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varam buddhir na saa vidyaa
vidyaato buddhir uttama
buddhiheena vinashyanti
yathaa te simhakaarakaa:

Scholarship is less than sense;
Therefore seek intelligence:
Senseless scholars in their pride
Made a lion; then they died.

-From the story \The lion who ate the scholars",
\Tales of the Panchatantra", circa 500 B.C.
Translated from Sanskrit by Arthur W. Ryder.
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This thesis explores two fundamental issues in the design of large-scale parallel computers:
communication and fault tolerance.

In Chapter 1, we introduce and provide motivation for the problems that we study in
this thesis.

Chapter 2 examines several simple algorithms for routing packets on buttery networks
with bounded queues. Among other things, we show that for any greedy queuing protocol, a
routing problem in which each of the N inputs sends a packet to a randomly chosen output
requires O(logN) steps, with high probability, provided that the queue size is a su�ciently
large, but �xed, constant.

In Chapter 3, we analyze the fault-tolerance properties of several bounded-degree hy-
percubic networks that are commonly used for parallel computation. Among other things,
we show that an N -node buttery containing N1�� worst-case faults (for any constant
� > 0) can emulate a fault-free buttery of the same size with only constant slowdown.
Similar results are proved for the shu�e-exchange graph. Hence, these networks become
the �rst connected bounded-degree networks known to be able to sustain more than a con-
stant number of worst-case faults without su�ering more than a constant-factor slowdown
in performance.

In Chapter 4, we study the ability of array-based networks to tolerate faults. Among
other things, we show that an N � N two-dimensional array can sustain N1�� worst-case
faults, for some �xed � < 1, and still emulate a fully-functioning N � N array with only
constant slowdown.

In Chapter 5, we study a concurrent error detection scheme called AlgorithmBased Fault
Tolerance (ABFT). Unlike the schemes developed in Chapters 3 and 4 to tolerate permanent
faults, the scheme studied in this chapter is primarily aimed at tolerating transient faults
in a parallel computer. The main contribution of this chapter is to propose a simple and
novel algorithm called RANDGEN to generate data-check relationships. By simply varying
its parameters, RANDGEN can produce data-check relationships with a wide spectrum of
properties, many of which have been considered important in recent ABFT designs.
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Large scale parallel computing is becoming an indispensable tool in areas of science and
technology as diverse as uid mechanics, climate prediction, and molecular biology. In the
coming decade, it may become technologically feasible to build parallel machines with a few
thousand integrated circuit chips and a large number of processing elements. However, there
are many hardware and software obstacles that must be overcome before parallel computing
can realize its full potential. In this thesis, we focus on two fundamental issues that must
be understood for the successful design of large-scale parallel computers: communication
and fault tolerance.

1.1 Communication

A parallel computer consists of many processors linked together by an interconnection net-
work. Each processor has its own local memory. Since the processors must cooperate in
solving a problem, there is a necessity for processors to exchange information. This is
achieved by routing messages (or packets) from processor to processor using the intercon-
nection network.

An interconnection network can be represented as a directed graph. The nodes of the
graph represent processors or switches and the directed edges represent communication
links. There is a queue associated with every edge of the network (See Figure 1). Each
queue can hold only a small number of packets at any given time step. Each processor has
two bu�ers: an output bu�er to store packets that it wants to send and an input bu�er
to store the packets that it receives. (These bu�ers are not shown in the �gure.) Unlike
the queues, the bu�ers can hold a large number of packets. The interconnection network is
used to route packets between processors as follows. Suppose processor A produces a packet
that needs to be routed to processor C. First processor A stores the packet in its output
bu�er. The packet is then transmitted from A to C along a directed path in the network.
The packet upon reaching C is stored in the input bu�er of C until the time when it can
be consumed. At each time step, exactly one packet can be transmitted across an edge of
the graph. Therefore, a packet may wait in the queue associated with an edge till it can

1
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Figure 1: An interconnection network.

use the next edge in its path. The queues of the incoming edges of a switch can be thought
of as physically residing in the switch. In the simplest model of a switch, we can assume
that all the incoming edges share a single queue located in the switch.

At every time step, a switch uses a procedure known as the queuing protocol to select a
packet from one of the queues of its incoming edges or from its output bu�er, and it transmits
this selected packet through the appropriate outgoing edge. (Alternately, a switch may be
permitted to transmit one packet along each of its outgoing edges in one time step.) The
packets that are not selected by the switch are delayed and have to wait for their turn to
be sent. In general, the total delay experienced by a packet is a function both of the other
packets in the network and the queuing protocol. While it is convenient to describe the
switches in the network as operating in a synchronous fashion, our results on packet routing
hold in an asynchronous setting as well.

It has been experimentally observed that communication time rather than computation
time plays a major role in determining the time taken for the execution of many parallel
programs. Fine-grained parallel programs execute as few as ten instructions in response to
a message [Dal87]. This implies that a signi�cant portion of the execution time of these
parallel programs is spent in waiting for messages to arrive. Therefore designing e�cient,
implementable packet routing algorithms is bound to yield high dividends in speeding up
parallel programs. In Chapter 2 of this thesis, we study packet routing on a popular
interconnection network called the buttery network. We restrict our study to simple classes
of queuing protocols that are easy to implement like the First-In First-Out protocol (FIFO).
We analyze the maximum delay incurred by a packet under such a queuing protocol for
random-tra�c as well as worst-case tra�c conditions. The conclusion of this work is that
there are a variety of simple queuing protocols that provably route packets in an optimal
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number of time steps (to within a constant factor) in buttery networks.

1.2 Fault tolerance

The second theme of this thesis is fault-tolerance. The manufacturing technologies involved
in building parallel computers are highly complex and are prone to hardware defects. Large
systems built with VLSI (Very Large Scale Intergration) or WSI (Wafer Scale Integration)
technologies are extremely likely to have failed components at the production stage. This
can cause unacceptably low yield rates of fully functioning hardware. (For a report on the
sources of such failures and their impact on the yield, please refer to [MR84].) However, if
it is possible to recon�gure some of the defective chips or wafers and make them usable, the
yield rate of usable hardware becomes much higher. This has been called recon�guration
for yield in the literature [NSS89].

During the course of operation of a large parallel computer, more faults and defects
are likely to occur. Recon�guring the computer to avoid these unreliable or failed units
is known as recon�guration for reliability and is aimed at achieving a higher life-time of
operation of the parallel computer. In this thesis, we do not di�erentiate between the two
di�erent goals of recon�guration and our recon�guration techniques can be used in either
setting.

1.2.1 Fault model

Any fault-tolerance technique presumes a fault model. Faults can be thought of as occurring
at various levels in the circuitry. A popular model for faults at the logic gate level is the
stuck-at fault model. In this model, a faulty output line of a gate is either permanently
stuck at 0 or permanently stuck at 1. However, due to its extremely low-level complexity
and its dependence on speci�c circuit level implementations, this model is not suitable for
studying recon�guration schemes for parallel computers. For our purposes, we require a
model in which faults occur at the functional level of the parallel computer. In this thesis,
we will model all failures as processor failures of the parallel computer. For convenience,
even the failure of a communication link will be modeled as the failure of one of its adjacent
processors. We will assume that a faulty or failed processor cannot perform any computation
reliably. Further, we will assume that no packets can be routed through a faulty processor.

Next, the fault model must make assumptions about the way the faults are distributed.
It is perhaps tempting to assume that each processor fails independently of all others with
a failure probability p. This is called the random fault model . These assumptions do model
to a limited extent what happens in practice, but the reality is much more complex. It
has been experimentally observed that defects in a chip or wafer tend to cluster together.
This is particularly true of defects caused by extraneous particles since such particles tend
to cluster in one geometric area of the chip or wafer. Other correlations introduced by
the fabrication method are too complex to model. To overcome these problems, one can
assume the worst-case fault model . In the worst-case fault model, we make no probabilistic
assumptions about the distribution of faults. We simply assume that the faults occur in
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the worst possible locations making it di�cult to recon�gure the chip. While this model
overcomes the problems of the random fault model, it has the disadvantage of being overly
pessimistic. The worst-case distribution of faults may seldom occur in practice. In this
thesis, we will be concerned primarily with worst-case faults though we will derive some
results for the random fault model as well.

1.2.2 Recon�guration

Formally, a recon�guration scheme is a technique that allows a faulty parallel computer to
perform any computation of a fault-free parallel computer. Since a faulty parallel computer
has only a subset of the resources available to a fault-free parallel computer, it is inevitable
that the computations on the recon�gured parallel computer run slower than they would
on the fault-free parallel computer. A measure of this degradation in performance is called
slowdown which is de�ned to be the minimum value S such that any computation that
takes T steps on the fault-free computer can be performed in at most S � T steps in the
recon�gured faulty computer.

In Chapters 3 and 4 of this thesis, we will devise recon�guration schemes with small
slowdowns for commonly used interconnection networks (usually the slowdown is some
constant, independent of the size of the network). The recon�guration schemes presented
in these chapters take the form of a general emulation of the fault-free parallel computer on
the faulty parallel computer. Hence these recon�guration schemes are software-independent
and make no assumptions about the speci�c piece of software that is to be run on the faulty
computer. Further, we do not assume that the processors compute synchronously. The
emulations in this thesis are valid even if the processors work asynchronously.

Most of the networks used in practice fall into two broad categories: hypercubic networks
and array-based networks . In Chapter 3, we study the fault-tolerance of hypercubic networks
such as the fat-tree, mesh of trees, buttery and the shu�e-exchange network. In Chapter
4, we study the fault-tolerance of array-based networks such the linear array and two- and
higher-dimensional meshes. The conclusion of these studies is that these commonly used
networks can be recon�gured around an unexpectedly large number of faults with only
constant slowdown.

It is also possible to talk about a recon�guration scheme for a particular task . For
example, if a network is used for packet routing, a recon�guration scheme is a technique
that allows a faulty network to perform routing tasks that can be performed on a fault-
free network. A measure of degradation in performance is the ratio of the time taken to
perform the task on the faulty network to the time taken to perform the task on the fault-
free network. In Chapter 3, we show that hypercubic networks can be used route packets
without much degradation in performance even in the presence of many faults. This is of
importance since hypercubic networks such as the buttery are often used solely for their
routing abilities.
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1.2.3 Algorithm-based fault tolerance

We have so far considered the problem of recon�guring parallel computers around perma-
nent faults . We have assumed that when a processor fails the failure is permanent and the
computer is recon�gured to avoid this failed processor. However a common source of un-
reliability in parallel computers today is transient faults [CMS82, IR83, SRHA86, YFA87].
A transient fault is the temporary malfunction of a functional unit of the computer. A
transient fault in a processor could introduce errors in its computation. Since these faults
are temporary in nature they may not be detected by standard diagnostic algorithms. A
primary source of transient faults is noise induced in the circuitry. The current trend in
VLSI chip design towards using smaller and smaller voltage levels has the e�ect of decreas-
ing the margin allowed for noise. This is bound to make transient faults a major reliability
issue in the future.

A solution to the problem of transient faults is to perform concurrent error detection
(CED). In a CED scheme, an error detection algorithm is run concurrently with the com-
putation. If the error detection algorithm detects an error, steps can be taken to locate the
faulty components. In the more likely case that the error is caused by a transient fault,
simply re-running the computation may be su�cient. Unlike the software-independent
approach in Chapters 3 and 4, di�erent CED schemes are suitable for di�erent kinds of
computing tasks. A class of CED schemes called Algorithm-based fault tolerance (ABFT)
was proposed for matrix operations like matrix multiplication, matrix triangularization etc.
[HA84]. Much research has been done on the ABFT approach recently to extend it to other
signal processing applications including the FFT. An abstract graph theoretic model for
both analyzing and synthesizing ABFT was proposed in [BA86a]. In Chapter 5, we show
how to synthesize ABFT systems in this graph-theoretic model to detect or locate t faults
in the system. The method presented in this chapter greatly reduces the overhead required
to do error detection/location in comparison with methods known previously.



2.1 Introduction

Many commercial and experimental parallel computers, including the NYU Ultracom-
puter [Got87], the IBM RP3 [PBG+87], the BBN Buttery [BBN86], and NEC's Cenju
[NMT+91], use buttery networks to route packets between processors. Although many
routing algorithms with provably good performance have been devised for buttery net-
works [Ale82, LMR88, Pip84, Ran87b, Ran87c, Upf84, Val82, Val90, VB81], simpler algo-
rithms are often used in practice. Typically, packets are sent along shortest paths through
the network, and simple queuing protocols such as �rst-in �rst-out (FIFO) are used to de-
termine which packets to transmit at each step. In addition, the queues at the switches can
usually hold only a small number of packets. The performance of these simple algorithms
has proven surprisingly di�cult to analyze. For example, the only previously known upper
bound on the time required for each input of an N -input buttery network with constant-
size FIFO queues to route a packet to a random destination was O(N). In this chapter,
we show that the expected time is actually �(logN). We also analyze the performance of
several other simple algorithms for routing on butteries with bounded queues.

