find Query-Query, URL-Query and URL-URL rela-
tionships. Here we use a 2-step random walk to find Query-
Query reformulations. For example, starting from the query
‘jupiters mass’, the first step of the walk gives a distribution
over URLs that were clicked for that query. The second step
moves the probability mass back to the queries. From [6] we
choose a forward walk using their standard edge weighting
based on click counts.

In general, the random walk assigns high probability to
queries that share many clicked URLs with the original query,
and hence these queries tend to be on the same topic as the
original query, so that topic drift is avoided. The random
walk may also assign high probability to formulations that
have greater retrieval effectiveness, because these queries
have higher click counts, which increases the probability that



the random walk steps to those queries under the model’s
edge weighting scheme. However, despite these advantages,
the random walk distribution must always assign 100% of
the probability mass to some set of queries, so in the case
where there are no good reformulations within two steps it
will still propose a reformulation. Thus, it is important for
merging methods that use random walk reformulations to
be robust to bad candidates.

Learning to rank. Traditional IR rankers such as BM25 [22]
have few parameters, so that it is possible to tune them by
hand. However, in a setting such as web search, rankers are
based on a rich and diverse set of features that may include
any desired feature of a query-document pair. When fea-
tures are sufficiently numerous and noisy, it is practically
impossible to find a good combination of features by hand.

Instead, learning-to-rank algorithms use a judged train-
ing set of query-document pairs and apply machine learning
techniques to learn complex combinations of features. Re-
cent algorithms, such as LambdaRank [4], directly optimize
a desired IR metric (such as NDCG or MAP) on the training
set, and aim to generalize well on novel test data.

The learning to merge problem is an instance of learning
to rank, in that we employ a rich set of query and docu-
ment features, and learn a ranking function from training
data. However, merging has special structure beyond reg-
ular learning to rank, because it combines multiple lists of
results. We add a gating component to LambdaRank [4],
which can take into account features of a results list (gating
features), to adjust the overall weight of documents in that
list. The model can then learn, for example, to down-weight
scores from an unpromising list, in order to optimize the
effectiveness of the final merged list.

Metasearch and data fusion. We propose merging the re-
sults of different query reformulations; hence our work is re-
lated to metasearch and data fusion. A core concern in those
areas is the normalization and combination of scores [21].
CombSUM and CombMNZ [23] are two methods that ag-
gregate the scores from multiple lists that serve as well-
known baselines in our setting. Our techniques also aggre-
gate scores, but the contribution from each reformulation
varies per query.

We explore methods that merge the results of different
reformulations on a single collection. Some related work on
supervised federated search [24, 34] merges the results of a
single query on multiple collections. In both settings, the
merging can be weighted according to the quality of the re-
formulation/collection. However, the available features dif-
fer. Moreover, these previous methods consist of two sep-
arate steps: first, quality is predicted, and then merging is
performed based on predicted quality. In such a scheme it is
unclear how a predicted quality metric (for example, P@10
or MAP in [33]) best translates into a merging weight. We
instead include quality-indicating gating features as part of
a joint training process to optimize the NDCG of the final
merged list.

Query difficulty prediction. Performance (difficulty) pre-
diction can play an important role in merging the results
of query reformulations. Ideally, the merging system should
be able to downgrade (or, in extreme cases, ignore) the re-

sults of reformulations that are less likely to contain relevant
documents.

An early performance prediction feature was clarity [7],
which measures the distance between the search results and
the background distribution of the general corpus; good
search results should differ from the background. This ap-
proach has been followed by methods that consider pertur-
bation and score distributions. Perturbation-based meth-
ods [28, 33] measure changes when documents, queries or the
ranker is perturbed; a ranking should be robust to such per-
turbations. Spatial autocorrelation methods [11] compare
the score distribution of similar documents for performance
prediction.

The query difficulty predictor of Yom-Tov et al. [33] is
based on the overlap between a query’s results and the re-
sults of all its one-word sub-queries. Easier queries tend to
have more overlap. Their metasearch experiments demon-
strated that the two stage merging method described above
improves performance. However, they did not experiment
with query reformulation, and their sub-query performance
prediction method may not adapt well to expanded queries
that have many terms.

