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Abstract
Most major content providers use content delivery net-
works (CDNs) to serve web and video content to their
users. A CDN is a large distributed system of servers
that caches and delivers content to users. The first-level
cache in a CDN server is the memory-resident Hot Object
Cache (HOC). A major goal of a CDN is to maximize the
object hit ratio (OHR) of its HOCs. But, the small size
of the HOC, the huge variance in the requested object
sizes, and the diversity of request patterns make this goal
challenging.

We propose AdaptSize, the first adaptive, size-aware
cache admission policy for HOCs that achieves a high
OHR, even when object size distributions and request
characteristics vary significantly over time. At the core of
AdaptSize is a novel Markov cache model that seamlessly
adapts the caching parameters to the changing request
patterns. Using request traces from one of the largest
CDNs in the world, we show that our implementation of
AdaptSize achieves significantly higher OHR than widely-
used production systems: 30-48% and 47-91% higher
OHR than Nginx and Varnish, respectively. AdaptSize
also achieves 33-46% higher OHR than state-of-the-art
research systems. Further, AdaptSize is more robust to
changing request patterns than the traditional tuning ap-
proach of hill climbing and shadow queues studied in
other contexts.

1 Introduction
Content delivery networks (CDNs) [18] enhance perfor-
mance by caching objects in servers close to users and
rapidly delivering those objects to users. A large CDN,
such as that operated by Akamai [57], serves trillions
of user requests a day from 170,000+ servers located
in 1500+ networks in 100+ countries around the world.
CDNs carry the majority of today’s Internet traffic and are
expected to carry almost two thirds within five years [22].

A CDN server employs two levels of caching: a small
but fast in-memory cache called the Hot Object Cache
(HOC) and a large second-level Disk Cache (DC). Each
requested object is first looked up in the HOC. If absent,
it is looked up in the DC. If also absent there, the object is
fetched over the WAN from the content provider’s origin.

Serving requests from the HOC is much faster and
more efficient than serving from the DC. Thus, the goal
of a CDN is to maximize the object hit ratio (OHR),
which is the fraction of requests served from the HOC.
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Figure 1: The cumulative distribution for object sizes in
two Akamai production traces from Hong Kong and the
US. Sizes vary by more than nine orders of magnitude.

In this paper, we show how to attain this goal in a robust,
efficient and scalable manner (see Section 2).

1.1 Why HOC cache management is hard
HOC cache management entails two types of decisions.
First, the cache can decide whether or not to admit an
object (cache admission). Second, the cache can decide
which object to evict from the cache (cache eviction), if
there is no space for a newly admitted object. While cache
management is well studied in other contexts, HOC cache
management poses the following new challenges.

1) The HOC is subject to extreme variability in request
patterns and object sizes. CDNs serve multiple traffic
classes using a shared server infrastructure. Such classes
include web sites, videos, and interactive applications
from thousands of content providers, each class with its
own distinctive object size distributions and request pat-
terns [57]. Figure 1 shows the object size distribution of
requests served by two Akamai production servers (one in
the US, the other in Hong Kong). We find that object sizes
span more than nine orders of magnitude, and that the
largest objects are often of the same order of magnitude as
the HOC size itself. This extreme variability underscores
the need for cache admission, as placing one large object
in the HOC can result in the eviction of many small ones,
which can severely degrade the OHR (Section 3).

2) Prior academic research is largely inapplicable as
it focuses on caching objects of similar sizes. While the
academic literature on caching policies is extensive, it
focuses on situations where objects are of the same size.
Further, prior work almost exclusively focuses on eviction
policies, i.e., all requested objects are admitted to the
cache and space is only managed by eviction (Section 7).
Thus, there is little emphasis on cache admission in the
prior literature, even as we show that cache admission is
key in our context (Section 3).

3) Production systems implement a cache admis-
sion scheme with a static threshold that performs sub-
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Figure 2: Experimental results with different size thresh-
olds. (a) A OHR-vs-threshold curve shows that the Object
Hit Ratio (OHR) is highly sensitive to the size threshold,
and that the optimal threshold (red arrow) can significantly
improve the OHR. (b) The optimal threshold admits the
requested object for only 80% of the requests.

optimally for CDN workloads. In contrast to much of
the academic research, production systems recognize the
fact that not all objects can be admitted into the HOC.
A common approach is to define a static size threshold
and to only admit objects with size below this threshold.
Figure 2a shows how OHR is affected by the size thresh-
old for a production CDN workload. While the optimal
threshold (OPT) almost doubles the OHR compared to
admitting all objects, conservative thresholds that are too
high lead to marginal gains, and the OHR quickly drops
to zero for aggressive thresholds that are too low.

Unfortunately, the “best” threshold changes signifi-
cantly over time. Figures 3a and 3b show the OHR as a
function of the size threshold at two different times of the
day. Note that the optimal thresholds can vary by as much
as two orders of magnitude during a day. Since no prior
method exists for dynamically tuning such a threshold,
companies have resorted to either setting the size admis-
sion threshold conservatively high, or (more commonly)
not using size-aware admission at all [67, 54, 21].

4) Simple strategies for dynamically tuning cache ad-
mission parameters do not work well. While it may seem
that simple tuning approaches can be used to adapt the
size threshold parameter over time, this turns out to be
a non-trivial problem. This is probably why size-aware
admission is not used effectively in practice. In Sec-
tion 3, we consider common tuning approaches such as
hill climbing with shadow caches, or using a threshold
that is a fixed function of a request size percentile (e.g.,
the 80-th percentile as in Figure 2b). We also consider
using probabilistic size-aware admission, where small
sizes are “more likely” to be admitted, and large files are
“less likely” to be admitted. We find that none of these
approaches is sufficiently robust to traffic mix changes
that occur in daily operation due in part to the CDN’s
global load balancer.

1.2 Our contributions
We propose AdaptSize, a lightweight and near-optimal
tuning method for size-aware cache admission. Adapt-
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(a) Morning: web traffic.
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Figure 3: The optimal size threshold changes significantly
over time. (a) In the morning hours, small objects (e.g.,
news items) are more popular, which requires a small size
threshold of a few tens of KiBs. (b) In the evening hours,
web traffic gets mixed with video traffic, which requires a
size threshold of a few MiBs.

Size is based on a novel statistical representation of the
cache using a Markov model. This model is unique in
that it incorporates all correlations between object sizes
and current request rates (prior caching models assumed
unit-sized objects). This model is analytically tractable,
allowing us to quickly find the optimal size-aware admis-
sion policy and repeat this process at short intervals.

We have implemented AdaptSize within the Varnish
production caching system1 Varnish is known as a high-
throughput system that makes extensive use of concur-
rency [76, 43, 42] and is used by several prominent con-
tent providers and CDNs, including Wikipedia, Facebook,
and Twitter. Through evaluations of AdaptSize on produc-
tion request traces from one of the world’s largest CDNs,
Akamai, we observe the following key features.