2.1.1 Buttery networks

An example of an N -input buttery (N = 8) with depth logN = 3 is shown in Fig-
ure 2. All logarithms in this thesis are to base 2. The edges of the buttery are directed
from the node in the smaller numbered level to the node in the larger numbered level.
The nodes in this directed graph represent switches, and the edges represent communica-
tion links. We use the terms node and switch interchangeably in the rest of the chapter.
Each node in a buttery has a label hl; c0 � � �clogN�1i, where the level, l, ranges from 0
to logN , and the row, c0 � � �clogN�1, is a logN -bit binary string. The switches on levela

This chapter describes joint research with Bruce Maggs [MS92].
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Figure 2: An 8-input buttery network.

0 are called inputs, and those on level logN are called outputs. For l < logN , node
hl; c0 � � �cl � � �clogN�1i is connected to node hl + 1; c0 � � �cl � � �clogN�1i by a straight edge,
and to node hl+ 1; c0 � � �acl � � �clogN�1i by a cross edge. (The notation

a
cl denotes the com-

plement of bit cl.) At each time step, each switch is permitted to transmit one packet along
each of its outgoing edges.

In a buttery network, packets are typically sent from the inputs on level 0 to the
outputs on level logN . If each input sends a single packet, we say that the network is
lightly loaded. A speci�c type of routing problem of interest is the permutation routing
problem. In a permutation routing problem, each input of the buttery sends exactly one
packet to some output of the buttery and each output receives exactly one packet from
some input of the buttery. If each input sends logN packets, we say that the network is
fully loaded. One of the nice properties of the buttery is that there is a unique path of
length logN between any input and any output, and there is a simple rule for �nding that
path. When a packet with origin h0; a0 � � �alogN�1i and destination hlogN;d0 � � �dlogN�1i
reaches level l, it passes through the node labeled hl; d0 � � �dl�1al � � �alogN�1i. If dl = al,
then it takes the straight edge to hl + 1; d0 � � �dlal+1 � � �alogN�1i. Otherwise, it takes the
cross edge to the same node. This path selection algorithm is called source oblivious [BH85]
because, at each node, the next edge taken by a packet depends only on its current location
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and its destination, and not on its source, or on the locations or paths taken by any of the
other packets. All of the routing algorithms discussed in this chapter are source oblivious.

2.1.2 Queuing protocols

This chapter studies two broad classes of queuing protocols: greedy protocols and non-
predictive protocols. Many easily implementable as well as conceptually simple queuing
protocols like FIFO and �xed-priority scheduling are greedy as well as non-predictive. In
a greedy queuing protocol, at each step, each switch with one or more packets in its queue
selects a packet, and then sends it to the next level, unless the queue that the packet wishes
to enter is already full. A switch is not prohibited from sending more than one packet
at each step, provided that they use di�erent edges. In a non-predictive queuing protocol
[Lei92, Section 3.4.4][Ran87b], at each step, each switch selects one packet from its queue
without examining the destinations of any of the packets in its queue, and sends the packet
to the next level, unless the queue that it wishes to enter is full. If the queue is full, then
the switch must select the same packet at the next step. The switch is not permitted to
examine the destinations of any other packets until the selected packet has been successfully
transmitted. Non-predictive protocols are also greedy.

2.1.3 Previous work

The �rst important buttery routing algorithm is due to Batcher [Bat68], who showed that
an N -input buttery network can sort, and hence route, N -packets in O(log2N) steps.

The next breakthrough came more than a decade later when Valiant [Val82, VB81] ob-
served that any permutation routing problem can be transformed into two random problems
by routing the packets �rst to random intermediate destinations, and then on to their true
destinations. He also showed that an N -node hypercube (or N -input buttery) can route
N packets to random destinations (or from random origins) in O(logN) time using queues
of size O(logN), with high probability. As a consequence, the hypercube or buttery can
route any permutation in O(logN) time, with high probability.

Valiant's result was improved in a succession of papers by Aleliunas [Ale82], Upfal
[Upf84], Pippenger [Pip84], and Ranade [LMRR, Ran87c]. All of these papers use Valiant's
idea of �rst routing to random intermediate destinations. Aleliunas and Upfal increased the
number of packets that can be routed inO(logN) time. They developed the notion of a delay
path and showed how to route N packets on an N -node shu�e-exchange graph and N logN
packets on an N -input buttery network, respectively, in O(logN) steps, using queues of
size O(logN). Pippenger devised an ingenious algorithm for routing with bounded size
queues. He showed how to route N logN packets on a variant of the buttery in O(logN)
steps with queues of size O(1). Finally, Ranade developed a simpler algorithm for routing
with bounded queues that could also e�ciently combine multiple packets with the same
destination. As a consequence of Ranade's algorithm, it is possible to simulate one step of
an N logN -processor CRCW PRAM on an N -input buttery in O(logN) steps. Neither
Pippenger's algorithm nor Ranade's algorithm are greedy.
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Recently, Stamoulis and Tsitsiklis [ST91] have analyzed the average delay and queue
size in hypercubes and butteries with unbounded queues in which packets with random
destinations are generated according to a Poisson process. They show that if the load factor
on the network is less than one, then the network is stable in the steady state, the average
delay is O(logN), and the average queue size is O(1).

Although the performance of greedy algorithms in butteries with bounded queues has
proven di�cult to analyze, attempts have been made to approximately model [SS89] or
empirically determine [Tsa90] their performance.

2.1.4 Our results

In Section 2.2 we show that for any greedy queuing protocol, a routing problem in which
each input in an N -input buttery sends a single packet to a randomly chosen output
requires O(logN) steps, with high probability, provided that the queue size is a su�ciently-
large �xed constant. Previously, only the trivial upper bound of O(N) was known. An
intriguing problem left open in this section is a bound on the number of steps taken by a
greedy queuing protocol when the buttery is fully-loaded.

In Section 2.3 we show that for any deterministic non-predictive queuing protocol, there
exists a one-to-one routing problem (permutation) that requires 
(N=q logN) time to route,
where q is the maximum queue size. Previously, no lower bound greater than 
(

pa
N) was

known. The 
(
pa
N) bound is based on the congestion and is independent of the way the

packets are scheduled. This section shows that greater delays can occur due to the way
packets interact in the network.

Section 2.4 presents a simple, but non-greedy, algorithm for routing a random problem on
a fully-loaded buttery with bounded-size queues in O(logN) steps, with high probability.
The algorithm is simpler than the previous algorithms of Ranade and Pippenger because
it does not use ghost messages, it does not compare the ranks or destinations of packets as
they pass through a switch, and it cannot deadlock.

Finally, in Section 2.5 we analyze routing algorithms that drop packets when there is
contention. Examples of machines that drop packets are NEC's ATOM switch [SNS+89]
and the BBN Buttery [BBN86]. The BBN Buttery algorithm has been studied by Kruskal
and Snir [KS83] and Koch [Koc88]. Koch showed that for a random problem the number
of packets that succeed in locking down paths from their origins to their destinations is

�(N= log
1
a

q N), where q is the maximum number of packets that any wire can support. By
routing the packets to randomly (but not independently) chosen intermediate destinations,
we show that for any �xed permutation the expected number of packets that reach their

destinations is 

�
N= log

1
a

q N
�
.

2.2 Greedy queuing protocols

In this section, we will study the performance of greedy queuing protocols. In Section 2.2.1,
we analyze the average case behavior of any routing algorithm with a greedy queuing pro-
tocol. We show that if every input sends a packet to a randomly chosen output, then the
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time required for all of the packets to reach their destinations is O(logN). In Section 2.2.2,
we show how any speci�c permutation routing problem on the buttery can be routed in
O(logN) steps using Valiant's idea of splitting a routing problem into two random routing
problems.

2.2.1 Average case behavior

We �rst de�ne a few terms. A delay tree is a rooted tree that is a subgraph of the buttery.
Its root is a level 0 node and the tree contains a (directed) path, which we call the spine,
from the root to a node in level logN of the buttery. The tree \grows out" from the spine
and there is a unique directed path in the tree from the root to each node in the tree. A
full node is de�ned to be a node through which the paths of at least q packets pass, where
q is the maximum size of the queue in each node. Note that in the course of the routing,
a full node may never have a full queue since the packets could arrive at di�erent times.
However a non-full node can never have a full queue. A full delay tree is a delay tree for
which every node of the tree that is not on the spine is a full node. The number of packets
on a delay tree is de�ned to be the sum over all nodes of the tree of the total number of
packets passing through each node. Note that this number is di�erent than the number
of distinct packets on a delay tree. In the former, if a particular packet hits (i.e., passes
through) many nodes of a tree it is counted many times in the sum. The signi�cance of the
above de�nitions becomes clear in Theorem 2.2.1 below.

Theorem 2.2.1 The maximum delay of any packet is less than or equal to the maximum
of the number of packets on a full delay tree.

Proof: Let the path of some packet p, from its source to destination, be denoted by P .
Now consider the maximal full delay tree with the path P as its spine and the source of the
packet p as its root. We will refer to this maximal full delay tree as the maximal full delay
tree of packet p. We will bound the delay of p by the number of packets on its maximal
full delay tree. Since the tree is maximal, every non-tree node that is a neighbor of a tree
node is not a full node. We will now show that at each time step t until packet p reaches its
destination, some packet in its maximal full delay tree moves. At every time step t there
are 3 cases.

a. The packet p moves.

b. Some other packet queued at the same node as p moves.

c. No packet queued at the same node as p moves.

The �rst two cases are simple. Since the queuing protocol is greedy, case c necessarily means
that the packet selected by the node to be sent at time step t could not move because the
queue in the node, say n, that it wanted to enter was full. Note that node n belongs to
the maximal full delay tree since it has at least q packets passing through it. Now if some
packet in node n moved at time step t we are done. If not we look at the packet selected by
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node n and repeat the argument again. Note that case c cannot apply at the leaves of tree
since it does not have any neighbors with full queues. So we must encounter either case
a or b before we leave the tree. Therefore the delay of packet p is at most the number of
packets on its maximal full delay tree. Thus the maximum delay of any packet is at most
the maximum of the number of packets on a full delay tree.

aa aa
We will use the following property of the buttery network in the proofs in this section.

Observation 2.2.2 A packet can enter a tree contained in the buttery at exactly one point
and once the packet leaves the tree it can never return to it.

We also state without proof a Cherno� type bound [AV79] and [Rag90, p. 56] and a result
due to Hoe�ding [Hoe56].

Lemma 2.2.3 (Hoe�ding) Let X be the number of successes in r independent Bernoulli
trials where the probability of success in the ith trial is pi. Let S be the number of suc-
cesses in r independent Bernoulli trials where the probability of success in each trial is
p = 1

a

r

P
1�i�r pi. Then E(X) = E(S) = rp, and, for � such that �E(S)� E(S) + 1,

Pr[X � �E(X)] � Pr[S � �E(S)] (1)

Lemma 2.2.4 Let S be the number of successes in r independent Bernoulli trials where
each trial has probability p. The E(S) = rp, and, for � > 2e,

Pr[S � �E(S)] � 2��E(S) (2)

Theorem 2.2.5 Let constant q be the maximum queue size. Then the maximum delay
of any packet is at most  logN with probability at least 1 � 1a

N , for su�ciently large but
constant  and q.

Proof: We will show that if there is a packet with large delay, then there must be a delay
tree with a large number of packets on it, which in turn we will show to be an unlikely event.
Assume that some packet has a delay  logN or more. Consider the maximal full delay tree
of this packet. Let D denote the number of packets on this maximal full delay tree. By
Theorem 2.2.1, we know that D �  logN . Also since every non-spine node of this delay
tree is necessarily a full node, the maximum number of nodes of this maximal full delay tree
is at most Da

q +logN . Let n be a node on any level l of the buttery. The average number of

packets passing through n is 1, because there are 2l possible packets that can pass through
this node and each of these packets has a probability of 2�l of passing through it. Therefore
the expected number of packets on this delay tree is at most Da

q + logN . The gist of the
proof is to show that the number of packets on this tree is clustered around its mean and
therefore the tree is unlikely to have D packets on it, for su�ciently large constants q and
.