Several recent works have utilized supervised learning to
select query reformulations. Kumaran and Carvalho [19]
performed query reduction by ranking sub-queries of the
original query in a learning to rank framework that used
content-based performance prediction features such as clar-
ity and mutual information gain. Balasubramanian et al. [2]
extended this methodology to the problem of query reduc-
tion for long web queries by developing performance predic-
tion features that are more effective in the web setting and
can be efficiently computed at the time of ranking. These
features combine document-level features and retrieval scores
from the top-k list for each reduced query, and are similar to
our features described in Section 4.3. They consider several
learning approaches for selecting a reduced query and find
that regression to predict NDCG change of the reformulated
query is the most effective; they also show that interleaving
results from the original query with those from the reduced
query further improves performance. Dang et al. [10] pre-
sented a supervised technique that successfully ranked query
reformulations based on their retrieval performance. Xue et
al. [31] used a conditional random field model to rank dif-
ferent subsets of query words according to their predicted
performance, and showed that their approach can improve
the performance on long queries by dropping some of the
query terms.

Balasubramanian and Allan [1] use the regression approach
in [2] to learn to select between different rankers for each
query, and show that selecting the better of two rankers
according to predicted performance outperforms individual
rankers on the LETOR 3.0 GOV2 collection. Balasubrama-
nian, Kumaran and Carvalho [3] also show that regression
techniques using similar features constructed from the top-k
lists are effective for predicting query performance in a web
collection.

3. MERGING QUERY REFORMULATIONS
One approach to avoid the risk of bad query reformula-

tions is to merge the results of several different reformu-
lations. In this section, we first review CombSUM and
CombMNZ [23], two unsupervised merging methods that
can be applied to this task. We also introduce CombRW,



a variant of CombSUM that takes into account the ran-
dom walk probabilities of each rewrite. We then introduce
λ-Merge: a supervised, end-to-end merging method. Un-
like the previous two-stage supervised merging methods [24,
33], the quality-prediction and merging components of λ-
Merge are jointly trained to directly optimize a retrieval ef-
fectiveness measure such as NDCG.

3.1 Unsupervised merging
CombSUM and CombMNZ are unsupervised merging meth-

ods that are simple, effective and well-studied. Both meth-
ods are based on document retrieval scores, rewarding doc-
uments that have high scores and appear in multiple results
lists. CombSUM sums a document’s scores from all lists
where it was present. CombMNZ additionally multiplies the
CombSUM score by the number of lists that contained the
document. Score normalization is important when apply-
ing these methods since different results lists may be scored
on different scales (e.g. a long query might have generally
lower scores than a short query). Also, a document that is
absent from a list contributes nothing to the sum, so it is
important for the documents that are present to have non-
negative scores. For these reasons, it is common to normal-
ize scores to the [0, 1] interval before combination. Several
of the features that we will use with λ-Merge rely on similar
normalization ideas.

We define some notation here. For a query q, let
q(1), q(2), . . . , q(K) be the different formulations (including

the original query q), and let D(1), . . . ,D(K) be the cor-
responding results lists. We use a standard normaliza-
tion method that shifts and scales the scores for each D(k)

into the interval [0, 1]. We refer to the resulting value as

NormScore(q(k), d). With this notation, CombSUM and
CombMNZ are defined as follows:

CombSUM(d) =
∑

k : d∈D(k)

NormScore(q(k), d), (1)

CombMNZ(d) = CombSUM(d)× |{k : d ∈ D(k)}|. (2)

These simple combination rules are among the most effective
merging methods [21]. In our experiments, we observed that
CombSUM and CombMNZ had similar effectiveness, and
hence we restrict our attention to the simpler CombSUM
method for the rest of this paper.

CombRW. CombSUM and CombMNZ treat all result lists
equally. They do not give special status to the user’s original
query, and do not take into account any information about
the reformulations, e.g., how highly the reformulation scored
under the random walk. We suggest a weighted version of
CombSUM to consider such information.