1. AdaptSize improves the OHR by 47-91% over an
unmodified Varnish system, and by 30-48% over an
offline-tuned version of the Nginx caching system
(Figure 4 and Section 6.1). Varnish and Nginx are
used by almost 80% of the top 5000 websites, which
we determined by crawling Alexa’s top sites list [74].

2. In addition to improving upon production systems,
AdaptSize also improves the OHR by 33-46% over
state-of-the-art research caching systems (Figure 5
and Section 6.2).

3. Compared to other tuning methods, such as the clas-
sical hill climbing technique using shadow queues,
AdaptSize improves the OHR on average by 15-20%
and in some cases by more than 100% (Figure 6 and
Section 6.3). In particular, we found classical tuning
methods can get “stuck” at poor local optima that are
avoided by AdaptSize’s model-based optimization.

4. We compare AdaptSize with SIZE-OPT, which tunes
the size threshold parameter using a priori knowl-
edge of the next one million requests. AdaptSize
stays within 90% of the OHR of SIZE-OPT in the
median across all experiments and is never worse
than 80% of the OHR of SIZE-OPT (Sections 6.1

1The source code of AdaptSize and installation instructions are
available at https://github.com/dasebe/AdaptSize .
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Figure 4: Comparison of AdaptSize’s implementation to
the Varnish and Nginx production systems. We also show
the SIZE-OPT policy which has future knowledge and
uses this to set the optimal size threshold at every moment
in time. AdaptSize improves the OHR by 48-91% over
the production systems and also achieves 95% of the OHR
of SIZE-OPT. These results are for the US trace and a
typical HOC size (details in Section 5.1).

and 6.3) – even when subjected to extreme changes
in the request traffic.

5. In addition to improving the OHR, AdaptSize also
reduces request latencies by 43% in the median, and
by more than 30% at the 90-th and 99.9-th percentile.
AdaptSize is able to maintain the high throughput of
Varnish without adding (concurrent) synchronization
overheads, and reduces the disk utilization of the
second-level cache by 20% (Section 6.4).

Roadmap. The rest of this paper is structured as fol-
lows. Sections 2 and 3 discuss our goals and our rationale
in designing AdaptSize. Section 4 details AdaptSize’s
design and implementation. Sections 5 and 6 describe
our setup and experimental results, respectively. Section 7
reviews related work. We conclude in Section 8.

2 HOC Design Goals
In designing AdaptSize, we seek to maximize the OHR,
while maintaining a robust and scalable HOC and avoid-
ing adverse side-effects on second-level caches.

Maximizing the OHR. The HOC’s primary design
objective is user performance, which it optimizes by pro-
viding fast responses for as many requests as possible. A
natural way to measure this objective is the object hit ratio
(OHR), which gives equal weight to all user requests.

While our evaluations are based on production CDN
servers without SSDs, HOCs are also key to hybrid CDN
servers that typically have both hard disks and SSDs. This
is because HOCs are more CPU efficient and can serve
traffic at higher rates. Further, HOCs offload requests
from the SSDs that are often i/o bound. HOCs are used
in SSD-based servers at Akamai, and also at Fastly [54]
and Wikipedia [67]. These production deployments seek
to maximize the OHR of the HOC, which is the main
performance metric used throughout this paper.

There are other cache performance metrics that are less
relevant to the HOC. For example, the much larger DC
focuses on the byte hit rate (BHR) that is the fraction of
bytes that are served from the cache [71]. The HOC has

Figure 5: Comparison of AdaptSize to state-of-the-art
research caching systems. Most of these use sophisticated
admission and eviction policies that combine recency
and frequency (striped blue bars). AdaptSize improves
the OHR by 46% over the next best system. Policies
annotated by “++” are actually optimistic, because we
offline-tuned their parameters to the trace. These results
are for the US trace and a HOC size 1.2 GiB.

little impact on the BHR as it is typically three orders of
magnitude smaller than the DC.

Robustness against changing request patterns. A
HOC is subjected to a variety of traffic changes each day.
For example, web content popularity changes during the
day (e.g., news in the morning vs. video at night), which
includes rapid changes due to flash crowds. Another
source of traffic changes is the sharing of the server in-
frastructure between traffic classes. Such classes include
web sites, videos, software downloads, and interactive
applications from thousands of content providers [57].
As a shared infrastructure is more cost effective, a CDN
server typically serves a mix of traffic classes. Due to
load balancing decisions, this mix can change abruptly.
This poses a particular challenge as each traffic class has
its own distinctive request and object size distribution
statistics: large objects can be unpopular during one hour
and popular during the next. A HOC admission policy
must be able to rapidly adapt to all these changing request
patterns in order to achieve consistently high OHRs.

Low overhead and high concurrency. As the first
caching level in a CDN, the HOC needs to both respond
quickly to requests and deliver high throughput. This
requires that the admission and eviction policies have
a small processing overhead, i.e., a constant time com-
plexity per request (see the O(1) policies in Table 2 in
Section 7), and that they have concurrent implementations
(see the corresponding column in Table 2).

No negative side-effects. While the HOC achieves a
high OHR and fast responses, it must not impede the per-
formance of the overall CDN server. Specifically, changes
to the HOC must not negatively affect the BHR and disk
utilization of the DC.

3 Rationale for AdaptSize
The goal of this section is to answer why the HOC needs
size-aware admission, why such an admission policy
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Figure 6: Comparison of AdaptSize, threshold tuning via
hill climbing and shadow caches (HillClimb), and a static
size threshold (Static) under a traffic mix change from
only web to mixed web/video traffic. While AdaptSize
quickly adapts to the new traffic mix, HillClimb gets stuck
in a suboptimal configuration, and Static (by definition)
does not adapt. AdaptSize improves the OHR by 20%
over HillClimb and by 25% over Static on this trace.

needs to be adaptively tuned, and why a new approach to
parameter tuning is needed.

3.1 Why HOCs need size-aware admission
We start with a toy example. Imagine that there are only
two types of objects: 9999 small objects of size 100 KiB
(say, web pages) and 1 large object of size 500 MiB (say,
a software download). Further, assume that all objects
are equally popular and requested forever in round-robin
order. Suppose that our HOC has a capacity of 1 GiB.

A HOC that does not use admission control cannot
achieve an OHR above 0.5. Every time the large object
is requested, it pushes out ⇡5000 small objects. It does
not matter which objects are evicted: when the evicted
objects are requested, they cannot contribute to the OHR.

An obvious solution for this toy example is to control
admissions via a size threshold. If the HOC admits only
objects with a size at most 100 KiB, then it can achieve
an OHR of 0.9999 as all small objects stay in the cache.

This toy example is illustrative of what happens under
real production traffic. We observe from Figure 1 that
approximately 5% of objects have a size bigger than 1
MiB. Every time a cache admits a 1 MiB object, it needs
to evict space equivalent to one thousand 1 KiB objects,
which make up about 15% of requests. Again, those
evicted objects will not be able to contribute to the OHR.
A well-designed cache admission algorithm could help
avoid such evictions that have a large impact on OHR.