The number of hits made by a packet on a delay tree is the number of nodes of the tree
through which the packet passes. Let us divide the hits on a delay tree into two types :
b-hits (for big hits) which are hits made by packets that make at least c hits on the tree,
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and s-hits (for small hits) which are hits made by packets that make fewer than c hits on
the tree, where c is some constant. It must be the case that either the total number of
b-hits on some delay tree is greater than or equal to Da

2 (call this event Eb) or the total
number of s-hits on some delay tree is greater than or equal to Da

2 . The latter possibility
also implies that there are at least Da

2(c�1) distinct packets hitting some delay tree (call this

event Es), since each packet making s-hits can make at most c� 1 hits on the tree. Thus,
the probability that some packet has delay d is at most Pr(Eb) + Pr(Es). The intuitive
reason as to why b-hits are unlikely is as follows. If you imagine packets running backwards
in time from destination to source, once a packet enters the tree, it can remain in the tree at
the next step only if it takes the unique edge to its ancestor in the tree. So, at every step, it
has approximately a probability of 1

a

2 of making another hit. This exponentially decreasing
probability for making more and more hits gives us the bound. Thus, this bound uses the
tree structure in a crucial way, unlike the bound we will prove for Es which is valid for any
set of Da

q + logN nodes.

Bounding the big hits: Let us suppose that event Eb occurs, i.e., there exists a delay
tree of size at most Da

q +logN with a total of at least Da
2 b-hits. To bound the probability of

this event we will enumerate all the possible ways it can happen. The maximum value that
D can take is N logN , since each packet can contribute at most logN hits and there is a
total of N packets. Therefore, the number of ways of choosing D is at most N logN . The
number of ways of choosing the root for the delay tree is N . A binary tree of size at most
Da
q + logN can be represented by indicating the number of children (no children, left son
only, right son only, both sons) in breadth-�rst-search order. Thus the total number of ways

of choosing the delay tree is at most N4
Da
q
+logN . The number of di�erent packets causing

these b-hits is at most Da
c , since each packet causes at least c hits and there are a total of

at most D hits on the tree. Let us assume that there is some arbitrary �xed ordering of
the nodes in the tree, e.g., the breadth-�rst-search ordering of the tree. We will now pick
a nondecreasing sequence of Da

c nodes in the tree, n1; n2; � � � ; nDa
c
. Note that each node of

the tree can occur more than once in this sequence. Node ni is the last node on the tree
through which the ith packet passed. The number of ways of choosing this sequence is at
most  

Da
q + logN + Da

c
Da
c

!
=

 
Da
q + logN + Da

c
Da
q + logN

!
Let node ni of the sequence be at level li of the buttery. For every ni, we now associate a
non-negative integer hi denoting the number of hits made by a packet pi before leaving node
ni. The number of ways of distributing at most D hits over Da

c elements of the sequence is at

most

 
D + Da

c
Da
c

!
. We can ignore ni with hi = 0 in this. Since the packet must have made

exactly hi hits before leaving the tree at ni, the number of choices for pi is 2li�hi . Here we
have used Observation 2.2.2. The total number of ways of choosing packets for all elements
in the sequence is at most

Q
i 2

li�hi . (We are overcounting a little since packets have to be
distinct.) Now, we have chosen a particular tree, a sequence of nodes ni and the associated
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packets pi. The probability that all the packets pi pass through their corresponding nodes
ni is simply the product of the probabilities that each individual packet pi passes through
node ni which equals

Q
i 2
�li . (We can multiply probabilities because each packet chooses

its path independently.) Putting it all together, we have

Pr(Eb) � N logN �N4
Da
q
+logN �

 
Da
q + logN + Da

c
Da
q + logN

!

�
 

D + Da
c

Da
c

!
�
Y
i

2li�hi �
Y
i

2�li

� N522
Da
q �
 
(Daq + logN + Da

c )ea
Da
q + logN

!Da
q
+logN

�
 
(D + Da

c )ea
Da
c

!Da
c

� 2�
P

i
hi

� 25
Da
 � 22Daq � ��1 + q

a

c

�
e

�Da
q
+Da

 � 2log((c+1)e)Da
c � 2�Da

2 (3)

since D �  logN and
P

i hi � Da
2 . Note that the multiple of D in the exponent of the �rst

four factors decreases with an increase in the values of c, q and . So for some suitably
large values for the constants c, q and  the expression in Equation 3 is at most 2�kD for
constant k > 0. Now by increasing the value of  further if necessary we can use the fact
thatD �  logN to bound the value of this expression (and hence Pr(Eb)) to be at most 1a

2N .

Bounding the small hits: Let us suppose event Es occurs, i.e. there is a tree of size
at most Da

q + logN with at least Da
2(c�1) di�erent packets hitting the tree, for some value of

D �  logN . The number of ways of choosing a value forD is at mostN logN . The number

of ways of choosing such a tree is at most N4
Da
q
+logN . Let X denote the total number of

distinct packets hitting a tree of size at most Da
q + logN . X is a sum of N boolean random

variables, Xi; 1 � i � N . Each Xi is 1 if the packet originating at input i hits the tree and
0 otherwise. The expected number of distinct packets on the tree is at most the expected
number of packets on the tree. Therefore, E(X) � Da

q + logN . Using Lemmas 2.2.3 and
2.2.4, we have

Pr(Es) = N logN �N4
Da
q
+logN � Pr

�
X � Da

2(c� 1)

�
� N logN �N4

Da
q
+logN � 2� Da

2(c�1) (4)

as long as � =
Da

2(c�1)a
E(X) > 2e. Using the fact that D �  logN , we have

� �
Da

2(c�1)a
Da
q + logN

� qa
2(c� 1)(q + )

(5)

Let c0, q0, and 0 be values of c, q, and  respectively for which Pr(Eb) was shown to
be at most 1a

2N . We choose the values of c, q, and  such that both Pr(Eb) and Pr(Es) are
at most 1a

2N as follows. First we choose c = c0. Next we choose constants q and  such that
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q = . Let � denote the value of q and . We choose � such that � � max(q0; 0). We
make � > 2e by choosing � large enough such that the right-hand side of Equation 5 which
equals �=4(c� 1) is greater than 2e. Furthermore, � is chosen large enough such that

4
Da
q � 2� Da

2(c�1) = 4
Da
� � 2� Da

2(c�1) � 2�j
Da
c�1 ;

for some constant j > 0. Since D �  logN ,

2�j
Da
c�1 � 2�j

 logNa
c�1 = 2�j

� logNa
c�1

Finally, the value of � is made large enough such that

Pr(Es) � N logN �N4logN � 2�j � logNa
c�1 � 1a

2N

Note that since c = c0, and q =  = � � max(q0; 0), Pr(Eb) is at most 1a
2N for the chosen

values of c, q, and . It now follows that the probability that a packet has delay d greater
than  logN is at most 1a

2N + 1a
2N which equals 1a

N .
aa aa

2.2.2 Routing a �xed permutation

The results of Section 2.2.1 deal with the routing delay of an average routing problem.
What can we say about routing a �xed permutation? We can show that we can route any
�xed permutation in O(logN) steps with high probability using Valiant's idea of routing
in two phases. In Phase A, each packet is routed from its source in level 0 to a random
intermediate destination in level logN . For simplicity, we will assume that the buttery
network has wrap-around, i.e., each node in level logN is identi�ed with the node in level
0 in its row. The packets are queued up at the end of Phase A and in Phase B each packet
is routed to its actual destination.

Theorem 2.2.6 Any �xed permutation can be routed using Valiant's paradigm such that
the delay is O(logN) with probability � 1� 2a

N .

Proof: Phase A is precisely the same problem as that studied in Section 2.2.1. In Phase
B, each packet is routed from its intermediate destination to its �nal destination. For
convenience, we will denote the level of its �nal destination as 0 and that of the intermediate
destination as level logN . This phase is a little di�erent from the one we studied in that
the starting points are random while the destinations are �xed. But the same proofs for the
delay will work with small modi�cations. It is perhaps best to imagine the packets running
backwards from level 0 (�nal destinations) to random nodes in level logN (intermediate
destinations). In the proof for bounding the b-hits, the sequence ni will now represent
switches through which packets that hit the tree entered the tree (running backwards in
time). The number of ways of associating a packet with ni in level li is 2

li. The probability
that the packet makes hi hits is now 2�(li+hi), since it must leave the tree at the unique
ancestor of ni in level li � hi + 1. The rest of the calculation is the same as before. The
proof for bounding the s-hits is identical.

aa aa
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2.3 Di�cult permutations

In this section, we prove that for any deterministic non-predictive queuing protocol, there
exists a permutation that requires 
(N=q logN) time to route on a buttery network.
Previously, the best lower bound for routing on a buttery with queues of any size was

(
pa
N). The 
(

pa
N) bound is proved by observing that certain permutations, such as

the bit-reversal permutation, force 
(
pa
N) packets to pass through a single switch [Lei92,

Section 3.4.2]. (It is also not very di�cult to prove that if the queue size is not bounded,
then O(

pa
N) is an upper bound on the time to route any permutation using any greedy

protocol.) Because the 
(
pa
N) bound is based on congestion only, it applies to any queuing

protocol. The results in this section indicate that the manner in which packets are scheduled
can potentially cause much greater delays. The proof involves a careful examination of the
interaction of the packets as they route through the network.

To simplify the presentation in this section, we will assume that each switch has a single
queue, and that, at each step, its two neighbors at the previous level may each send a packet
into the queue provided that, at the beginning of the step, the queue held at most q packets.
We call q the queue threshold of the switch. Since a queue can receive 2 packets when it
already has q, it may contain as many as q + 2 packets, but no more.

Theorem 2.3.1 For any deterministic non-predictive queuing protocol, there exists a per-
mutation � that requires 
(N=q logN) steps to route on a buttery with queue threshold
q.

Proof: The proof is by induction. We will assume that there are two edges leading into
each buttery input, and we begin by computing the time, td(r), required for a depth d

buttery to accept r=2 packets on each of the 2d+1 edges into its inputs. (For simplicity,
we assume without loss of generality that r and q are even.) We will assume that at time
step 1 and at each time step thereafter, 1 packet is available for transmission along each of
these edges until r=2 packets have crossed the edge. Furthermore, we will assume that each
output switch can transmit one packet at each step.

We begin by examining a 1-input buttery, which consists of a single switch, s. Suppose
that at the beginning of time step 1, the queue at switch s is empty. We would like to know
how long takes for s to receive r=2 packets from each of its incoming edges, where r > q. On
time steps 1 through q, s receives one packet along each of its two incoming edges. During
steps 2 through q, s transmits one packet at each step. Thus, after q steps, 2q packets have
been received, q � 1 have been transmitted, and the queue contains q + 1 packets. Since
the queue is full, s does not receive any packets on step q + 1, but it does transmit one.
Thereafter, s receives two packets on every other step, and transmits one packet on every
step, until a total of r packets have been received, which occurs on step q+(r�2q) = r�q.
Thus, t0(r) = r � q.

Next, let us compute the time required for each input of a depth-d buttery to receive
r=2 packets along each of its incoming edges. In order for an input to receive r packets, it
must transmit at least r� (q+2) packets. Using the assumption that the queuing protocol
is nonpredictive, we will choose the paths of these r � (q + 2) packets so as to maximize
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the delay. Since a switch cannot look at a packet's destination until it has been selected for
transmission, we can wait until a packet has been selected, and then decide if it should take
a cross edge or a straight edge to the next level. The �rst (r� (q+2))=2 packets selected by
each input switch h0; c0c1 � � �cd�1i will be sent to the switches labeled h1; 0c1 � � �cd�1i. These
switches are the inputs of a depth-(d� 1) sub-buttery. The second (r� (q+2))=2 packets
will be sent to the depth-(d� 1) sub-buttery whose inputs are labeled h1; 1c1 � � �cd�1i.

The inputs of the �rst sub-buttery start accepting packets at step 2. By induction, the
time required for each input to receive r� (q+2) packets is td�1(r� (q+2)). Thus, the �rst
sub-buttery receives packets during steps 2 through td�1(r�(q+2))+1. In the meantime,
no packets are sent to the inputs of the second sub-buttery. The �rst packets arrive there
on step td�1(r � (q + 2)) + 2, and continue to arrive until step 2td�1(r � (q + 2)) + 1, at
which point each input has received r� (q+2) packets. Thus, td(r) = 2td�1(r� (q+2))+1.
Solving this recurrence yields

td(r) � 2dt0(r � (q + 2)d)

� 2d(r� (q + 2)(d+ 1)):

The lower bound on td(r) that we have just derived requires r > (q + 2)(d+ 1) packets
to pass through each buttery input. In a permutation routing problem, however, only one
packet originates at each input. In order to use the bound, we will force r packets through
each input of an N=r2-input sub-buttery that spans levels log r through logN � log r.
We call this sub-buttery the busy sub-buttery. It has depth d = logN � 2 log r. Each
input of this sub-buttery is the root of a depth-log r complete binary tree whose leaves
are buttery inputs on level 0. Call these trees the input trees. Each output is the root
of a log r-depth complete binary tree whose leaves lie on level logN . Call these trees the
output trees. All of these trees are completely disjoint. The r packets that originate at the
leaves of an input tree will all be sent through the root of that tree. Each output of the
busy sub-buttery receives exactly r packets. These packets are distributed among the r
leaves of the corresponding output tree so that they each receive exactly one packet. Note
that between levels log r and logN � log r, the only switches and edges used for routing are
those in the busy sub-buttery.