CombRW(d) =
∑

k : d∈D(k)

NormScore(q(k), d)×W (D(k))

(3)

Here, W (D(k)) denotes the weight assigned to the result
list returned for the k-th reformulation. Weights may be
assigned according to predicted performance [19], expected
reformulation similarity (e.g. random-walk probability [6]),
or any other measure of quality. We choose to set the weight
W (D(k)) to be the probability assigned to q(k) by a random
walk in the Query-URL graph starting at q (see the previ-

ous section for details), and refer to this variant of Comb-
SUM as CombRW. Note that this type of two-stage score
normalization is analogous to some federated search blend-
ing techniques where the rescaled server-specific document
scores are normalized according to server quality scores [5].

3.2 Supervised merging
We now present the details of λ-Merge, a general learn-

ing to merge system that learns a ranking function to merge
multiple results lists. λ-Merge builds on the basic ideas of
CombSUM and related algorithms by drawing from the more
flexible class of gated neural-network score-combination func-
tions that (1) utilize multiple query-document features in-
stead of just the retrieval score, (2) weight contributions
from each reformulation according to multiple features, such
as those predicting list quality and query drift, so that con-
tributions vary depending on the query and reformulation,
and (3) are trained to optimize a retrieval metric. As far
as we know, λ-Merge is the first merging method that is
trained using relevance judgments to directly optimize de-
sired IR metrics such as NDCG or MAP.

The algorithm is general and can be applied in merging
scenarios beyond the reformulation work of this paper, for
example, the scenario of a single query issued to multiple
collections. However, we leave such applications for future
research.
λ-Merge uses two types of features: (1) query-document

features that describe the match between a query formula-
tion and the document (e.g. language modeling score), and
(2) gating features that describe the quality of the reformu-
lation and its results list (e.g. query clarity score). In gen-
eral, the gating features can adjust the scores of an entire
results list. For example, each document returned for ‘mass
of jupiter’ and ‘jupiter facts’ has different query-document
features, while gating features belong to the entire list and
might cause the method to give more weight to the results
for ‘mass of jupiter’, since it is a higher quality rewrite.

Model. Figure 1 gives an overview of λ-Merge. Let x
(k)
d

be the vector of query-document features for document d
and the k-th query reformulation q(k). These features typ-
ically include the score and rank information from a base
ranker. If document d does not appear in the results list D(k)

for the k-th reformulation, default values must be assigned.
In our experiments, we typically assign default values such
that document d inherits the score and rank features of the
lowest-ranked document that does appear in D(k).

Let f(x;θ) be the scoring function, with parameters θ.

A given document d thus receives a score f(x
(k)
d ;θ) for the

k-th reformulation.
Let z(k) be the vector of gating features for reformulation

q(k). These describe qualities of the k-th reformulation and
its results list D(k) as a whole.

The gating network determines the contribution of each
reformulation to the final score. It outputs a mixing weight

αk = softmax(z(1), . . . ,z(K);π) =
exp(πTz(k))∑
p exp(πTz(p))

for the k-th results list. The mixing weights are non-negative
and are normalized to sum to one, thus giving a relative
weight to each reformulation. However, a linear gating net-
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Figure 1: The architecture of λ-Merge for blending
the results of multiple query reformulations.

work is also likely to work, which we suggest for future ex-
periments.

The final ranker score sd for the document is given by

weighting the individual reformulation scores f(x
(k)
d ;θ) by

the mixing weights from the gating network:

sd =
∑
k

αk · f(x
(k)
d ;θ). (4)

The scoring function f can be implemented by any differ-
entiable function, such as a linear function, a neural network,
or a set of boosted decision trees. The function should be
flexible enough to normalize scores from the different refor-
mulations so that they share a common scale suitable for
combination. We choose f to be a fully connected two-layer
neural network with four hidden units, each having a tanh
activation function, and with an output that is a linear com-
bination of the hidden units.

Related Architectures. The λ-Merge ranking function is
a mixture of scoring functions. This is related to mixture
of experts architectures [14], where the experts are neural
networks [25]. Traditionally, each expert is specialized to
handle a different part of the same input space; whereas
we employ a single scoring function that receives different
inputs (based on different reformulations).