3.2 Why we need a new tuning method
The key question when implementing size-aware admis-
sion is picking its parameters. Figure 2 shows that a
static size threshold is inadequate. Next, we explore three
canonical approaches for tuning a size threshold. These
approaches are well-known in prior literature and have
been applied in other contexts (unrelated to the tuning
of size thresholds). However, we show that these known
approaches are deficient in our context, motivating the
need for AdaptSize’s new tuning mechanism.
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Figure 7: Experimental results showing that setting the
size threshold to a fixed function does not work. All three
traces shown here have the same 80-th size percentile, but
their optimal thresholds differ by two orders of magnitude.

Tuning based on request size percentiles. A com-
mon approach used in many contexts (e.g., capacity pro-
visioning) is to derive the required parameter as some
function of the request size distribution and arrival rate.
A simple way of using this approach in our context is to
set the size threshold for cache admission to be a fixed
percentile of the object size distribution. However, for
production CDN traces, there is no fixed relationship
between the percentiles of the object size distribution
and optimal size threshold that maximizes the OHR. In
Figure 2, the optimal size threshold lands on the 80-th
percentile request size. However, in Figure 7, note that
all three traces have the same 80-th percentile but very
different optimal thresholds. In fact, we found many ex-
amples of multiple traces that agree on all size percentiles
and yet have different optimal size thresholds. The rea-
son is that for maximizing OHR it matters whether the
number of requests seen for a specific object size come
from one (very popular) object or from many (unpopular)
objects. This information is not captured by the request
size distribution.

Tuning via hill climbing and shadow caches. A com-
mon tool for the tuning of caching parameters is the use
of shadow caches. For example, in the seminal paper
on ARC [53], the authors tune their eviction policy to
have the optimal balance between recency and frequency
by using a shadow cache (we discuss other related work
using shadow caches in Section 7.2). A shadow cache
is a simulation which is run in real time simultaneously
with the main (implemented) cache, but using a different
parameter value than the main cache. Hill climbing then
adapts the parameter by comparing the hit ratio achieved
by the shadow cache to that of the main cache (or another
shadow cache). In theory, we could exploit the same idea
to set our size-aware admission threshold. Unfortunately,
when we tried this, we found that the OHR-vs-threshold
curves are not concave and that they can have several
local optima, in which the hill climbing gets frequently
stuck. Figure 3b shows such an example, in which the
local optima result from mixed traffic (web and video).
As a consequence, we will demonstrate experimentally in
Section 6.3 that hill climbing is suboptimal. AdaptSize
achieves an OHR that is 29% higher than hill climbing on
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average and 75% higher in some cases. We tried adding
more shadow caches, and also randomizing the evalu-
ated parameters, but could not find a robust variant that
consistently optimized the OHR across multiple traces2.

In conclusion, our extensive experiments show that
tuning methods like shadow caches with hill climbing are
simply not robust enough for the problem of size-aware
admission with CDN traffic.

Avoiding tuning by using probabilistic admission.
One might imagine that the difficulty in tuning the size
threshold lies in the fact that we are limited to a single
strict threshold. The vast literature on randomized algo-
rithm suggests that probabilistic parameters are more ro-
bust than deterministic ones [55]. We attempted to apply
this idea to size-aware tuning by considering probabilistic
admission policies, which “favor the smalls” by admit-
ting them with high probability, whereas large objects are
admitted with low probability. We chose a probabilistic
function that is exponentially decreasing in the object size
(e�size/c). Unfortunately, the parameterization of the ex-
ponential curve (the c) matters a lot – and it’s just as hard
to find this c parameter as it is to find the optimal size
threshold. Furthermore, the best exponential curve (the
best c) changes over time. In addition to exponentially
decreasing probabilities, we also tried inversely propor-
tional, linear, and log-linear variants. Unfortunately, none
of these variants resolves the problem that there is at least
one parameter without an obvious way how to choose it.

In conclusion, even randomized admission control re-
quires the tuning of some parameter.

4 The AdaptSize Caching System
AdaptSize admits objects with probability e�size/c and
evicts objects using a concurrent variant of LRU [43].
Observe that the function e�size/c is biased in favor of
admitting small sizes with higher probability.

Why a probabilistic admission function? The sim-
plest size-based admission policy is a deterministic thresh-
old c where only objects with a size < c are admitted. A
probabilistic admission function, like e�size/c, is more
flexible: objects greater than c retain a low but non-zero
admission probability, which results in eventual admission
for popular objects (but not for unpopular ones). In our
experiments e�size/c consistently achieves a 10% higher
OHR than the best deterministic threshold.

What parameter c does AdaptSize use in the e�size/c

function? AdaptSize’s tuning policy recomputes the op-
timal c every D requests. A natural approach is to use
hill-climbing with shadow caches to determine the opti-
mal c parameter. Unfortunately, that leads to a myopic
view in that only a local neighborhood of the current c can

2While there are many complicated variants of shadow-cache search
algorithms, they all rely on a fundamental assumption of stationarity,
which does not need to apply to web traffic.

Figure 8: AdaptSize’s Markov chain model for object i
represents i’s position in the LRU list and the possibil-
ity that the object is out of the cache. Each object is
represented by a separate Markov chain, but all Markov
chains are connected by the common “pushdown” rate µc.
Solving these models yields the OHR as a function of c.

be searched. This leads to sub-optimal results, given the
non-convexities present in the OHR-vs-c curve (Figure 3).
By contrast, we derive a full Markov chain model of the
cache. This model allows AdaptSize to view the entire
OHR-vs-c curve and perform a global search for the opti-
mal c. The challenge of the Markov model approach is in
devising an algorithm for finding the solution quickly and
in incorporating that algorithm into a production system.

In the following, we describe the derivation of Adapt-
Size’s Markov model (Section 4.1), and how we incorpo-
rate AdaptSize into a production system (Section 4.2).

4.1 AdaptSize’s Markov chain tuning model
To find the optimal c, AdaptSize uses a novel Markov
chain model, which is very different from that typi-
cally used for cache modeling. Traditionally, people
have modeled the entire state of the cache, tracking
all objects in the cache and their ordering in the LRU
list [44, 30, 15, 52, 10, 33, 25, 24, 19, 68]. While this
is 100% accurate, it also becomes completely infeasible
when the number of objects is high, because of a combi-
natorical state space explosion.

AdaptSize instead creates a separate Markov chain for
each object (cf. Figure 8). Each object’s chain tracks
its position in the LRU list (if the object is in the cache),
as well as a state for the possibility that the object is out
of the cache. Using an individual Markov chain greatly
reduces the model complexity, which now scales linearly
with the number of objects, rather than exponentially in
the number of objects.