All that remains is to choose appropriate values of r and d. From the construction of
the busy sub-buttery, we know that d = logN � 2 log r. In order for our lower bound on
td to be greater than zero, we need r > (q + 2) (d+ 1). Choosing r = 2(q + 2)(logN + 1)
yields td(r) � 2d(q + 2)(logN + 1) = (N=r2)(q + 2)(logN + 1) = N=(4(q + 2)(logN + 1)).
Thus the delay is 
(N=q logN).

aa aa
Note that the maximum number of packets passing through any node (the congestion)

for the worst-case permutation constructed in this section is only O(logN). This implies
that there are other more complex routing algorithms like that of Ranade [Ran87c] which
can route this permutation in O(logN) steps!
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2.4 A simple routing algorithm

In this section we present a simple, but non-greedy, algorithm for routing on buttery
networks. With high probability, the algorithm requires O(k+logN) time to route packets
with random destinations, where k is the number of packets that originate at each input.
The algorithm is simpler than the algorithms of Pippenger [Pip84] and Ranade [Ran87c]
because it does not use ghost messages, it does not compare the ranks or destinations of
packets as they pass through a switch, and it cannot deadlock. Unlike the algorithm of
Ranade, however, it does not combine packets with the same destination.

The routing algorithm begins by breaking the packets into waves. Each input contributes
one packet to each wave. The waves of packets are separated by waves of tokens. Unlike
the ghost messages in Ranade's algorithm, a token carries no information other than its
type, which requires O(1) bits to represent.1 Initially, there are k packets at each input and
a token is placed between each pair of successive packets, and after the last packet. For
0 � i � k � 1, the ith packet at each input is assigned to wave 2i, and the ith token is
assigned to wave 2i+ 1. Thus, the packets belong to the even waves, and the tokens to the
odd waves. Throughout the course of the routing, the algorithm maintains the following
important invariant. For i < j, no packet or token in the jth wave leaves a switch before any
packet or token in the ith wave. Furthermore, packets within the same wave pass through
a switch in the increasing order of their row numbers of origin. (A row c0 � � �clogN�1 is
viewed as a binary number where c0 is the lower order bit.)

A switch labeled hl; c0 � � �clogN�1i has two edges into it, one from the switch labeled hl�
1; c0 � � �cl�20cl � � �clogN�1i, and the other from the switch labeled hl�1; c0 � � �cl�21cl � � �clogN�1i.
We call the �rst edge the 0-edge, and the other the 1-edge. At the end of each of these edges
is a �rst-in �rst-out queue that can hold q packets. We call these queues the 0-queue and
the 1-queue, respectively.

The behavior of each switch is governed by a simple set of rules. By \forward" a packet
or token we mean send it to the appropriate queue in the next level. If that queue is full,
the switch tries again in successive time steps until it succeeds. A switch can either be
in 0-mode or in 1-mode and is initialized to be in 0-mode. In 0-mode, a switch forwards
packets in the 0-queue in FIFO fashion, until a token is at the head of the 0-queue. It then
changes to 1-mode. In 1-mode, a switch forwards packets in the 1-queue in FIFO fashion,
until a token is at the head of the 1-queue as well. Now the switch waits until both the
queues at its outgoing edges have room to receive a token and then simultaneously sends
one token to each of them. After doing this, the switch changes back to the 0-mode.

Note that at each step a switch is required to perform only O(1) bit operations in order
to determine which packet, if any, to send out. In the algorithms of Pippenger and Ranade,
the switches must perform more complicated operations, such as comparing the destinations
of two packets as they pass through a switch. In the succeeding sections, we show that our
algorithm requires O(k + logN) steps, which is asymptotically optimal.a

1Tokens are used in a similar fashion in a bit-serial algorithm for routing on the hypercube in [ALMN91].
It turns out, however, that tokens are not really needed in that algorithm. Ranade's proof of the equivalence
of di�erent queuing disciplines [Ran87b] implies that a �rst-in �rst-out queuing protocol will su�ce.
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2.4.1 Delay sequences

The proof that the algorithm requires O(k + logN) time uses a delay sequence argument
similar to those in [ALMN91, LMRR, Ran87c]. A (w; f)-delay sequence consists of four
components: a path P from an output to an input; a sequence s1; : : : ; sw of w, not necessarily
distinct, switches which appear in order on the path; a sequence h1; : : : ; hw of w distinct
packets and tokens; and a non-increasing sequence of wave numbers r1; : : : ; rw. The path P
may trace any edge of the network in either direction. When the path traces an edge from
some level l to level l + 1, we call the edge a forward edge. The number of forward edges
in the path is denoted by f . The length, L, of P is equal to the distance from an output
to an input (logN) plus two times the number of forward edges on P , L = logN + 2f . We
say that a delay sequence occurs, if, for 1 � i � w, packet or token hi belongs to wave ri,
and passes through switch si. The following lemma shows that if some packet is delayed,
then a delay sequence must have occurred.

Lemma 2.4.1 If some packet arrives at its destination at step logN + d or later, then a
(d+ (q � 2)f; f)-delay sequence must have occurred, for some f � 0. Furthermore, no two
tokens in the sequence belong to the same wave.

Proof: Before we begin the proof, we need some de�nitions. Let the lag of a switch s at
time t on level l be t� l. Also, let the rank of a packet h be a 2-tuple consisting of h's wave
number and the row number of the input in which it originated. Ranks are compared by
�rst comparing wave numbers, and then, if there is a tie, comparing row numbers. A row
c0 : : : clogN�1 is viewed as a binary number where c0 is the low order bit. Note that each
packet has a distinct rank. Every token belonging to the same wave has the same rank.
This rank is strictly less than all the packets in the wave above it but strictly greater than
the packets in the wave below it. Note that ranks are used only as a tool for the analysis
and not by the algorithm itself.

The algorithmmaintains several important invariants. As mentioned before, the packets
and tokens leave each switch in order of non-decreasing wave number. Furthermore, each
edge transmits exactly one token from each odd wave. Finally, within an even wave, the
packets that arrive at a switch via its 0-edge have smaller ranks than the packets that
arrive via its 1-edge. As a consequence, each switch sends out packets and tokens in order
of strictly increasing rank.

The delay sequence begins with the last packet to arrive at its destination. Suppose
that some packet h1 arrives at its destination, s1, at step �1, where �1 � logN +d. Then s1
has lag at least d at step �1. We will construct the delay sequence by spending lag points.
We begin the sequence with h1, s1, and r1, where r1 is the wave number of h1. Next, we
follow h1 back in time until the step at which it was last delayed.

In general, suppose that we have followed some packet or token hi back in time from
some switch si at time step �i until it was last delayed, at some switch s0i+1 at time step
�i+1. As we follow hi back in time, the nodes that hi passes through are added to path P .
Because hi is delayed at s0i+1 at step �i+1, the lag at s0i+1 at step �i+1 is one less than the
lag of si at step �i. There are three possible reasons for the delay of hi at switch s0i+1.
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First, if si+1 selects another packet or token, hi+1, to send instead of hi, then hi+1 must
have a strictly smaller rank than hi. In this case, hi+1, si+1 = s0i+1, and ri+1 are inserted
into the sequence, where ri+1 is the wave number of hi+1. We then follow hi+1 back in time
until it was last delayed. We have spent one lag point, and inserted one packet or token
into the sequence.

Second, if s0i+1 doesn't send hi because the queue at the end of one of its outgoing edges
is full, then we extend the path, P , forward along that edge to the switch at its head, s00i+1.
The lag of switch s00i+1 at time �i+1 is two less than the lag of si at step �i. However, the
queue must contain a total of q packets and tokens, all of which have smaller rank than hi.
We insert these packets and tokens into the sequence. We then follow the packet or token
at the head of the queue back in time until it was last delayed.

If neither of these cases is true, it must be the case that in switch s0i+1 at time �i+1
either of the following occurs.

(a) hi is a packet and it is at the head of the 1-queue and the 0-queue is empty, or

(b) hi is a token and it is at the head of one of the queues and the other queue is empty.

In either case, we go back to the switch at the tail of the empty queue at the previous time
step. Note that we do not loose any lag by this process. We continue to do this as long as
we can �nd an empty queue at the current switch. Suppose we do it m times and we are
at a switch s00i+1 at time �i+1 �m. Switch s00i+1 has packets or tokens at the heads of both
of its queues but did not send anything through one of its edges at time �i+1 �m. If one
of the heads of its queues is a packet, we add it and switch s00i+1 to the delay sequence and
continue to follow this packet back in time. Note that in case (a), this packet belongs to
the same wave as hi but has rank strictly less than hi since the �rst edge we followed back
from s0i+1 is a 0-edge. In case (b), the packet belongs to a wave earlier than that of token
hi and hence has a strictly smaller rank. In either case, we have added a packet of strictly
smaller rank for the cost of one lag point. Now suppose that both the heads of queues
are tokens. The only reason the tokens were not sent at time �i+1 �m is that one of the
outgoing edges of s00i+1 has a full queue. In this case we extend the path P forward to the
switch at the head of the queue, and insert all of the packets and tokens in that queue into
the delay sequence and follow the packet or token at the head of the queue back in time.
Now we have added q packets and tokens for the cost of two lag points.

For each lag point spent, at least one new packet or token is inserted into the delay
sequence. Furthermore, for each forward edge on the path P , an additional q � 2 packets
and tokens are inserted. Let f be the number of forward edges on P . Since we had d lag
points to spend, we must insert at least d + (q � 2)f packets and tokens. Since we are
inserting packets or tokens in strictly decreasing order of rank, at most k of these can be
tokens. The length of P is logN + 2f .

aa aa
2.4.2 Bunched delay sequences

We have now established that if some packet is delayed, then a delay sequence occurs. To
simplify the rest of the argument, we will restrict our attention to delay sequences in which
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the packets can be partitioned into bunches of size b such that all of the packets in each
bunch pass through the same switch on the sequence and have the same wave number. We
call such a delay sequence a bunched delay sequence. The following lemma shows that if a
delay sequence occurs, then a bunched subsequence also occurs.

Lemma 2.4.2 If a (d + (q � 2)f; f) delay sequence occurs, then a (bg; f) bunched delay
sequence occurs, where

g =

�
d+ (q � 2b)f � bk � (b� 1) logNa

b

�
:

Proof: Suppose that a (d+(q�2)f; f) delay sequence occurs. We will describe an algorithm
for �nding a bunched subsequence.

Starting at the �rst switch on the sequence, s1, form a bunch of size b of packets with
wave number 2(k� 1). If successful, then form another bunch of packets with wave number
2(k�1). Otherwise, if there are fewer than b remaining packets with wave number 2(k�1),
then there are two cases to consider. First, if there are other packets on the sequence that
pass through s1, then discard the remaining packets with wave number 2(k� 1), and begin
forming bunches out of packets with the next smaller even wave number. Since the wave
number can decrease at most k times, this case can happen only k times. Each time, we
may discard as many as b� 1 packets from the original delay sequence. Second, if no other
packets on the sequence pass through s1, then move on to the second switch, s2. This case
can happen at most logN + 2f times, since the path has length L = logN + 2f . As in the
�rst case, we may discard b� 1 packets from the original sequence.

Since the original sequence contains at least d+(q�2)f�k packets, and we discard a total
of at most k(b�1)+(logN+2f)(b�1) packets, at least d+(q�2b)f�bk�(b�1) logN packets

are placed in bunches. Thus, there are at least g =
l
d+(q�2b)f�bk�(b�1) logNa

b

m
bunches.

aa aa
2.4.3 The counting argument

We are now in a position to prove that, with high probability, every packet reaches its
destination within O(k + logN) steps.

Theorem 2.4.3 For any c2, there exists constants c1 and q > 0 such that the probability
that any packet is delayed for more than d = c1(k+ logN) steps is at most 1=N c2, where k

is number of packets per input of the buttery.

Proof: To prove this theorem we will enumerate all possible bunched delay sequences, and
show that it is unlikely that any of them occurs.