Training. The scoring parameters θ and gating weights π
of λ-Merge are trained to optimize NDCG using a method
based on LambdaRank [4]. Alternatively, the method can
optimize Precision@k, MAP, or ERR. A key feature of all
these retrieval metrics is that they depend on the ranks of
documents, which are discontinuous with respect to the doc-
ument scores computed by retrieval systems. (The ranks are
obtained by sorting the scores.) Hence, gradient-based op-
timization is challenging. LambdaRank sidesteps this prob-

lem by using a smoothed version of the objective. It has
empirically been proven to reach optima of NDCG success-
fully [12].

Denote the smoothed objective by C. To use LambdaRank,
it is sufficient to implement its gradients with respect to
score and gating parameters, namely ∂C/∂θ` and ∂C/∂πm.
By the chain rule, these can be decomposed, for example,
∂C/∂θ` =

∑
d(∂C/∂sd) · (∂sd/∂θ`). For NDCG, MAP, and

some other IR metrics, LambdaRank derivatives are

∂C/∂sd =
∑
e

|∆de| (Id�e − 1/(1 + exp(se − sd))). (5)

Here, |∆de| is the absolute change in the metric if items d
and e were swapped in the current ranking. For NDCG, this
change is |2ld−2le ||1/ log2(rd+1)−1/ log2(re+1)|/DCGmax

for relevance labels ld and le, and ranks rd and re, respec-
tively. DCGmax is the DCG value achived by an ideal rank-
ing for the query. The indicator Id�e is 1 when document
d is judged more relevant than e, and 0 otherwise. See also
Section 6.2 of [4].

The remaining derivatives are computed by doing back-
propagation separately in each of the scoring and gating net-
works, where the calculation for either network requires only
the current output values from the other network. Mathe-
matically, this is because differentiating (4) yields

∂sd
∂θ`

=
∑
k

αk ·
∂

∂θ`
f(x

(k)
d ;θ),

∂sd
∂πm

=
∑
k

∂αk
∂πm

·f(x
(k)
d ;θ).

Hence, the scoring function parameters θ are updated by us-

ing standard backprop to compute ∂
∂θ`

f(x
(k)
d ;θ). The gat-

ing net parameters π are updated by backprop through the
softmax function. Let βk = exp(πTz(k)), so that αk =
βk/

∑
p βp. Then

∂αk
∂πm

=
(∑

p

βp
)−2

(
βkz

(k)
m ·

∑
p

βp − βk ·
∑
p

βpz
(p)
m

)
.

We train by stochastic gradient descent and consider queries
in random order during each training epoch. We batch pa-
rameter updates by query for faster training [4]. In all ex-
periments, we fix a step size of 10−3 and train for 25 epochs.

4. EXPERIMENTS
We conduct our primary experiments using ranking scores,

query logs, and click data from the Bing search engine. Our
techniques can use any source of reformulation candidates;
here we have generated reformulations via a two-step ran-
dom walk on a click graph based on several months of query
logs. At least one random walk reformulation is generated
for roughly 40% of all queries in the search engine’s work-
load.1 From this subset, we sample 4552 queries and split
them into a training set (2303 queries) and a testing set
(2249 queries).

Unless otherwise specified, we only consider one reformu-
lation candidate for each query. The top-ranked random-
walk reformulation candidates are diverse; 24% have words
removed, 26% have words added, and 48% have words both
added and removed.2 We compare the retrieval effectiveness

1Coverage may improve by using a larger query log, or a
longer random walk.
2The remaining 2% have the original words in a different
order, for example ‘movies 2008’ and ‘2008 movies’.



Table 1: List of features.
Query-document
features

Score, Rank, NormScore[0,1],
NormScoreN (0,1), IsTopN

Gating features
(difficulty)

ListMean, ListStd, ListSkew,
Clarity, RewriteLen, RAPP

Gating features
(drift)

IsRewrite, RewriteRank,
RewriteScore, Overlap@N

of different methods by measuring NDCG with 5 grades of
relevance judgments (Bad, Fair, Good, Excellent, and Per-
fect). We also use NDCG as our optimization metric for
λ-Merge.