AdaptSize’s Markov chain. Figure 8 shows the
Markov chain for the ith object. The chain has two im-
portant parameters. The first is the rate at which object i
is moved up to the head of the LRU list, due to accesses
to the object. We get the “move up” rate, ri, by collect-
ing aggregate statistics for object i during the previous
D time interval. The second parameter is the average
rate at which object i is pushed down the LRU list. The
“pushdown” rate, µc, depends on the rate with which any
object is moved to the top of the LRU list (due to a hit,
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or after cache admission). As it does not matter which
object is moved to the top, µc is approximately the same
for all objects. So, we consider a single “pushdown” rate
for all objects. We calculate µc by solving an equation
that takes all objects into account, and thus captures the
interactions between all the objects3. Specifically, we find
µc by solving an equation that says that the expected size
of all cached objects can’t exceed the capacity K that is
actually available to the cache:

N

Â
i=1

P[object i in cache] si = K . (1)

Here, N is the number of all objects observed over the
previous D interval, and si is the size of object i. Note that
P[object i in cache] is a monotonic function in terms of
µc, which leads to a unique solution.

Our new model enables us to find P[object i in cache]
as a function of c by solving for the limiting probabilities
of all “in” states in Figure 8. Appendix A shows how this
is done. We obtain a function of c in closed form.
Theorem 1 (proof in Appendix A)

P[object i in cache] =
(eri/µc �1) · e�c·si

1+(eri/µc �1) · e�c·si

Note that the size admission parameter c affects both the
admission probability (e�si/c) and the pushdown rate (µc).
For example, a lower c results in fewer admissions, which
results in fewer evictions, and in a smaller pushdown rate.

The OHR as a function of c. Theorem 1 and Equa-
tion (1) yield the OHR by observing that the expected
number of hits of object i equals ri (i’s average request
rate) times the long-term probability that i is in the cache.
The OHR predicted for the threshold parameter c is then
simply the ratio of expected hits to requests:

OHR(c) = ÂN
i=1 riP[object i in cache]

ÂN
i=1 ri

.

If we consider a discretized range of c values, we can now
compute the OHR for each c in the range which gives us
a “curve” of OHR-vs-c (similar to the curves in Figure 9).

Global search for the optimal c. Every D steps, we
derive the OHR-vs-c curve using our Markov model. We
search this curve for the c that maximizes the OHR using
a standard global search method for non-concave func-
tions [64]. This c is then used for the next D steps.

Accuracy of AdaptSize’s model. Our Markov chain
relies on several simplifying assumptions that can poten-
tially impact the accuracy of the OHR predictions. Fig-
ure 9 shows that AdaptSize’s OHR equation matches ex-
perimental results across the whole range of the threshold
parameter c on two typical traces of length D. In addition,
we continuously compared AdaptSize’s model to mea-
surements during our experiments (Section 6). AdaptSize
is very accurate with an average error of about 1%.

3Mean-field theory [45] provides analytical justification for why it
is reasonable to assume a single average pushdown rate, when there are
thousands of objects (as in our case).
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Figure 9: AdaptSize’s Markov model predicts the OHR
sensitivity curve (red solid line). This is very accurate
when compared to the actual OHR (black dots) that results
when that threshold is chosen. Each experiment involves
a portion of the production trace of length D = 250K.

4.2 Integration with a production system
We implemented AdaptSize on top of Varnish [76, 32], a
production caching system, by modifying the miss request
path. On a cache miss, Varnish accesses the second-level
cache to retrieve the object, and places it in its HOC.
With AdaptSize, the probabilistic admission decision is
executed, which is evaluated independently for all cache
threads and adds a constant number of instructions to the
request path. If the object is not admitted, it is served
from Varnish’s transient memory.

Our implementation uses a parameter D which is the
size of the window of requests over which our Markov
model for tuning is computed. In addition to statistics
from the current window, we also incorporate the statisti-
cal history from prior windows via exponential smoothing,
which makes AdaptSize more robust and largely insen-
sitive to D on both of our production traces. In our ex-
periments, we choose D=250K requests (about 5-10 mins
on average), which allows AdaptSize to react quickly to
changes in the request traffic.

Lock-free statistics collection. A key problem in im-
plementing AdaptSize lies in efficient statistics collection
for the tuning model. Gathering request statistics can add
significant overhead to concurrent caching designs [69].
Varnish and AdaptSize use thousands of threads in our
experiments, so centralized request counters would cause
high lock contention. In fact, we find that Varnish’s
throughput bottleneck is lock contention for the few re-
maining synchronization points (e.g., [43]).

Instead of a central request counter, AdaptSize hooks
into the internal data structure of the cache threads. Each
cache thread keeps debugging information in a concurrent
ring buffer, to which all events are simply appended (over-
writing old events after some time). AdaptSize’s statistics
collection frequently scans this ring buffer (read only) and
does not require any synchronization.

Robust and efficient model evaluation. The OHR
prediction in our statistical model involves two more im-
plementation challenges. The first challenge lies in effi-
ciently solving equation (1). We achieve a constant time
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HK trace US trace
Total Requests 450 million 440 million

Total Bytes 157.5 TiB 152.3 TiB
Unique Objects 25 million 55 million
Unique Bytes 14.7 TiB 8.9 TiB

Start Date Jan 29, 2015 Jul 15, 2015
End Date Feb 06, 2015 Jul 20, 2015

Table 1: Basic information about our web traces.

overhead by using a fixed-point solver [26]. The second
challenge is due to the exponential function in the The-
orem 1. The value of the exponential function outgrows
even 128-bit float number representations. We solve this
problem by using an accurate and efficient approxima-
tion for the exponential function using a Padé approxi-
mant [63] that only uses simple float operations which are
compatible with SSE/AVX vectorization, speeding up the
model evaluation by about 10-50⇥ in our experiments.

5 Evaluation Methodology
We evaluate AdaptSize using both trace-based simulations
(Section 5.2) and a Varnish-based implementation (Sec-
tion 5.3) running on our experimental testbed. For both
these approaches, the request load is derived from traces
from Akamai’s production CDN servers (Section 5.1).
5.1 Production CDN request traces
We collected request traces from two production CDN
servers in Akamai’s global network. Table 1 summarizes
the main characteristics of the two traces. Our first trace
is from urban Hong Kong (HK trace). Our second trace
is from rural Tennessee, in the US, (US trace). Both span
multiple consecutive days, with over 440 million requests
per trace during the months of February and July 2015.
Both production servers use a HOC of size 1.2 GiB and
several hard disks as second-level caches. They serve a
traffic mix of several thousand popular web sites, which
represents a typical cross section of the web (news, so-
cial networks, downloads, ecommerce, etc.) with highly
variable object sizes. Some content providers split very
large objects (e.g., videos) into smaller (e.g., 2 MiB)
chunks. The chunking approach is accurately represented
in our request traces. For example, the cumulative dis-
tribution function shown in Figure 1 shows a noticeable
jump around the popular 2 MiB chunk size.
5.2 Trace-based simulator
We implemented a cache simulator in C++ that incor-
porates AdaptSize and several state-of-the-art research
caching policies. The simulator is a single-threaded im-
plementation of the admission and eviction policies and
performs the appropriate cache actions when it is fed the
CDN request traces. Objects are only stored via their
ids and the HOC size is enforced by a simple check on
the sum of bytes currently stored. While actual caching
systems (such as Varnish [43, 42]) use multi-threaded con-

current implementations, our simulator provides a good
approximation of the OHR when compared with our pro-
totype implementations that we describe next.
5.3 Prototype Evaluation Testbed
Our implementation testbed is a dedicated (university)
data center consisting of a client server, an origin server,
and a CDN server that incorporates the HOC. We use
FUJITSU CX250 HPC servers, which run RHEL 6.5,
kernel 2.6.32 and gcc 4.4.7 on two Intel E5-2670 CPUs
with 32 GiB RAM and an IB QDR networking interface.