The number of di�erent bunched delay sequences is at most

N � 4L �
 
L+ g

g

!
�
 
g + k

g

!
�

gY
i=1

 
2di

b

!
; (6)
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where di is the level of the switch through which the ith bunch passes. The factors in
this product are explained as follows. There are N choices for the output switch at which
the path P in the delay sequence originates. At each of the �rst L switches on the path,
there are at most 4 choices for the next switch on the path. There are at most

�L+g
g

�
ways

of choosing the g (not necessarily distinct switches) on the path that the g bunches pass
through, and at most

�g+k
g

�
ways of choosing (not necessarily distinct) wave numbers for

the g bunches. Finally, given a switch with level di, and wave number w, there are
�2di

b

�
ways of choosing b packets with wave number w that can pass through the switch.

Whether or not a particular delay sequence occurs depends entirely on the random
destinations chosen by the packets in the delay sequence. It is important to note that every
packet on the delay sequence is distinct. Therefore the events regarding any two packets
on the delay sequence are independent. Thus the probability that all of the packets pass
through their corresponding switches is

Qg
i=1

1a
2bdi

, since each of the b packets in the ith

bunch has probability 1=2di of passing through any particular switch on level di.
We can bound the probability that any delay sequence occurs by summing the proba-

bilities of each individual delay sequence occurring, which is equivalent to multiplying (6)
by

Qg
i=1

1a
2bdi

. Using the inequality
�x
y

� � (ex=y)y to bound
�L+g

g

�
and

�g+k
g

�
, and using�x

y

� � xy=y! to bound
�2di

b

�
, the product is at most

23 logN+4f � (e(L+ g)=g)g � (e(g + k)=g)g � (1=b!)g;

where g =
l
d+(q�2b)f�(b�1)k�(b�1) logNa

b

m
. First, we choose b such that b! � 16e2. By making

q large compared to b (but still constant), and d large compared to b(k + logN) (but still
c1(k + logN), where c1 is a constant), we can make g larger than L = logN + 2f , k and
3 logN + 4f . In this case, the product is at most (8e2=b!)g � 2�g . By making g large
enough, we can make this product less than 1=N c2 , for any constant c2.

aa aa
2.5 Algorithms that drop packets

In this section, we consider queuing protocols that resolve contention by dropping packets.
Two examples of machines that use this kind of protocol are the BBN Buttery [BBN86]
and the NEC ATOM switch [SNS+89].

The ATOM switch routes packets in a store-and-forward manner. At every time step,
each switch examines the head of its input queue and forwards a packet to the appropriate
output queue. If a queue receiving packets is already full then it discards packets in excess
of its maximum queue size. The BBN Buttery operates in the circuit-switching paradigm.
Each packet tries to lock down a path between its source and destination. We will assume
that each edge of the buttery can sustain up to q such paths. This means that some
packets may not be able to lock down paths to their destinations. In both of these queueing
protocols, a natural question to ask is how many of the packets reach their destinations.
The ATOM switch has not been studied in this context before. Kruskal and Snir [KS83] and
Koch [Koc88] studied the average case performance of the BBN Buttery algorithm. Koch
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showed that if each packet independently chooses a random destination then the expected

number of packets that get through is �(N= log
1
a

q N). However there are permutations that
arise from natural problems in which only O(

pa
N) packets get through. To combat this we

show how to route any �xed permutation in either of the above mentioned queuing protocols

such that the expected number of packets that reach their destinations is 

�
N= log

1
a

q N
�
. As

an aside, this section also provides an elementary proof of the fact that the expected number

of packets that get through for a random routing problem on the buttery is 

�
N= log

1
a

q N
�
.

As mentioned earlier, this was �rst proved by Koch [Koc88].
The idea for routing any �xed permutation is based on Valiant's idea of routing to

random intermediate destinations. Consider two back-to-back butteries, i.e. two butteries
whose level logN nodes are identi�ed. The source of the packets is level 0 of one of the
butteries and each packet has a destination in level 0 of the other buttery. In the �rst
stage, the packets route from level 0 to level logN of the �rst buttery. In the second
stage of the routing, the packets route from level logN to level 0 of the second buttery.
In the �rst stage we use a scheme for sending packets to random but not independent
destinations. Ranade[Ran87a] was the �rst to use this scheme in order to reduce the amount
of the randomness needed to send packets to intermediate destinations in a packet switching
algorithm. The scheme is as follows. At time step i every level i switch receives two packets,
one from each of its incoming buttery edges. The switch selects a random outgoing edge
for one of the packets and routes the other packet through the remaining outgoing edge.
Therefore in the �rst stage no packets are dropped. In the second stage, every packet is
routed from this intermediate destination to its actual destination in level 0 of the second
buttery. In this stage, packets are dropped according to the rules of BBN Buttery routing
or that of the ATOM switch. We will assume that each packet picks a random rank from 1

to r = log
1
a

q N . When packets need to be dropped, packets with the least rank are dropped
in favor of those with a higher rank. We will now show that the expected number of packets

that reach their destinations is 

�
N= log

1
a

q N
�
.

Let n be a node at level l of the second buttery. Consider any k packets whose �nal
destinations are reachable from this node. We bound the probability that all k packets pass
through this node.

Lemma 2.5.1 The probability that any k packets all pass through a node n in level l of the
second buttery is at most 1a

2lk
.

Proof: Let the node in the �rst buttery that corresponds to node n be n0. Let the sub-
buttery from level l to logN of the �rst buttery that contains n0 be B (See Figure 3).
Note that the k packets pass through the given node n if and only if all of these packets
pass through some node of sub-buttery B. Consider the sources of the k packets in level 0
of the �rst buttery and the unique shortest paths from each of the sources to sub-buttery
B. If any two of them intersect before reaching the sub-buttery these two packets cannot
both hit sub-buttery B, since at the node of intersection only one packet can take the path
to the sub-buttery. If no two paths intersect, then the probability of each packet hitting
B is independent of the others and equals 1a

2l . Thus in this case the probability of all of
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n

n’

0

log N

0

l

l

Level sub-butterfly B

Figure 3: Sub-buttery B.

them hitting the sub-buttery is exactly 1a
2lk

. Therefore given any k packets the probability
of all k of them passing through the given node or equivalently hitting the sub-buttery is
at most 1a

2lk
.

aa aa
Theorem 2.5.2 The expected number of packets that reach their destinations is



�
N= log

1
a

q N
�
.

Proof: Consider the path of a particular packet in the second buttery. We will now
evaluate the probability that this packet reaches its destination. Note that with probability
1
a

r this packet will have the highest rank r. In this case, this packet can be dropped only if
there is a node on its path with at least q packets going through it, all with rank r. We will
now show a lower bound on the probability that there exist no such q packets. First let's
bound Eq, the expected number of q-tuples of packets incident on a node at level l of the
second buttery.

Eq �
 

2l

q

!
1a
2ql

� 1a
q!
;

since there are
�2l
q

�
ways of choosing q packets that can pass through a node on level l, and

by Lemma 2.5.1, the probability that these packets actually pass through the node is at
most 1=2ql.

The expected total number of q-tuples incident on some node on the path is at most
logN=q!, since the path has length logN . The expected number of such q-tuples with all

packets having rank r is at most logN=(q!rq) which equals 1=q!, since r = log
1
a

q N . Since
1=q! � 1, the probability that no such q-tuple exists anywhere on the path of the packet
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is at least 1 � 1=q!. (A slightly larger choice for r would make the arguments work for
q = 1.) This implies that the packet reaches its destination with a probability of at least
(1 � 1=q!)(1=r), since the probability that the packet gets rank r is 1=r. Therefore the
expected number of packets to reach their destinations is at least (1� 1=q!)(N=r) which is



�
N= log

1
a

q N
�
.

aa aa
The proof that the expected number of packets that reach their destinations is 


�
N= log

1
a

q N
�

also holds for a random routing problem in which each packet chooses independently a ran-
dom destination. Lemma 2.5.1 is true because the probability that a packet passes through
a node n in level l is 1=2l. Every packet chooses its path independently and hence the prob-
ability that all of them pass through the node exactly equals 1=2lk. The rest of the proof is
the same as before. Koch [Koc88] has observed that the expected number of packets that
get through is not a�ected by the rule that is used to decide which messages to keep and
which messages to drop, as long as the destinations of the packets are not used to make
this decision. Therefore, for this problem, random ranks are necessary only as a tool for
analysis and any other non-predictive rule would exhibit the same average case behavior.

2.6 Open questions

The most vexing problem left open by this chapter is to determine the average number of
time steps required to route on a fully-loaded N -input buttery with constant-size FIFO
queues. If fewer than 
(logN) packets may be queued at a node, then the only known
upper bound on the time to route is O(N logN). This trivial upper bound is proven by
showing that after logN steps, at least one packet arrives at the outputs at every time step
until the routing is completed. Simulations show that the true time is closer to O(logN).

Another open question concerns the algorithm of Section 2.4 for routing on a fully-loaded
buttery with constant size queues. We know from Section 2.2 that a single wave of packets
with random destinations can be routed using a greedy queuing protocol in O(logN) time,
but when the waves are pipelined, as in Section 2.4, the analysis requires us to use a simple,
but not greedy, protocol to route each wave. It would be interesting to show that even if
each individual wave was routed with a greedy protocol, the total time to route logN waves
was O(logN).



3.1 Introduction

In this chapter, we analyze the e�ect of faults on the computational power of hypercubic
networks. Hypercubic networks are a loosely de�ned class of networks which includes com-
monly used networks such as the hypercube, shu�e-exchange network, buttery, mesh of
trees, and the fat-tree. Hypercubic networks have logarithmic diameter and all the net-
works that we mentioned excepting the hypercube have bounded degree. (A network is said
to have bounded degree if the maximum number of edges out of any node is a constant
independent of the network size.) The main objective of our work is to devise methods
for circumventing faults in hypercubic networks using as little overhead as possible, and to
prove lower bounds on the e�ectiveness of optimal methods. Of particular concern to us
are the bounded-degree hypercubic networks that we mentioned earlier.

We will now summarize the relevant aspects of the fault model described in Section 1.2.1.
We consider both the worst-case fault model and the random fault model, and we always
assume that faulty components are totally disabled (e.g., a faulty node cannot be used to
transport a packet of data through the network). We also assume that the faults in the
network are static and detectable and that information concerning the location of faults can
be used when recon�guring the network to circumvent the faults. For simplicity, we restrict
our attention to node failures since an edge fault can always be simulated by disabling the
node at either end of the edge.

As described in Section 1.2.2, we will be primarily concerned with the amount by which
a collection of faults can slow down some computation in the network. For example, if a
buttery network is being used for packet routing, we will be concerned with how much
longer it takes a faulty buttery to deliver all of the packets than it takes a fault-free
buttery to perform the same task. More generally, we will be interested in the length of
time it takes an impaired network to emulate a single step of a fault-free network of thea

This chapter describes joint research with Tom Leighton and Bruce Maggs[LMS92a, LMS92b].
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same size and type. In particular, we de�ne the slowdown caused by a set of faults in a
network G to be the minimum value of S such that any computation that takes T steps on
G when there are no faults can be performed in at most S � T steps on G when faults are
present. One of our main goals will be to understand the relationship between slowdown
and the number of faults for commonly-used networks. In particular, we will prove bounds
on the number of faults that can be tolerated without losing more than a constant factor
in speed.

We will use two methods for emulating a fault-free network G on an isomorphic but
faulty network H . The �rst approach is to embed G into H so that the nodes of G are
mapped to non-faulty nodes of H , and so that the edges of G are mapped to non-faulty
paths in H . The goal is to �nd an embedding with minimum load, congestion, and dilation.
The load of an embedding is the maximum number of nodes of G that are mapped to any
single node of H . The congestion of an embedding is the maximum number of paths that
pass through any edge e of H . The dilation of an embedding is the length of the longest
path.

The load, congestion, and dilation of the embedding determine the time required to
emulate each step of G on H . Every node of H has to emulate the computation of l
nodes of G. Therefore, a computation step of G can be emulated on H in O(l) steps. A
communication step of G is emulated on H by routing packets along the paths in H that
correspond to edges in G. Every packet can be delayed by at most c other packets at a
node. Therefore every packet must reach its destination in O(c � d) steps. Therefore a
communication step of G is emulated on H in O(c �d) steps. Thus, if there is an embedding
of G in H with congestion c, load l, and dilation d, it is easy to see that H can emulate any
computation of G with slowdown O(l+c �d). A stronger result due to Leighton, Maggs, and
Rao [LMR88] is that it is possible for H to emulate any computation of G with a smaller
slowdown of O(l+ c+ d). Since we will be mostly interested in embeddings for which the
congestion, load, and dilation are all constant (independent of the network size), we could
use either result to obtain a constant-slowdown emulation of G on H .