4.1 Features
A significant strength of λ-Merge is that one may employ

many different features that together are predictive of doc-
ument relevance or results-list quality. Table 1 lists the fea-
tures we employed in our Bing experiments. In the following
discussion we describe each feature in more details.

Query-document features. These are features for a given

query-document pair (q(k), d) and correspond to the xk(d)
vectors in the architecture described in Figure 1.

1. Score: the original search engine ranker score. On the
Bing data, it is the Bing ranker score. On GOV2, we
used the default ranker of Indri.

2. Rank: the position of d in ranked list D(k).

3. NormScore[0,1]: the score of d in D(k) after the top-
10 scores are shifted and scaled into the interval [0, 1]
using min-max normalization.

4. NormScoreN (0,1): the score of d in D(k) after the top-
10 scores are shifted and scaled to have mean zero and
unit variance (indicated by N (0, 1).)

5. IsTopN: A binary feature to indicate if this document
is within the top-N results, where N ∈ {1, 3, 5, 10}.

Gating Features (difficulty & drift). Gating features cor-
respond to z in Figure 1, and we have a total of 13 of them.
Some gating features are designed to be predictive of the
overall quality of the results list D(k). Other features are
designed to detect drift.

1. IsRewrite: A binary flag to distinguish between the
user’s original query and its reformulations.

2. RewriteScore: The query reformulation score (random
walk probabilities in our case). This feature is defined
to take value 1 for the original query.

3. RewriteRank: 0 for the original query, then n for the
n-th random walk reformulation as sorted by random
walk probability.

4. ListMean, ListStd, ListSkew: Respectively, mean, stan-
dard deviation and skew of raw ranking scores over
each result list. The distribution of document scores
has been cited as an important feature for query per-
formance prediction [28].

5. Clarity: This feature is a modified version of the clar-
ity score [8], designed to measure the coherence of lan-

guage usage in documents from D(k). It is defined as
the Kullback-Leibler divergence between a query lan-
guage model and the collection language model. We
construct the query language model using the snip-
pets of the top-10 results and build the background
language model using a reference query log.

6. Overlap@N: The number of documents that appear in
both the top-N results for the query reformulation and
the top-N results for the original query. This feature
is defined to take value N for the original query.

7. RewriteLen: The number of words in the reformula-
tion. Long queries tend have worse retrieval perfor-
mance [2], so this is a query difficulty feature.

8. RAPP [3]: The output of a linear regression model us-
ing the above features that is trained to predict NDCG.
This is described in more details next.

4.2 Baselines
We compare the results of our two blending techniques

(CombRW and λ-Merge) against four different baselines:

• ORG: The results for the original query with no merg-
ing or reformulation selection.

• CombSUM: Unsupervised baseline, described in Sec-
tion 3.1.

• RAPP-L: Balasubramanian et al. [2, 3] proposed rank-
time performance prediction, which uses linear regres-
sion or random forests to predict NDCG or ∆NDCG
between a query and a reformulation. We implemented
RAPP using linear regression to predict ∆NDCG, and
denote this RAPP-L to emphasize the choice of linear
regression, which performed as well as random forests
in [3]. A difference in our setting is that we use the
post-retrieval features described earlier (for λ-Merge)
to train the regressor, while they used raw ranking fea-
tures (e.g. BM25 and clicks).

• RAPP(Ω): The oracle for selection techniques such
as RAPP, which always chooses the result list with the
highest NDCG@5. Despite setting an upper bound for
methods that select a single query, this baseline can
be outperformed by merging methods.

4.3 Retrieval effectiveness
Table 2 presents overall NDCG results of the original

query alone, reformulation alone, and then the various re-
formulation selection and merging techniques. All differ-
ences between different systems are statistically significant
(p < 0.01) by the t-test (the only exception is for NDCG@5
between λ-Merge and RAPP (Ω)). The reformulation candi-
dates (RW1) are on average much worse than the user’s orig-
inal query (ORG). Of the merging techniques, CombSUM is
not robust to bad reformulations and has NDCG between
that of ORG and RW1, while CombRW and λ-Merge both
achieve gains via merging. The query selection techniques
do not perform as well as λ-Merge; even the oracle RAPP(Ω)
is unable to consistently perform better.