In our evaluation, the HOC on our CDN server is ei-
ther running Nginx, Varnish, or AdaptSize. Recall that
we implemented AdaptSize by adding it to Varnish4 as
described in Section 4.2. We use Nginx 1.9.12 (February
2016) with its build-in frequency-based admission policy.
This policy relies on one parameter: how many requests
need to be seen for an object before being admitted to the
cache. We use an optimized version of Nginx, since we
have tuned its parameter offline for both traces. We use
Varnish 4.1.2 (March 2016) with its default configuration
that does not use an admission policy.

The experiments in Section 6.1, 6.2, and 6.3 focus on
the HOC and do not use a DC. The DC in Section 6.1 uses
Varnish in a configuration similar to that of the Wikimedia
Foundation’s CDN [67]. We use four equal dedicated
1 TB WD-RE3 7200 RPM 32 MiB-Cache hard disks
attached via a Dell 6 Gb/s SAS Host Bus Adapter Card in
raw mode (RAID disabled).

The client fetches content specified in the request trace
from the CDN server using libcurl. The request trace is
continuously read into a global queue, which is distributed
to worker threads (client threads). Each client thread
continually requests objects in a closed-loop fashion. We
use up to 200 such threads and verified that the number
of client threads has a negligible impact on the OHR.

If the CDN server does not have the requested content,
it is fetched from the origin server. Our origin server is im-
plemented in FastCGI. As it is infeasible to store all trace
objects (23 TB total) on the origin server, our implementa-
tion creates objects with the correct size on the fly before
sending them over the network. In order to stress test
our caching implementation, the origin server is highly
multi-threaded and intentionally never the bottleneck.

6 Empirical Evaluation
This section presents our empirical evaluation of Adapt-
Size. We divide our evaluation into three parts. In Sec-
tion 6.1, we compare AdaptSize with production caching
systems, as well as with an offline caching system called
SIZE-OPT that continuously optimizes OHR with knowl-
edge of future requests. While SIZE-OPT is not imple-
mentable in practice. it provides an upper bound on the

4We refer to AdaptSize incorporated into Varnish as “AdaptSize”
and Varnish without modifications as “Varnish”.
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Figure 10: Comparison of AdaptSize’s implementation
to the Varnish and Nginx production systems and SIZE-
OPT. AdaptSize improves the OHR by 30-47% over the
production systems and also achieves 99% of the OHR
of SIZE-OPT. These results are for the HK trace; corre-
sponding results for the US trace are shown in Figure 4.

achievable OHR to which AdaptSize can be compared. In
Section 6.2, we compare AdaptSize with research caching
systems that use more elaborate eviction and admission
policies. In Section 6.3, we evaluate the robustness of
AdaptSize by emulating both randomized and adversar-
ial traffic mix changes. In Section 6.4, we evaluate the
side-effects of AdaptSize on the overall CDN server.

6.1 Comparison with production systems
We use our experimental testbed outlined in Section 5.3
and answer four basic questions about AdaptSize.

What is AdaptSize’s OHR improvement over pro-
duction systems? Quick answer: AdaptSize improves
the OHR by 47-91% over Varnish and by 30-48% over
Nginx. We compare the OHR of AdaptSize to Nginx and
Varnish using the 1.2 GiB HOC configuration from the
corresponding Akamai production servers (Section 5.1).
For the HK trace (Figure 10), we find that AdaptSize
improves over Nginx by 30% and over Varnish by 47%.
For the US trace (Figure 4), the improvement increases to
48% over Nginx and 91% over Varnish.

The difference in the improvement over the two traces
stems from the fact that the US trace contains 55 million
unique objects as compared to only 25 million unique
objects in the HK trace. We further find that AdaptSize
improves the OHR variability (the coefficient of variation)
by 1.9⇥ on the HK trace and by 3.8⇥ on the US trace
(compared to Nginx and Varnish).

How does AdaptSize compare with SIZE-OPT?
Quick answer: for the typical HOC size, AdaptSize
achieves an OHR within 95% of SIZE-OPT. We bench-
mark AdaptSize against the SIZE-OPT policy, which
tunes the threshold parameter c using a priori knowledge
of the next one million requests. Figures 4 and 10 show
that AdaptSize is within 95% of SIZE-OPT on the US
trace, and within 99% of SIZE-OPT on the HK trace,
respectively.

How much is AdaptSize’s performance affected by
the HOC size? Quick answer: AdaptSize’s improvement
over production caching systems becomes greater for
smaller HOC sizes, and decreases for larger HOC sizes.
We consider the OHR when scaling the HOC size between
512 MiB and 32 GiB under the production server traffic
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Figure 11: Comparison of AdaptSize to SIZE-OPT, Var-
nish, and Nginx when scaling the HOC size under the
production server traffic of two 1.2 GiB HOCs. Adapt-
Size always stays close to SIZE-OPT and significantly
improves the OHR for all HOC sizes.

of a 1.2 GiB HOC. Figures 11a and 11b shows that the
performance of AdaptSize is close to SIZE-OPT for all
HOC sizes. The improvement of AdaptSize over Nginx
and Varnish is most pronounced for HOC sizes close to
the original configuration. As the HOC size increases,
the OHR of all caching systems improves, since the HOC
can store more objects. This leads to a smaller relative
improvement of AdaptSize for a HOC size of 32 GiB:
10-12% over Nginx and 13-14% over Varnish.

How much is AdaptSize’s performance affected
when jointly scaling up HOC size and traffic rate?
Quick answer: AdaptSize’s improvement over produc-
tion caching systems remains constant for larger HOC
sizes. We consider the OHR when jointly scaling the
HOC size and the traffic rate by up 128x (153 GiB HOC
size). This is done by splitting a production trace into
128 non-overlapping segments and replaying all 128 seg-
ments concurrently. We find that the OHR remains ap-
proximately constant as we scale up the system, and that
AdaptSize achieves similar OHR improvements as under
the original 1.2 GiB HOC configuration.

What about AdaptSize’s overhead? Quick answer:
AdaptSize’s throughput is comparable to existing produc-
tion systems and AdaptSize’s memory overhead is reason-
ably small. AdaptSize is build on top of Varnish, which
focuses on high concurrency and simplicity. In Figure 12,
we compare the throughput (bytes per second of satisfied
requests) of AdaptSize to an unmodified Varnish system.
We use two micro experiments. The first benchmarks the
hit request path (100% OHR scenario), to verify that there
is indeed no overhead for cache hits (see section 4.2).
The second benchmarks the miss request path (0% OHR
scenario), to assess the worst-case overhead due to the
admission decision.