In Section 3.2, we will show how to embed a fault-free N -input buttery into an N -
input buttery containing logO(1)N worst-case faults using constant congestion, load, and
dilation. (In other words, we will show how to recon�gure an N -input buttery around
logO(1)N worst-case faults so that the resulting degradation in performance is at most an
O(1) factor in speed.) A similar result will also be proved for an N -node mesh of trees.
Hence, these networks can tolerate logO(1)N worst-case faults with constant slowdown.

Previously, no connected bounded-degree networks were known to be able to tolerate
more than a constant number of worst-case faults without su�ering more than a constant-
factor loss in performance. Indeed, it was only known that

1. any embedding of an N -node (2 or 3-dimensional) array into an array of the same size
containing more than a constant number of worst-case faults must have more than
constant load or dilation [GE84, KKL+90], and

2. the N -node hypercube can be recon�gured around logO(1)N worst-case faults with
constant load, congestion, and dilation [AL91].
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The embeddings that we use in Section 3.2 are level-preserving, i.e., nodes in a particular
level of the fault-free network are mapped to nodes on the same level of the faulty network.
We take a signi�cant step towards proving the limitation of embedding techniques for the
emulation of these networks by showing that no level-preserving embedding strategy with
constant load, congestion, and dilation can tolerate more than logO(1)N worst-case faults.
Whether or not there is a natural low-degree N -node network (the hypercube included) that
can be recon�gured using (not necessarily level-preserving) embedding techniques around
more than logO(1)N faults with constant congestion, load, and dilation remains an inter-
esting open question.

In Section 3.3, we shift our attention to the routing capabilities of hypercubic networks
containing faults. First we prove in Section 3.3.1 that an N -input buttery with f worst-
case faults can support an O(logN)-step randomized packet routing algorithm for the nodes
in N � O(f) rows of the buttery. The ability of the buttery to withstand faults in this
context is important because butteries are often used solely for their routing abilities.
Previously, it was known that expander-based multibuttery networks can tolerate large
numbers of worst-case faults without losing their routing powers [ALM90, LM92], but no
such results were known for butteries or other hypercubic networks. A corollary of this
result is that an N -input buttery with �N worst-case faults (for some small constant �)
can support an O(logN)-step randomized routing algorithm for a majority of its nodes.
Note that the number of faults is optimal to within a constant factor, since it is possible
to partition an N -input buttery into components of size O(

pa
N logN) with a total of N

faults placed in level (logN)=2. In Section 3.3.2 we show that butteries with faults can
also be used for circuit switching. In particular, we show that even if an N -input O(1)-
dilated Bene�s network contains N1�� worst-case faults (for any � > 0), there is still a set
of N � o(N) inputs I and a set of N � o(N) outputs O such that for any one-to-one map
� : I 7! O it is possible to route edge-disjoint paths from i to �(i) for all i 2 I . This
result substantially improves upon previous algorithms for fault-tolerant circuit switching
in Bene�s networks [OT71, SR80] which dealt with a constant number of faults by adding
an extra stage to the network.

In Section 3.4, we use the fault-tolerant routing algorithm from Section 3.3.2 to show
that an N -input buttery with N1�� worst-case faults (for any constant � > 0) can emulate
a fault-free buttery of the same size with only constant slowdown. A similar result is
proved for the shu�e-exchange network. These results are stronger than the recon�guration
results proved in Section 3.2 because the number of faults tolerated is much larger. The
approach used in Section 3.4 di�ers from the embedding-based approaches in Section 3.2
in that a single node of the fault-free buttery will be emulated by (possibly) several nodes
in the faulty buttery. Allowing redundant computation provides greater exibility when
embedding one network in another (thereby attaining greater fault tolerance) but also adds
the complication of ensuring that replicated computations stay consistent (and accurate)
over time. This technique was previously used in the context of (fault-free) work-preserving
emulations of one network by another [Fel85, KLM+89, Sch90].

The techniques developed in Section 3.4 also have applications for hypercubes. For
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example, we can use the techniques to show than an N -node hypercube with N1�� worst-
case faults can emulate any normal algorithm with constant slowdown. (The set of nor-
mal algorithms include FFT, bitonic sort, and other important ascend-descend algorithms
[Lei92].) Previously, such results were known only for hypercubes containing logO(1)N
faults [AL91, BCS90, BCS92]. Whether or not an N -node hypercube can tolerate more
than logO(1)N faults with constant slowdown for general computations remains an impor-
tant unresolved question.

In Section 3.5, we show that even if each node in an N -input buttery fails indepen-
dently with probability p = 1= log(k)N , where log(k) denotes the logarithm function iterated
k times, the faulty buttery can still emulate a fault-free N -input buttery with slowdown
2O(k) with high probability. For k = �(log�N) the node failure probability is constant,
and the slowdown is 2O(log�N), which grows very slowly with N . Whether or not this result
can be improved and whether or not there is a bounded-degree network that can sustain
constant-probability random faults with only constant expected slowdown remain interest-
ing open questions. It is likely that the methods in Chapter 4 can be used to tolerate
constant-probability random faults in two- or higher-dimensional arrays with constant ex-
pected slowdown (See Conjecture 4.3.9). Until very recently, no results along these lines
were known for the buttery (unless routing is allowed through faulty nodes [Ann89], which
simpli�es matters substantially). Tamaki [Tam92a] has recently discovered an emulation
scheme with slowdown O((log logN)8:2). He has also introduced a class of bounded-degree
networks called cube-connected arrays [Tam92b], and showed that an N -node network in
this class with constant-probability random faults can emulate itself with expected slow-
down approximately log logN . (These networks can also tolerate up to logO(1)N worst-case
faults with approximately log logN slowdown.)

3.1.1 Additional previous work

There is a substantial body of literature concerning the fault-tolerance of communication
networks. We do not have the space to review all of this literature here, but we would like
to cite the papers that are most relevant. In particular, [AL91, Ann89, BCLR92, HLN87,
HLN89, KKL+90, LSGH87, Rab89, Tam92b] show how to recon�gure a network around
faults so that it can emulate a fault-free network of the same size and type. References
[AAB+92, BCH91, DH90, DH91] show how to design a network H that will contain G

as a subnetwork even if H contains some faults. Algorithms for routing messages around
faults appear in [AS82, ALM90, AB91, HLN89, KKL+90, LM92, Lin92, Lyu90, OT71,
Rab89, SR80]. The fault-tolerance of sorting networks is studied in [AU90, LMP91]. Fi-
nally, [BCS90, WC92, WCM91] show how to perform certain computations in hypercubes
containing faults.

3.1.2 Network de�nitions

In this section, we will review the structure of some of the networks that we study in this
chapter. For a description of the buttery network, please refer to Section 2.1.1. Our
results will hold whether or not the nodes on levels 0 and logN of each row are assumed
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to be the same node. Another popular network, the hypercube, is related to the buttery.
An N -node hypercube is obtained by labeling each node with a distinct logN -bit binary
number and connecting with an edge any two nodes whose binary numbers di�er in exactly
one bit. Another network closely related to the buttery is the shu�e-exchange network .
A logN -dimensional shu�e-exchange network has N nodes, each node of which is labeled
with a distinct logN -bit binary number. Two nodes labeled u and v are linked by an edge
if either u and v di�er in precisely the last bit (exchange edge) or if u is a left or right
cyclic shift of v (shu�e edge). Another popular interconnection network on which many
fast parallel algorithms have been devised [Lei92] is the mesh of trees network . The nodes
of the mesh of trees network are arranged in the form of an N �N grid with N rows and
N columns. The nodes in each row or column form the leaves of a distinct complete binary
tree.

A circuit-switching network is used to establish edge-disjoint paths (circuits) between its
inputs and outputs. Each switch in a circuit-switching network has two incoming and two
outgoing edges. The incoming edges can be connected to the outgoing edges in one of two
ways: either crossing or straight through. The switches at the �rst level of the network are
called the input switches. The switches at the last level are called the output switches. The
two edges into each input switch are called input edges, or inputs. The two edges out of each
output switch are called output edges, or outputs. By setting the switches, each input edge
can be connected to an output edge via a path through the network. A circuit-switching
network with N inputs and N outputs is said to be rearrangeable if for any one-to-one
mapping � from the inputs to the outputs, it is possible to construct edge-disjoint paths in
the network linking the ith input to the �(i)th output, for 1 � i � N . A classical example of
a rearrangeable network is the Bene�s network (See Figure 4). The Bene�s network consists
of back-to-back butteries. A logN -dimensional Bene�s network has 2N inputs and 2N
outputs. Its switches are arranged in 2 logN + 1 levels of N switches each. The levels of a
Bene�s network are also referred to as stages. The �rst and last logN + 1 levels each form
a logN -dimensional buttery. Level logN is shared by these butteries. We will refer to
the nodes (switches) in level 0, logN , and, 2 logN as the input nodes , middle nodes , and
output nodes respectively. A b-dilated Bene�s network is a network obtained by replacing
each edge of the Bene�s network by b parallel edges, and by replacing each 2� 2 switch by
a 2b� 2b switch.

3.2 Emulation by Embedding

In this section, we show how to embed a fault-free binary tree, buttery, or mesh of trees
network into a faulty version of itself with constant load, congestion and dilation. As noted
in the introduction, �nding a constant load, congestion, and dilation embedding is the
simplest way of emulating arbitrary computations of a fault-free network on a faulty version
of itself with only constant slowdown. We will �rst consider embedding a complete binary
tree in a complete binary tree with faults only at its leaves. This result will also hold for
fat-trees [Lei85, GL89] with faults at the leaves. We use this result to �nd recon�gurations
of butteries and meshes of trees in which faults may occur at any node. The primary result
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Figure 4: An 8-input (2-dimensional) Bene�s network.

of this section is that an N -node buttery or mesh of trees network can tolerate logO(1)N

worst-case faults and still emulate itself with only constant slowdown.

3.2.1 The Binary Tree

De�ne S(n; b) for n � b � 0 by the recurrence

S(n; b) = S(n� 1; b) + S(n� 1; b� 1) + 1

for n > b > 0 with boundary conditions S(n; 0) = 0 and S(n; n) = 2n � 1, for n � 1. The
following lemma provides a useful asymptotic bound on the growth of S(n; b) for large n.

Lemma 3.2.1 For all n � b � 1,
�n
b

� � S(n; b)� �n+b
b

�
: Hence, S(n; b) = �(nb)

for any constant b > 0.

Proof: The proof is by induction on n and follows trivially from the fact that
�x
y

�
=�x�1

y

�
+

�x�1
y�1

�
, for all x > y > 0.

aa aa
Theorem 3.2.2 Given an N -leaf complete binary tree T with a set of at most
S(logN; b) = �(logbN) worst-case faults at the leaves, it is possible to embed a fault-free
N -leaf complete binary tree T 0 in T so that
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1. nodes on level i of T 0 are mapped to non-faulty nodes on level i of T , for 0 � i � logN ,

2. the congestion and the load of the embedding are at most 2b, and

3. the dilation of the embedding is 1.

Proof: The proof is by induction on n = logN and b. For n = 0, the tree is a single node,
and the number of faults, S(0; 0), is zero. Now suppose that we are given a complete binary
tree T with 2n leaves of which a set of at most S(n; b) are faulty. If both 2n�1-leaf subtrees of
T have at most S(n�1; b) faulty leaves, then we use the result inductively in both subtrees.
If one 2n�1-leaf subtree (say the left subtree) has S(n � 1; b) + 1 or more faults, then by
de�nition of S(n; b) the other subtree (the right subtree) has at most S(n� 1; b� 1) faulty
leaves. Hence we can use induction to embed a 2n�1-leaf complete binary tree on the right
subtree using dilation 1 and load and congestion 2b�1. By doubling the congestion and the
load, we can embed two 2n�1-leaf complete binary trees in the right subtree. This means
that we can embed T 0 in T with dilation 1 and load and congestion 2b (using only the root
and the right subtree of T in this case).

aa aa
This result can be extended to a class of binary-tree-like structures called fat-trees . A

fat-tree of depth n is speci�ed by a sequence of numbers m0; m1; � � � ; mn, where mn = 1.
(Typically m0 � m1 � � � � � mn.) A fat-tree of depth 0 is a single node, which is both the
root node and the leaf node of the tree. A fat-tree of depth n is constructed as follows. At
the root of the fat-tree there is a set of m0 nodes. The left and right subtrees are identical
and are constructed recursively. Each is a fat-tree of depth n � 1 with number sequence
m1; � � � ; mn. The root nodes of the fat-tree are connected to the root nodes of the left
subtree with any number of edges in an arbitrary fashion (multiple edges are allowed). An
isomorphic set of edges is used to connect the root nodes of the tree to the root nodes of
the right subtree.

Corollary 3.2.3 A logN -depth fat-tree can be embeded in a level-preserving fashion in an
isomorphic fat-tree with S(logN; b) worst-case faults at its leaves with load and congestion
2b and dilation 1.