Table 2: The performance of different techniques
averaged over the testing set (2303 queries). For
each original query (ORG), the top-ranked random-
walk candidate (RW1) is used as the reformulation
candidate. All differences (except for NDCG@5:
RAPP(Ω) vs. λ-Merge) are statistically significant
(p < 0.01).

NDCG@5 NDCG@10
ORG 0.538 0.524
RW1 0.422 0.387
CombSUM 0.510 0.486
CombRW 0.542 0.516
RAPP-L 0.534 0.524
λ-Merge 0.555 0.539
RAPP(Ω) 0.556 0.530

Robustness analysis. We use bubble plots to study the ro-
bustness of our retrieval methods (Figures 2 and 3). Each
query is a assigned a location on the 2-D plot to indicate
both the quality of the reformulation candidate for that
query (on the x-axis, measured by difference in NDCG@5
compared to the original query) and the performance of the
final results list the retrieval system produces for that query
(on the y-axis, measured in overall gain or loss in NDCG@5).
The size of the bubble indicates the number of queries that
fall into that category. For example, bubbles in the upper
right correspond to queries where both the reformulation
candidate and the overall system output are better than
the original query, and a large circle at (0, 0) means that
for many queries, both the reformulation candidate and the
overall system produce output lists with the same NDCG@5
as the original query. In our experiments, the number of
queries at 0,0 is usually around 1200 ± 100.

Figure 2 shows bubble plots for the unsupervised methods.
As might be expected, the unsupervised CombSUM method
produces gains when given high quality reformulations, and
losses when given lower quality reformulations, as evidenced
by points in the upper right and lower left quadrant. Overall
CombSUM produces losses for many queries and is poor at
recovering from bad reformulations. In contrast, CombRW
achieves reasonable gains with very few losses, as evidenced
by few points in the lower half of the plot. Hence, weighting
by random walk score can reduce losses due to bad reformu-
lations.

Figure 3 shows bubble plots for the supervised approaches.
The RAPP(Ω) oracle always picks the best reformulation,
and is therefore neutral on the left side of the plot and posi-
tive on the right side. When compared with RAPP(Ω), the
bubble plots for the methods CombSUM, CombRW and λ-
Merge clearly illustrate that merging can outperform query
selection; all three approaches have points above the enve-
lope of RAPP(Ω), indicating performance that is better than
the maximum NDCG of ORG and RW1 on those queries.

RAPP-L bubbles that differ from RAPP(Ω) indicate mis-
takes of the system: the lower left ones are false positives,
choosing bad reformulations, and the horizontal right ones
are false negatives, failing to choose a good reformulation.
Compared to these two, λ-Merge has a greater variety of be-
havior. The lack of points in the lower left quadrant demon-
strates robustness to bad reformulations; in fact for many
bad reformulations λ-Merge still achieves gains in retrieval
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Figure 2: The robustness and effectiveness analy-
sis of different unsupervised techniques with respect
to the reformulation quality. The x-axis shows the
∆NDCG@5 between the original query (ORG) and
the reformulation candidate (RW1). The y-axis is
the ∆NDCG of the final list with respect to the orig-
inal query.

effectiveness. This is evidence in favor of our supervised
approach and for directly optimizing NDCG. We also see
that merging methods in general (CombRW, λ-Merge) have
much greater upside than methods that pick a single query
(RAPP-L).

5. DISCUSSION
We showed that merging the results of different query

reformulation methods could improve both robustness and
overall effectiveness relative to the baseline methods. In this
section, we provide further insights into λ-Merge. We also
investigate the impact of increasing the number of query
reformulations on different methods. Finally, we report re-
sults on the publicly available GOV2 dataset for comparison
purposes.

Multiple query reformulations. In all the experiments re-
ported so far we considered only one reformulation per query.
In this section, we repeat the experiments with 5 query refor-
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Figure 3: The robustness and effectiveness analysis of different unsupervised techniques with respect to
the reformulation quality. The x-axis shows the ∆NDCG@5 between the original query (ORG) and the
reformulation candidate (RW1). The y-axis is the ∆NDCG of the final list with respect to the original query.