We replay one million requests and configure different
concurrency levels via the number of client threads. Note
that a client thread does not represent an individual user
(Section 5.3). The results are based on 50 repetitions.
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Figure 12: Comparison of the throughput of AdaptSize
and Varnish in micro experiments with (a) 100% OHR and
(b) 0% OHR. Scenario (a) stress tests the hit request path
and shows that there is no difference between AdaptSize
and Varnish. Scenario (b) stress tests the miss request
path (every request requires an admission decision) and
shows that the throughput of AdaptSize and Varnish is
very close (within confidence intervals).

Figure 12a shows that the application throughput of
AdaptSize and Varnish are indistinguishable in the 100%
OHR scenario. Both systems achieve a peak through-
put of 17.5 Gb/s for 50 clients threads. Due to lock
contention, the throughput of both systems decreases to
around 15 Gb/s for 100-300 clients threads. Figure 12b
shows that the application throughput of both systems in
the 0% OHR scenario is very close, and always within
the 95% confidence interval.

The memory overhead of AdaptSize is small. The mem-
ory overhead comes from the request statistics needed for
AdaptSize’s tuning model. Each entry in this list describes
one object (size, request count, hash), which requires less
than 40 bytes. The maximum length of this list, across
all experiments, is 1.5 million objects (58 MiB), which
also agrees with the memory high water mark (VmHWM)
reported by the Kernel for AdaptSize’s tuning process.

6.2 Comparison with research systems
We have seen that AdaptSize performs very well against
production systems. We now ask the following.

How does AdaptSize compare with research
caching systems, which involve more sophisticated ad-
mission and eviction policies? Quick answer: Adapt-
Size improves by 33-46% over state-of-the-art research
caching system. We use the simulation evaluation setup
explained in Section 5.2 with eight systems from Table 2,
which are selected with the criteria of having an efficient
constant-time implementation. Four of the eight systems
use a recency and frequency trade-off with fixed weights
between recency and frequency. Another three systems
(ending with “++”) use sophisticated recency and fre-
quency trade-offs with variable weights, which we hand-
tuned to our traces to create optimistic variants5. The

5There are self-tuning variants of recency-frequency trade-offs such
as ARC [53]. Unfortunately, we could not test ARC itself, because its
learning rule relies on the assumption of unit-sized object sizes.

Figure 13: Comparison of AdaptSize to state-of-the-art
research caching systems. Most of these are sophisticated
admission and eviction policies that combine recency and
frequency (striped blue bars). LRU-S is the only system
– besides AdaptSize – that incorporates size. AdaptSize
improves the OHR by 33% over the next best system. Poli-
cies annotated by “++” are actually optimistic, because
we offline-tuned their parameters to the trace. These re-
sults are for the HK trace; correspondings results for the
US trace are shown in Figure 5.

remaining system is LRU-S [72], which uses size-aware
eviction and admission with static parameters.

Figure 13 shows the simulation results for a HOC of
size 1.2 GiB on the HK trace. We find that AdaptSize
achieves a 33% higher OHR than the second best system,
which is SLRU++. Figure 5 shows the simulation results
for the US trace. AdaptSize achieves a 46% higher OHR
than the second best system, which is again SLRU++.
Note that SLRU’s performance heavily relies on offline
parameters as can be seen by the much smaller OHR
of S4LRU, which is a static-parameter variant of SLRU.
In contrast, AdaptSize achieves its superior performance
without needing offline parameter optimization. In con-
clusion, we find that AdaptSize’s policies outperform
sophisticated eviction and admission policies, which do
not depend on the object size.

6.3 Robustness of alternative tuning methods
for size-aware admission

So far we have seen that AdaptSize significantly improves
the OHR over caching systems without size-aware admis-
sion, including production caching systems (Section 6.1)
and research caching systems (Section 6.2). We now
focus on different cache tuning methods for the size-
aware admission parameter c (see the beginning of Sec-
tion 4). Specifically, we compare AdaptSize with hill
climbing (HillClimb), based on shadow caches (cf. Sec-
tion 3). HillClimb uses two shadow caches and we hand-
optimized its parameters (interval of climbing steps, step
size) on our production traces. We also compare to a
static size threshold (Static), where the value of this static
threshold is offline optimized on our production traces.
We also compare to SIZE-OPT, which tunes c based on
offline knowledge of the next one million requests. All
four policies are implemented on Varnish using the setup
explained in Section 5.3.
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Figure 14: Comparison of cache tuning methods under
traffic mix changes. We performed 50 randomized traffic
mix changes (a), and 25 adversarial traffic mix changes
(b). The boxes show the range of OHR from the 25-th to
the 75-th percentile among the 25-50 experiments. The
whiskers show the 5-th to the 95-th percentile.

We consider two scenarios: 1) randomized traffic mix
changes and 2) adversarial traffic mix changes. A ran-
domized traffic mix change involves a random selection
of objects which abruptly become very popular (similar to
a flash crowd event). An adversarial traffic mix change in-
volves frequently changing the traffic mix between classes
that require vastly different size-aware admission parame-
ters (e.g., web, video, or download traffic). An example
of an adversarial change is the case where objects larger
than the previously-optimal threshold suddenly become
very popular.

Is AdaptSize robust against randomized traffic mix
changes? Quick answer: AdaptSize performs within 95%
of SIZE-OPT’s OHR even for the worst 5% of experiments,
whereas HillClimb and Static achieve only 47-54% of
SIZE-OPT’s OHR. We create 50 different randomized
traffic mix changes. Each experiment consists of two parts.
The first part is five million requests long, and allows each
tuning method to converge to a stable configuration. The
second part is ten million requests long, and consists of
50% production-trace requests and 50% of very popular
objects. The very popular objects consist of a random
number of objects (between 200 and 1000), which are
randomly sampled from the trace.

Figure 14a shows a boxplot of the OHR for each
caching tuning method across the 50 experiments. The
boxes indicate the 25-th and 75-th percentile, the whiskers
indicate the 5-th and 95-th percentile. AdaptSize im-
proves the OHR over HillClimb across every percentile,
by 9% on average, and by more than 75% in five of the 50
experiments. AdaptSize improves the OHR over Static
across every percentile, by 30% on average, and by more
than 100% in five of the 50 experiments. Compared to
SIZE-OPT, AdaptSize achieves 95% of the OHR for all
percentiles.

Is AdaptSize robust against adversarial traffic mix
changes? Quick answer: AdaptSize performs within 81%
of SIZE-OPT’s OHR even for the worst 5% of experiments,
whereas HillClimb and Static achieve only 5-15% of SIZE-

OPT’s OHR. Our experiment consists of 25 traffic mix
changes. Each traffic mix is three million requests long,
and the optimal c parameter changes from 32-256 KiB to
1-2 MiB, then to 16-32 MiB, and back again.