Proof: Associate the nodes of the fat-tree with nodes of an N -node complete binary tree
as follows. Associate all root nodes of the fat-tree with the root of the complete binary tree.
Recursively associate the nodes of the left (right) subtree of the fat-tree with the nodes of
the left (right) subtree of the complete binary tree. Note that every leaf of the fat-tree is
associated with a unique leaf of the complete binary tree. Given a fat-tree F with faulty
leaves, let T be a complete binary tree whose leaf is faulty i� the corresponding leaf in F is
faulty. A fault-free complete binary tree T 0 can be embedded in T by embedding subtrees of
T 0 into subtrees of T using the procedure given in Theorem 3.2.2. The same embedding can
be used to embed a fault-free fat-tree, F 0 in F by embedding the corresponding subtrees of
F 0 into the corresponding subtrees of F . The dilation and load are the same as that of the
complete binary tree embedding.

aa aa
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Corollary 3.2.4 A logN -dimensional buttery can be embedded in a level-preserving fash-
ion in an isomorphic buttery with S(logN; b) worst-case faults at level logN with load and
congestion 2b and dilation 1.

Proof: A logN -dimensional buttery is a fat-tree of depth logN with mi = 2logN�i. The
leaves of the fat-tree are the nodes in level logN of the buttery.

aa aa
3.2.2 The mesh of trees and the buttery

We can use the previous result to show that the mesh of trees and the buttery network can
tolerate logO(1)N worst-case faults with constant slowdown, even when a fault can occur
at any node of the network. The proof uses, together with Theorem 3.2.2, the fact that
both the mesh of trees and the buttery can be viewed as a special kind of product graph.
We will call the leaves of a tree and the nodes in level logN of a buttery external nodes.
Given a graph G with 2n = N external nodes, the external product graph of G (denoted
PG) is de�ned as follows. Make 2N copies of the graph G, Gi;j , for i = 1; 2 and 1 � j � N .
Number the external nodes of each copy from 1 to N . Now identify the kth external node
in G1;j with the jth external node in G2;k , for all 1 � j; k � N . (By \identify" we mean
make them the same node.) The resulting graph is the external product graph of G. Two
important networks can be expressed as external product graphs. When the graph G0 is a
tree the graph PG0 is a mesh of trees network. If G0 is a buttery, then PG0 is a buttery
with twice the dimension. We now show that if we can tolerate faults in the external nodes
of G, then we can tolerate faults anywhere in PG.

Theorem 3.2.5 If a graph G0 can be embedded in a level-preserving fashion with load l,
congestion c, and dilation d in an isomorphic graph G with f worst-case faults located in
its external nodes, then it is possible to embed the product graph PG0 in a level-preserving
fashion with load l2, congestion c2, and dilation d in an isomorphic graph PG with f=2
worst-case faults located in any of its nodes.

Proof: Let PG and PG0 be made of up of graphs isomorphic to G, Gi;j and G0
i;j, respec-

tively, for i = 1; 2 and 1 � j � N . Let CG and CG0 also be graphs isomorphic to G.
The jth external node of CG is declared to be faulty i� either G1;j or G2;j contains a fault.
If PG has f=2 faults, then CG has at most f faults (since each external node appears in
two graphs G1;j and G2;k). Let � be a level-preserving embedding of the fault-free graph
CG0 into CG with load l, congestion c, and dilation d and de�ne � so that � maps the
jth external node of CG0 to the �(j)th external node of CG. We embed PG0 into PG by
mapping G0

i;j to Gi;�(j) using �, for i = 1; 2 and 1 � j � N . It follows from the de�nition
of faults in CG that Gi;�(j) is fault-free. Therefore no nodes of PG0 are mapped to faulty
nodes of PG. We need to verify that every external node of PG0 is mapped to a unique
node of PG. The kth external node of G0

1;j is the same as the j
th external node of G0

2;k. The

former is mapped to the �(k)th external node of G1;�(j) and the latter to the �(j)
th external

node of G2;�(k). These nodes are the same node of PG. The dilation of the mapping is d.
The number of copies G0

i;j of PG
0 mapped to any particular Gi;�(j) is at most l. Each copy
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can put l nodes onto any particular node of Gi;�(j). Therefore the load is at most l2 and
the congestion is at most c2.

aa aa
For simplicity, we state the result for a 2-dimensional mesh of trees. However the same

techniques can be used to show that any constant-dimensional mesh of trees can tolerate
logO(1)N worst-case faults with only a constant slowdown.

Theorem 3.2.6 A 2 logN -dimensional buttery can be embedded in a buttery of dimen-
sion 2 logN containing S(logN; b) = �(logbN) worst-case faults in a level-preserving fash-
ion with load and congestion 22b and dilation 1.

Proof: The proof follows from Corollary 3.2.4 and Theorem 3.2.5.
aa aa

Theorem 3.2.7 An N �N mesh of trees can be embedded in a level-preserving fashion in
an N �N mesh of trees containing S(logN; b) = �(logbN) worst-case faults with load and
congestion 22b and dilation 1.

Proof: The proof follows from Theorems 3.2.2 and 3.2.5.
aa aa

The results of this subsection can also be formulated using the fact that the buttery
and the mesh of trees can be expressed as the Layered Cross Product [EL92] of two complete
binary trees (or variations thereof) [Aie92].

3.2.3 Limitations on level-preserving embeddings

We do not know whether or not Theorems 3.2.2, 3.2.6, and 3.2.7 can be improved if the level-
preserving constraint is removed. However, we can show that the bounds in Theorems 3.2.2,
3.2.6, and 3.2.7 are tight if the embedding is forced to be level-preserving.

Given an N -leaf binary tree T with faults at its leaves, an arrow diagram has arrows
drawn from some nodes of T to their siblings. We de�ne a b-legal arrow diagram as follows:

1. On any path from the root to a faulty leaf, there is an arrow from a node on the path
to a node not on the path (outgoing arrow).

2. On any path with no outgoing arrow, there can be at most b incoming arrows.

Let T (n; b) be the maximum number of faults that can be placed at the leaves of a 2n-
leaf binary tree (where 2n = N) without making it impossible to construct a b-legal arrow
diagram for the tree. We bound the value of T (n; b) as follows.

Lemma 3.2.8 For all n � b � 1, T (n; b)� T (n� 1; b) + T (n� 1; b� 1) + 1 = O(nb).

Proof: We will �rst show that T (n; 0) = 0. If there are no faults in the tree, then a tree
with no arrows is a 0-legal arrow diagram. However, even if the tree has only one fault it
necessarily has at least one arrow. If the tree has at least one arrow, then there must be
path from the root of the tree to a leaf having at least one incoming arrow and no outgoing
arrow. Such a path can be recursively constructed as follows. Choose the arrow from node



CHAPTER 3. FAULT TOLERANCE OF HYPERCUBIC NETWORKS 34

m0 to its sibling m such that m is the node with an incoming arrow closest to the root of
the tree. The constructed path is the path from the root of the tree to m concatenated
with the path constructed recursively in the subtree rooted at m. (If there is no arrow in
the subtree rooted atm a path fromm to any leaf of the subtree will be su�cient.) Thus, a
tree with a fault cannot have a 0-legal arrow diagram. Hence T (n; 0) = 0. T (n; n) = 2n�1,
since if we allow n incoming arrows without an outgoing arrow we can place an incoming
arrow on every node of the path from the non-faulty node to the root. For n > b > 0, we
show that

T (n; b) � T (n� 1; b) + T (n� 1; b� 1) + 1:

We show this by proving that there is a way of placing T (n�1; b)+T (n�1; b�1)+2 faults
at the leaves such that either there must be at least b + 1 incoming arrows on some path
without any outgoing arrows or there must be a faulty leaf with no outgoing arrow in its
path. We place T (n� 1; b) + 1 worst-case faults in the left subtree and T (n� 1; b� 1) + 1
worst-case faults in the right subtree. Assume that it is possible to place arrows in the tree
such that every path to a faulty leaf has an outgoing arrow and every path from the root
to a leaf which has no outgoing arrows has at most b incoming arrows. We look at the
placement of arrows in the left subtree. Since there are more than T (n� 1; b) faults, there
must be a path from the root of this subtree to a leaf which has b+ 1 incoming arrows and
no outgoing arrows or there must be path from the root of this subtree to a fault with no
outgoing arrow. Either of these cases implies that the root of the left subtree must have
an arrow from itself to its sibling. Now look at the right subtree. It cannot be the case
that there is a path from the root of the right subtree to a faulty leaf with no outgoing
arrow, since then there will be no outgoing arrow for the path from the root of T to this
fault. Further, no path from the root of the right subtree to a leaf of the right subtree can
have more than b� 1 incoming arrows without having an outgoing arrow, since otherwise
there will be a path from the root of the tree to that leaf with more than b incoming arrows
without an outgoing arrow. Thus the right subtree must be (b � 1)-legal. However, the
right subtree has more than T (n� 1; b� 1) worst-case faults. This is a contradiction. The
recurrence we have for T (n; b) is similar to what we had for S(n; b) in Section 3.2.1 and is
O(S(n; b)). Using Lemma 3.2.1, T (n; b) is O(nb).

aa aa
Theorem 3.2.9 For any constants, c, l, and d, there is a constant k such that there is
a way of placing logkN faults in the leaves of an N -leaf complete binary tree T such that
there is no level-preserving embedding of an N -leaf fault-free complete binary tree T 0 in T

with congestion c, load l, and dilation d.

Proof: We are given an N = 2n node complete binary tree T with faults at its leaves

and its fault-free version T 0. Let k =
l
d+ (l� 1)2d�1

m
. We will choose a worst-case set

of faults in T of cardinality �(logkN) such that this fault pattern has no k-legal arrow
diagram. Clearly this is possible, since T (n; k)+1 is O(logkN). Suppose, for contradiction,
that there is an embedding of T 0 to T with the property that the nodes in level i of T 0 are
mapped to nodes in level i of T , and no nodes of T 0 are mapped to faulty nodes of T , with
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dilation (d), congestion (c) and load (l). Annotate the tree T with arrows as follows. For
any two siblings in the tree, draw an arrow from the sibling whose subtree has a smaller
number of leaves of T 0 mapped to it to the sibling that has a greater number of leaves
mapped to it. If the number of leaves mapped to each of the two subtrees is equal then no
arrow is drawn.

We will now show that the annotated tree is b-legal, for some b less than or equal to k.
The path from the root of a tree to any faulty leaf must have an outgoing arrow, since no
node of T 0 is mapped to a faulty leaf. Let b be the maximum number of incoming arrows on
a path without an outgoing arrow. We will ignore the last d levels of the tree. Therefore,
there is a path in T , p0; p1; � � � ; pn�d, where p0 is the root and pi is some node in level i
of the tree, which has at least b� d incoming arrows without any outgoing arrows. Let li,
0 � i � n�d, denote the average number of leaves of T 0 that are embedded into each leaf of
the subtree of T rooted at node pi. Clearly, l0 is 1. If there is no incoming arrow into node
pk, then the split of leaves of T 0 is even and hence lk = lk�1. Suppose there is an incoming
arrow into node pk from its sibling pk

0, then lk is greater than lk�1. Further, lk is at least
lk�1 + 2�d+1. To see why, consider the subtrees of T 0 rooted at level k + d� 1. The nodes
in each of these subtrees can be mapped entirely within either the subtree rooted at pk or
entirely within the subtree rooted at pk0 but never to the nodes in both. The reason is that
it is not possible for a node of T 0 to be mapped to one of the sub-trees (say pk) to reach
a node mapped at an adjacent level in the other subtree (say pk

0) with dilation d or less.
Thus subtree pk must have at least 2n�k�d+1 more leaves of T 0 mapped to it than subtree
pk

0. Thus, since there are at least b�d arrows, ln�d must be at least 1+ (b�d)2�d+1. Note
that there is at least one leaf in the subtree rooted at pn�d which has load at least ln�d.
Therefore, ln�d is at most l. This implies that b is at most d+ (l � 1)2d�1, i.e., at most k.
But there can be no k-legal arrow placement for the fault pattern chosen for T . This is a
contradiction.

aa aa
Theorem 3.2.10 For any constants, c, l and d, there is a constant k such that there is
a way of choosing �(logkN) faults in an N -input buttery B such that there is no level-
preserving embedding of an N -input buttery B0 in B with congestion c, load l, and dilation
d.