Table 3: The performance of different techniques
averaged over a subset of queries with at least five
random-walk candidates (1872 queries).

1 Reformulation 5 Reformulations
NDCG@5 NDCG@10 NDCG@5 NDCG@10

ORG 0.550 0.535 0.550 0.535
CombSUM 0.521 0.496 0.497 0.455
CombRW 0.554 0.527 0.555 0.524
RAPP-L 0.546 0.531 0.550 0.535
λ-Merge 0.566 0.550 0.563 0.548
RAPP(Ω) 0.567 0.541 0.587 0.545

mulations and investigate the impact on different methods.
We only include queries that have at least 5 random walk
candidates, which reduces the size of training and testing
sets by about 16%. Therefore, when comparing the results
with the previous experiments, we report all the results on
this subset. The results are shown in Table 3. Firstly, com-
pared to the previous experiments in Table 2, the original
queries (ORG) have better NDCG on this new subset. This
is because the retained queries have more clicks and richer
usage data that improve the quality of the baseline ranking.
The NDCG of CombSUM drops significantly (p < 0.01) with
5 compared to 2 reformulations, due to the diminished qual-
ity of lower-ranked random walk candidates (lower-ranked
candidates are occasionally good, as demonstrated by the
increased performance of RAPP(Ω)). The RAPP-L clas-
sifier learns to almost never trust any query reformulation
which effectively leads it to match ORG (we note that this is
a different behavior than [3] which merged rankers of similar
effectiveness). CombRW and λ-Merge remain relatively ro-
bust, and λ-Merge continues to significantly outperform all
the alternatives (p < 0.01) and surpass the selection oracle
for NDCG@10.

We note that an important feature of this experiment
setup is the fact that the expanded pool of reformulations
is significantly lower in quality, so the experiment primarily
demonstrates the robustness of CombRW and λ-Merge. In a
scenario with a large pool of reformulations of uniform qual-

ity, one would expect performance of the merging methods
to improve as more reformulations are made available. We
leave exploration of this scenario for future work.

Inside the black box. λ-Merge’s gating net is used to ap-
propriately weight scores from each reformulation. The prob-
lem is one of trading off (1) good reformulations (in the query
difficulty sense), (2) reformulations that introduce new doc-
uments over the original query, and (3) reformulations that
are faithful to the original query (avoiding topic drift). λ-
Merge training tunes the gating network to balance these
factors for the best NDCG value.

We examined the effect of training λ-Merge with different
gating features (Figure 4). As the baseline (corresponding to
∆NDCG being 0 in the diagram), we picked an empty set of
gating features, yielding an averaging gating network that
simply averages the scores from reformulations. We com-
pared this against gating functions of individual and multi-
ple gating features.

Some individual features had almost no benefit: in par-
ticular, traditional performance prediction features includ-
ing Clarity, ListMean, ListStd, ListSkew showed only tiny
improvements over the averaging gating network.

Features that express query drift were more effective; in-
dividual features capturing overlap between original and re-
formulation results were the better the more they focused
on the top ranks, with Overlap@1 excelling among these.

The best individual features were variations on distin-
guishing the original from the reformulated query. The Is-
Rewrite feature was remarkably effective; when used by it-
self, it corresponds to a gating network that gives the orig-
inal query a constant weight, and all reformulations of it
some other constant weight, tuned by λ-Merge. Tuning gave
weights (0.8, 0.2) when merging the original with one ran-
dom walk candidate, and (0.63, 0.07, 0.07, 0.07, 0.07, 0.07)
when merging with five candidates. The RewriteRank fea-
ture was equivalent to IsRewrite for one reformulation can-
didate, but for multiple candidates it could distinguish the
order of the candidates. Similarly, the RewriteScore incorpo-
rated the random walk score. These refinements performed
slightly better than IsRewrite, but the dominant effect seems



to be in distinguishing the original query from the reformu-
lations.