Figure 14b shows a boxplot of the OHR for each
caching tuning method across all 50 experiments. The
boxes indicate the 25-th and 75-th percentile, the whiskers
indicate the 5-th and 95-th percentile. AdaptSize im-
proves the OHR over HillClimb across every percentile,
by 29% on average, and by more than 75% in seven of
the 25 experiments. AdaptSize improves the OHR over
Static across every percentile, by almost 3x on average,
and by more than 10x in eleven of the 25 experiments.
Compared to SIZE-OPT, AdaptSize achieves 81% of the
OHR for all percentiles.

6.4 Side effects of Size-Aware Admission
So far our evaluation has focused on AdaptSize’s improve-
ment with regard to the OHR. We evaluate AdaptSize’s
side-effects on the DC and on the client’s request latency
(cf. Section 2). Specifically, we compare AdaptSize to
an unmodified Varnish system using the setup explained
in Section 5.3. Network latencies are emulated using the
Linux kernel (tc-netem). We set a 30ms round-trip latency
between client and CDN server, and 100ms round-trip
latency between CDN server and origin server. We an-
swer the following three questions on the CDN server’s
performance.

How much does AdaptSize affect the BHR of the
DC? Quick answer: AdaptSize has a neutral effect on
the BHR of the DC. The DC’s goal is to maximize the
BHR, which is achieved by a very large DC capacity [49].
In fact, compared to the DC the HOC has less than on
thousandth the capacity. Therefore, changes to the HOC
have little effect on the DC’s BHR.

In our experiment, we measure the DC’s byte hit ratio
(BHR) from the origin server. Figure 15a shows that
there is no noticeable difference between the BHR under
AdaptSize and under an unmodified Varnish.

Does AdaptSize increase the load of the DC’s hard-
disks? Quick answer: No. In fact, AdaptSize reduces
the average disk utilization by 20%. With AdaptSize, the
HOC admits fewer large objects, but caches many more
small objects. The DC’s request traffic therefore consists
of more requests to large objects, and significantly fewer
requests to small objects.

We measure the request size distribution at the DC and
report the corresponding histogram in Figure 16. We
observe that AdaptSize decreases the number of cache
misses significantly for all object sizes below 256 KiB.
For object sizes above 256 KiB, we observe a slight in-
crease in the number of cache misses. Overall, we find
that the DC has to serve 60% fewer requests with Adapt-
Size, but that the disks have to transfer a 30% higher
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Figure 15: Evaluation of AdaptSize’s side effects across
ten different sections of the US trace. AdaptSize has a
neutral impact on the byte hit ratio, and leads to a 10%
reduction in the median number of I/O operations going
to the disk, and a 20% reduction in disk utilization.

byte volume. The average request size is also 4x larger
with AdaptSize, which improves the sequentiality of disk
access and thus makes the DC’s disks more efficient.

To quantify the performance impact on the DC’s hard-
disks we use iostat [31]. Figure 15b shows that the aver-
age rate of I/O operations per second decreases by about
10%. Moreover, Figure 15c shows that AdaptSize reduces
the disk’s utilization (the fraction of time with busy peri-
ods) by more than 20%. We conclude that the increase
in byte volume is more than offset by the fact that Adapt-
Size shields the DC from many small requests and also
improves the sequentiality of requests served by the DC.

How much does AdaptSize reduce the request la-
tency? Quick answer: AdaptSize reduces the request
latency across all percentiles by at least 30%.

We measure the end-to-end request latency (time until
completion of a request) from the client server. Figure 15d
shows that AdaptSize reduces the median request latency
by 43%, which is mostly achieved by the fast HOC an-
swering a higher fraction of requests. The figure also
shows significant reduction of tail latency, e.g., the 90-th
and 99-th latency percentiles are reduced by more than
30%. This reduction in the tail latency is due to the DC’s
improved utilization factor, which leads to a much smaller
number of outstanding requests, which makes it easier to
absorb traffic bursts.

7 Related Work
The extensive related work in caching can be divided
into two major lines of work: research caching systems
(Section 7.1), and cache tuning methods (Section 7.2).
7.1 Research caching systems
Table 2 surveys 33 caching systems proposed in the re-
search literature between 1993 and 2016. We classify
these systems in terms of the per-request time complexity,
the eviction and admission policies used, the support for
a concurrent implementation, and the evaluation method.

Not all of the 33 caching systems fulfill the low over-
head design goal of Section 2. Specifically, the complex-
ity column in Table 2 shows that some proposals before
2002 have a computational overhead that scales logarith-
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Figure 16: Comparison of the distribution of request sizes
to the disk cache under a HOC running AdaptSize versus
unmodified Varnish. All object sizes below 256 KiB
are significantly less frequent under AdaptSize, whereas
larger objects are slightly more frequent.

mically in the number of objects in the cache, which is
impractical. AdaptSize differs from these systems be-
cause it has a constant complexity, and a low synchroniza-
tion overhead, which we demonstrated by incorporating
AdaptSize into the Varnish production system.

Of those caching systems that have a low overhead,
almost none (except LRU-S and Threshold) incorporate
object sizes. In particular, these systems admit and evict
objects based only on recency, frequency, or a combi-
nation thereof. AdaptSize differs from these systems
because it is size aware, which improves the OHR by
33-46% (as shown in Section 6.2).

There are only three low-overhead caching systems that
are size aware. Threshold [2] uses a static size threshold,
which has to be determined in advance. The correspond-
ing Static policy in Section 6.3 performs poorly in our ex-
periments. LRU-S [72] uses size-aware admission, where
it admits objects with probability 1/size. Unfortunately,
this static probability is too low6. AdaptSize achieves a
61-78% OHR improvement over LRU-S (Figures 5 and
13). The third system [56] also uses a static parameter, and
was developed in parallel to AdaptSize. AdaptSize differs
from these caching systems by automatically adapting the
size-aware admission parameter over time.

While most of these caching systems share our goal of
improving the OHR, an orthogonal line of research seeks
to achieve superior throughput using concurrent cache
implementations (compare the concurrent implementation
column in Table 2). AdaptSize also uses a concurrent
implementation and achieves throughput comparable to
production systems (Section 6.1). AdaptSize differs from
these systems by improving the OHR – without sacrificing
cache throughput.

The last column in Table 2 shows that most recent
caching systems are evaluated using prototype implemen-
tations. Likewise, this work evaluates an actual imple-
mentation of AdaptSize (Sections 5 and 6) through ex-
periments in a dedicated data center. We additionally
use trace-driven simulations to compare to some of those
systems that have only been used in simulations.