Combining multiple weak features proved beneficial: for
example, the ListStats includes ListMean, ListStd, ListSkew,
and gave good results even though the individual features
were weak. This result is very promising for other merging
applications because it uses only information about score
distributions and no features specific to the query reformu-
lation application. Overlap@* included all overlap features
and also performed better than any of its constituents. In-
cluding all thirteen features gave the best overall result; the
gating network then weighted the original query by 0.77 on
average across the test queries, with a standard deviation
of 0.12. However, the gain of using all features over using
the best individual features was small. A possible limitation
here is the linear gating network — a promising avenue of fu-
ture work is to explore whether a non-linear gating function
is better able to make use of combinations of features. Over-
all, λ-Merge proved quite robust to combinations of strong
and weak gating features. An experimental combination of
28 features, many of which proved to be individually poor,
did not degrade performance from combinations containing
only individually good features.

We also examined the weights of the scoring network in
λ-Merge (not shown). Of the two groups of features, nor-
malizations of base ranker scores and rank position features,
our main observation was that the scoring network utilized
all score features as well as the IsTop1 feature to give an
extra boost to documents that appear first in a results list
(appearing in the top 3 is given much less weight).

In summary, λ-Merge incorporates a variety of features,
and finds interesting trade-offs between them.

5.1 Experiments on GOV2
For comparison purposes, we also experimented on the

TREC GOV2 dataset,3 using the <title> of TREC topics
751–800 for training and topics 801–850 for testing. For each
training and test query, we use the top five random walk
candidates from the search engine logs described earlier.4

The inputs for merging are the results of the original query
(ORG) and results of the random walk candidates.

Table 4 shows results on the test set. Here, we measure the
NDCG results at cut-off 100, but also evaluate the results
according to precision at 5 (P@5) which emphasizes rele-
vance at top ranks. Overall, both CombRW and λ-Merge
substantially improve over the ORG baseline. λ-Merge also
manages to outperform the RAPP(Ω) oracle on P@5. We
found similar trends on the TREC WT10g dataset, although
improvements were smaller.

6. CONCLUSIONS
In this paper, we explored merging methods to enhance

retrieval effectiveness under query reformulation, in partic-
ular, when reformulation candidates are generated by ran-
dom walks on the click graph. These methods issue multiple
queries and merge their results: CombRW is a simple unsu-
pervised method that weights results lists according to ran-
dom walk probabilities, and λ-Merge is a supervised merging

3http://ir.dcs.gla.ac.uk/test_collections/
gov2-summary.htm
4In the test set there were no random-walk candidates for 22
queries. For those, the results for the original query remain
unchanged.
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Figure 4: Retrieval accuracy for various combina-
tions of gating features when one random walk can-
didate is used for merging. Similar trends were
found for experiments with five random walk can-
didates.

Table 4: Merging the results of the original query
with up to five reformulation candidates extracted
from query logs on the TREC GOV2 dataset.

P@5 NDCG@100
ORG 0.548 0.431
CombRW 0.584 0.438
λ-Merge 0.596 0.447
RAPP(Ω) 0.592 0.457

technique that extends LambdaRank. The λ-Merge method
learns a merging function to directly optimize a retrieval
metric (e.g. NDCG), and can utilize user-defined features
that indicate relevance of the documents, as well as quality
and drift of results lists as a whole.

In experiments on Bing data, the simple CombSUM merg-
ing method performed poorly: robustness analysis showed
that it was heavily degraded by reformulations that were
worse than the original query. By considering walk proba-
bilities, CombRW eliminated much of this downside risk and
outperformed the original query. Of the merging methods,
λ-Merge achieved the best performance. Merging proved
much more powerful than selecting a single formulation: for
many individual queries, λ-Merge performed better than any
single formulation, and overall was competitive with an or-
acle that always chose the best single query.

Our feature analysis shows that λ-Merge is indeed taking
into account a wide variety of document and gating features.
The gating network performed very well with simple features
that distinguish the original query from the reformulation,
but λ-Merge also made effective use of combinations of weak
features, and achieved the best performance when presented
with all of the features.



One avenue for future work is to explore different architec-
tures and training metrics within the λ-Merge architecture.
We conjecture that nonlinear gating functions may make
better use of a large number of features. Another open area
is to explore reformulations from multiple sources, such as
session rewrites, anchor-text, etc. λ-Merge may also be ben-
eficial in other merging scenarios such as federated search.
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