6We also tested several variants of LRU-S. We were either confronted
with a cache tuning problem with no obvious solution (Section 3.2), or
(by removing the admission component) with an OHR similar to LRU.
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Name Year Complexity Admission Policy Eviction Policy Concurrent Imp. Evaluation
AdaptSize 2016 O(1) size recency yes implementation
Cliffhanger [14] 2016 O(1) none recency no implementation
Billion [47] 2015 O(1) none recency yes implementation
BloomFilter [49] 2015 O(1) frequency recency no implementation
SLRU [29] 2015 O(1) none recency+frequency no analysis
Lama [34] 2015 O(1) none recency no implementation
DynaCache [13] 2015 O(1) none recency no implementation
MICA [48] 2014 O(1) none recency yes implementation
TLRU [20] 2014 O(1) frequency recency no simulation
MemC3 [23] 2013 O(1) none recency yes implementation
S4LRU [35] 2013 O(1) none recency+frequency no simulation
CFLRU [62] 2006 O(1) none recency+cost no simulation
Clock-Pro [38] 2005 O(1) none recency+frequency yes simulation
CAR [7] 2004 O(1) none recency+frequency yes simulation
ARC [53] 2003 O(1) none recency+frequency no simulation
LIRS [39] 2002 O(1) none recency+frequency no simulation
LUV [6] 2002 O(logn) none recency+size no simulation
MQ [81] 2001 O(1) none recency+frequency no simulation
PGDS [12] 2001 O(logn) none recency+frequency+size no simulation
GD* [40] 2001 O(logn) none recency+frequency+size no simulation
LRU-S [72] 2001 O(1) size recency+size no simulation
LRV [66] 2000 O(logn) none frequency+recency+size no simulation
LFU-DA [5, 70] 2000 O(1) none frequency no simulation
LRFU [46] 1999 O(logn) none recency+frequency no simulation
PSS [3] 1999 O(logn) frequency frequency+size no simulation
GDS [11] 1997 O(logn) none recency+size no simulation
Hybrid [79] 1997 O(logn) none recency+frequency+size no simulation
SIZE [1] 1996 O(logn) none size no simulation
Hyper [1] 1996 O(logn) none frequency+recency no simulation
Log2(SIZE) [2] 1995 O(logn) none recency+size no simulation
LRU-MIN [2] 1995 O(n) none recency+size no simulation
Threshold [2] 1995 O(1) size recency no simulation
2Q [41] 1994 O(1) frequency recency+frequency no simulation
LRU-K [58] 1993 O(logn) none recency+frequency no implementation

Table 2: Historical overview of web caching systems.

7.2 Cache tuning methods
While tuning for size-based admission is entirely new,
tuning has been used in other caching contexts such as
tuning for the optimal balance between recency and fre-
quency [41, 53, 46, 39, 81, 7, 9] and for the allocation of
capacity to cache partitions [14, 34, 13, 69].

In these other contexts, the most common tuning ap-
proach is hill climbing with shadow caches [41, 53, 46, 39,
81, 7, 14]. Section 3.2 discusses why this approach often
performs poorly when tuning size-aware admission, and
Section 6 provides corresponding experimental evidence.

Another method involves a prediction model together
with a global search algorithm. The most widely used
prediction model is the calculation of stack distances [51,
4, 78, 77], which has been recently used as an alternative
to shadow caches [69, 13, 69]. Unfortunately, the stack
distance model is not suited to optimizing the parameters
of an admission policy, since each admission parameter
leads to a different request sequence and thus a different
stack distance distribution that needs to be recalculated.

Many cache models have been studied in the CS the-
ory community [44, 30, 15, 52, 10, 33, 17, 75, 25, 24,
36, 19, 68, 16, 37, 61, 65, 28, 80, 59, 27, 50, 8, 29, 9].
Unfortunately, all these models assume unit-sized objects.

AdaptSize’s Markov model allows to model size-aware
admission and variable-sized objects.

8 Conclusion
AdaptSize is a new caching system for the hot object
cache in CDN servers. The power of AdaptSize stems
from a size-aware admission policy that is continuously
optimized using a new Markov model of the HOC. In
experiments with Akamai production traces, we show
that AdaptSize vastly improves the OHR over both state-
of-the-art production systems and research systems. We
also show that our implementation of AdaptSize is robust
and scalable, and improves the DC’s disk utilization.

As more diverse applications with richer content mi-
grate onto the Internet, future CDNs will experience even
greater variability in request patterns and object sizes. We
believe that AdaptSize and its underlying mathematical
model will be valuable in addressing this challenge.
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Appendix
A Proof of Theorem 1
The result in Theorem 1 is achieved by solving the Markov
chain shown in Figure 8.

The key challenge when solving this chain is that the
length of the LRU list changes over time. We solve this
by using a mathematical convergence result.

We consider a fixed object i, and a fixed size-aware
admission parameter c. Let ` denote the length of the
LRU list. Now the Markov chain has `+1 states: one for
each position in the list and one to represent the object is
out of the cache, as shown below:

Over time, ` changes as either larger or small objects
populate the cache. However, what remains constant is
the expected time for an object to get evicted (if it is not
requested again) as this time only depends on the overall
admission rate (i.e. the size-aware admission parameter
c), which is independent of `. Using this insight, we
modify the Markov chain to increase the push-down rate
µ by a factor of `: now, the expected time to traverse from
position 1 to `+1 (without new requests) is constant at
1/µ .

We now solve the Markov chain for a fixed ` and
obtain the limiting probability pi of each position i 2
{0, . . . ,`,`+ 1}. Using the pi, we can now derive the
limiting probability of being “in” the cache, pin = Â`

i=0 pi,
which can be algebraically simplified to:

pin = 1�

⇣
`

`+ri/µ

⌘`

e�si/c +
⇣

`
`+ri/µ

⌘`
� e�si/c

⇣
`

`+ri/µ

⌘`

We observe that the pin quickly converges in `; nu-
merically, convergence happens around `> 100. In our
simulations, the cache typically holds many more objects
than 100, simultaneously. Therefore, it is reasonable to
always use the converged result `!•. We formally solve
this limit for pin and obtain the closed-form solution of
the long-term probability that object i is present in the
cache, as stated in Theorem 1.

We remark that our convergence result uses a similar
intuition as recent studies on equal-sized objects [60, 27],
which is that the time it takes an object to get from po-
sition 1 to `+ 1 (if there are no further requests to it)
converges to a constant in a LRU cache. What makes

AdaptSize’s model different from these models is that we
consider size-aware admission and variable object sizes.

References
[1] ABRAMS, M., STANDRIDGE, C. R., ABDULLA,

G., FOX, E. A., AND WILLIAMS, S. Removal
policies in network caches for World-Wide Web
documents. In ACM SIGCOMM (1996), pp. 293–
305.

[2] ABRAMS, M., STANDRIDGE, C. R., ABDULLA,
G., WILLIAMS, S., AND FOX, E. A. Caching
Proxies: Limitations and Potentials. Tech. rep.,
Virginia Polytechnic Institute & State University
Blacksburgh, VA, 1995.

[3] AGGARWAL, C., WOLF, J. L., AND YU, P. S.
Caching on the world wide web. IEEE Transac-
tions on Knowledge and Data Engineering 11, 1
(1999), 94–107.
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[36] JELENKOVIĆ, P. R. Asymptotic approximation of
the move-to-front search cost distribution and least-
recently used caching fault probabilities. The Annals
of Applied Probability 9 (1999), 430–464.

496    14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association
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