Proof: The proof is similar to that of Theorem 3.2.9. Let B be a buttery with faults and
B0 be the fault-free version of B. We can associate a tree T with B as follows: The root of T
represents the entire buttery B. Its children represent the two sub-butteries of dimension
logN � 1 (between levels 1 and logN). Each child is subdivided recursively until each leaf
of the tree T represents a unique node in level logN of the buttery B. We will choose the
same set of worst-case faults in the leaves of T as in Theorem 3.2.9. The faulty nodes of B
will be the nodes in level logN of B that correspond to the faulty leaves of T . (Note that
faults are not needed on any other level of the tree.) Given a level-preserving embedding
of B0 into B with load l, congestion c and dilation d, we can produce a b-legal placement
of arrows in T in a manner similar to the previous proof. Given two siblings m and m0,
draw an arrow from m0 to m if the there are more nodes in level logN of B0 mapped to the
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sub-buttery of B represented by tree node m than the sub-buttery represented by tree
node m0. Let m and m0 be on level j of T . As before, due to dilation considerations, it is
true that smaller sub-butteries of B0 spanning levels j+d�1 to n must be mapped entirely
within the sub-buttery of B represented by m or within the sub-buttery represented by
m0 but never to both. The rest of the proof is similar to Theorem 3.2.9.

aa aa
Theorem 3.2.11 For any constants, c, l and d, there is a constant k such that there is
a way of choosing �(logkN) faults in an N by N mesh of trees M such that there is no
level-preserving embedding of an N by N mesh of trees M 0 in M with congestion c, load l,
and dilation d.

Proof: The proof is similar to that of Theorem 3.2.10. Let M be a mesh of trees with
faults and M 0 be the fault-free version of M . The nodes in level logN of M and M 0 are
arranged in the form of a 2-dimensional N by N mesh. We will refer to these nodes as the
mesh nodes. We can associate a tree T with the mesh nodes of M as follows: The root of
T represents the entire mesh. Divide the mesh vertically into two equal parts and let each
child represent one of the halves. At the next level of the tree divide each of the halves
horizontally into two equal parts. Divide alternately, either horizontally or vertically, until
you reach individual mesh nodes which are each represented by a unique leaf of the tree.
We will choose the same set of worst-case faults in the leaves of T as in Theorem 3.2.9. The
faulty nodes of M will be the mesh nodes of M which correspond to the faulty leaves of
T . Given a level-preserving embedding of M 0 into M with load l, congestion c and dilation
d, we can produce a b-legal placement of arrows in T in a manner similar to the previous
proofs. Given two siblings m and m0, draw an arrow from m0 to m if the there are more
mesh nodes ofM 0 mapped to the sub-mesh ofM represented by tree node m than the sub-
mesh represented by tree node m0. As before, due to dilation considerations, it is true that
smaller sub-meshes of M 0 must be mapped entirely within the sub-mesh of B represented
by m or within the sub-mesh represented by m0 but never to both. The rest of the proof is
similar to Theorem 3.2.9.

aa aa
3.3 Fault-tolerant routing

In this section, we present algorithms for routing around faults in hypercubic networks.
Section 3.3.1 presents algorithms for routing packets in buttery networks with faulty nodes,
while Section 3.3.2 presents algorithms for establishing edge-disjoint paths between the
inputs and outputs of a Bene�s network with faulty switches.

3.3.1 Fault-tolerant packet routing

In this section, we show how to route packets in an N -input buttery network with f

worst-case faults. The routing problem studied in this section is slightly di�erent from that
studied in Chapter 2. In this section, every node of the buttery can send and receive
packets whereas in Chapter 2 only the nodes in level 0 (input nodes) can send packets and
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only the nodes in level logN (output nodes) can receive packets. A widely studied class
of routing problems is the class of permutation routing problems . A permutation routing
problem between a set of nodes in the network has exactly one packet originating at every
node in this set. Each such packet needs to be routed to a destination node in the set, and
no two packets share the same destination.

The permutation routing problem on the nodes of a buttery as de�ned in this section
is equivalent to the routing problem in which every input node of the buttery sends logN
packets and every output node receives logN packets. The latter problem was referred to
as routing a fully-loaded buttery in Chapter 2. The reason why they are equivalent is as
follows. Each packet originating in some node of the buttery could �rst route from its
node of origin to the level 0 node in the same row. Thus every level 0 node receives logN
packets from the nodes in its row. Each packet then routes to the level logN node in the
row of its destination. Each level logN node receives logN packets destined for the nodes
in its row. Finally, each packet routes along the row of its destination from the level logN
node to its actual destination. The time taken to route along a row in the �rst and the last
stages of the routing is O(logN). Routing each packet from the level 0 node in the row
of its origin to the level logN node in the row of its destination is equivalent to routing a
fully-loaded buttery.

In this section, we show that there is some set of N �O(f) rows such that it is possible
to route any permutation between the nodes in these rows in O(logN) steps, with high
probability. This is result is comparable to the result for fault-tolerant routing in a multi-
buttery[LM92]. A special case of this result is that when f equals �N (for any � < 2=9)
we can route arbitrary permutations between a majority of nodes in the buttery. Note
that this is optimal within constant factors since N faults in level logN=2 can bisect the
buttery into many small components.

We start by describing Valiant's algorithm [Val82] for permutation routing in a buttery
without faults. It will be convenient for us to view the packets in this scheme as being
routed on a bigger network with 4 logN + 1 levels called the virtual network . Between
level 0 and level logN , and between levels 3 logN and 4 logN , nodes are connected only
by straight edges. Between levels logN and 3 logN the network is a pair of back-to-back
butteries isomorphic to the Bene�s network. In analogy with the Bene�s network the nodes
in levels logN , 2 logN and 3 logN are called input nodes, middle nodes and output nodes
respectively. The virtual network can simulated by a single buttery by embedding the
virtual network onto the buttery with load and congestion equal to 4 and dilation equal
to 1 as follows. We fold the virtual network in an accordion-like fashion at levels logN ,
2 logN , and, 3 logN . The folded network can be embedded in a one-to-one fashion onto to
the buttery since one is isomorphic to the other. Note that each node of the folded network
corresponds to four nodes of the virtual network. Thus each node of the buttery has four
nodes of the virtual network embedded onto it. Note that the nodes in levels 0, 2 logN
and 4 logN of the virtual network are embedded onto nodes in level 0 of the buttery. The
nodes in logN , and 3 logN of the virtual network are embedded onto nodes in level logN
of the buttery. Each node of the buttery simulates all the nodes of the virtual network
that are mapped to it. It is easy to see that the buttery can simulate one step of the
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virtual network in at most four time steps.
Valiant's algorithm for routing in a fault-free virtual network is as follows. In Stage 0,

a packet goes down its row to the input node in that row (say m). In Stage 1, the packet
goes fromm to a random middle node (say m00). In Stage 2, the packet goes from m00 to an
output node m0 in the row of its destination. In Stage 3, the packet goes from the row of m0

to its destination. Valiant showed that these paths, which have length at most 4 logN , also
have congestion O(logN) with high probability. In leveled networks such as the buttery,
as long as the (leveled) paths of the packets are selected such that the maximum length is
O(logN) and congestion O(logN), a Ranade-type queuing protocol [Ran87c] can be used
to route the packets in O(logN) steps [LMR88]. Therefore it will be su�cient to derive
high probability bounds on the maximum length and congestion of the paths of a routing
scheme.

In a faulty buttery, we would like to use an algorithm like Valiant's to route packets
between the \good" nodes. Let F be the set of worst-case faults on the buttery and let
f = jF j. As before, we will view the packets as being routed in the virtual network. Any
node of the virtual network embedded to a faulty node of the buttery is considered faulty.
Since Stages 0 and 3 require a fault-free row, any node in a row with a fault is declared
to be bad . Furthermore, in Stage 1, every packet needs a su�cient number of random
choices of middle nodes. For any input (or output) node m, let REACH(m) be de�ned
to be the set of middle nodes reachable from m using fault-free paths of length logN . If
jREACH(m)j < 4N=5 for any input (or output) node m, then we de�ne m and all other
nodes in its row to be bad. Any node not de�ned as bad is de�ned to be good. Note that
there are no faults in rows containing good nodes, and every good input (output) node can
reach at least 4N=5 middle nodes via fault-free paths.

We will now show that only O(f) rows contain bad nodes. This follows from the fact
that only f rows can contain faults and from the fact that jREACH(m)j � 4N=5 for all but
O(f) input nodes m. The latter fact is proved by setting t = N=5 in the following lemma,
which will also be used in Section 3.3.2.

Lemma 3.3.1 In an N -input buttery with f worst-case faults, at least N � fN=t nodes
in level 0 can each reach at least N � t nodes in level logN via fault-free paths of length
logN , for any t � N .

Proof: For each node i in level 0, let ni represent the number of nodes in level logN that
i cannot reach. If the lemma were false, then we would have

NX
i=1

ni �
�
fNa
t

+ 1

�
(t + 1):

A fault at any level of the buttery lies on preciselyN paths from nodes in level 0 to nodes in
level logN . Hence

PN
i=1 ni � fN: Combining the inequalities yields fN � (fN=t+1)(t+1)

which is a contradiction. Hence the lemma must be true.
aa aa

In order to route any permutation between the good nodes, we use Valiant's algo-
rithm except that in Stage 1, we randomly select a middle node m00 from REACH(m)
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\REACH(m0). (This step requires us to store at each node m a table containing informa-
tion about REACH(m)\REACH(m0) for each node m0.) Since m and m0 are good input
and output nodes jREACH(m)\ REACH(m0)j is at least 3N=5. We will now prove that
the paths selected in this manner have congestion O(logN) with high probability. This also
implies that the routing will complete in O(logN) steps with high probability [LMR88].

Theorem 3.3.2 The paths selected have length 4 logN and the congestion of the paths is
O(logN) with probability at least 1� 1=Nk (for any constant k).

Proof: The lengths of the paths are clearly 4 logN since the paths traverse the buttery
four times, once in each stage. We bound the congestion as follows. Every good node
sends and receives one packet. The congestion of any node in Stages 0 and 3 is trivially
at most logN . Consider a node s in level l of the buttery in Stage 1. There are 2l logN
packets that could pass through this node. A packet passes through this node i� it selects
as a random middle node, one of the 2logN�l middle nodes reachable from this node. Note
that the set of possible choices of middle nodes for any input node m and output node m0

is REACH(m) \ REACH(m0). Since both m and m0 are good nodes, the cardinality of
both REACH(m) and REACH(m0) is at least 4N=5. This implies that the cardinality of
REACH(m)\REACH(m0) is at least 3N=5. Thus the probability that the chosen middle
node is reachable from s is at most 2logN�l=(3N=5). Therefore the average number of packets
passing through a node in Stage 1 is at most 2l logN2logN�l5=(3N) which is 5 logN=3. We
can use Cherno� bounds [Rag90] to show that the number of packets through s in Stage 1
is O(logN) with probability at least 1� o(1=Nk). The calculation for a node in Stage 2 is
analogous. Thus the congestion is O(logN) with probability at least 1� 1=Nk.

aa aa
Packet routing without routing tables

In the previous algorithm, each good input node m was required to store a table containing
information about REACH(m)\REACH(m0) for every other node m0. In this section, we
will show that is possible to route packets in a faulty buttery without using such routing
tables. The information about the placement of the faults will be used only during the
recon�guration when the good and bad nodes are identi�ed. This information will not be
needed for the routing itself. We will assume that any packet that attempts to go through a
fault is simply lost. We will further assume that a node that receives a packet sends back an
acknowledgement message (ACK) to the sender. The ACK messages will follow the path of
the packet in reverse. The algorithm for routing proceeds in rounds. There will be a total
of A log logN rounds (for some constant A). Each round consists of the following steps (R
takes values from 0 to A log logN � 1 and denotes the round number).

SEND-PACKET: In Stage 0, if packet p has not yet been delivered to its destination,
send 2R identical copies of p to the input node m in its row. In Stage 1, send each copy
of the packet independently to a random middle node. In Stage 2, send each copy
to the appropriate output node m0. In Stage 3, send each copy to the appropriate
destination node in that row.
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RECEIVE-PACKET: If a packet is received send an ACK along the same path that the
packet came through in reverse.

WAIT: Wait B logN steps before starting the next round.

Theorem 3.3.3 For appropriate choices of the constants A and B, the above algorithm
routes any permutation on the (N�O(f)) logN good nodes of the buttery in O(logN log logN)
steps with probability at least 1� 1a

Nk , for any �xed constant k > 0.

Proof: First we show that there is very little probability that a packet survives A log logN
rounds without reaching its destination, where A is an appropriately chosen constant. A
packet can never encounter a fault in Stages 0 and 3, since its source and destination rows
are fault-free. Let the input node that this packet passes through be m and the output node
m0. In Stage 1, if the packet chooses any middle node in REACH(m)\REACH(m0) it will
succeed in reaching its destination. Since the cardinality of REACH(m) \ REACH(m0)
is at least 3N=5 the probability of this happening is at least 3=5. Suppose the packet did
not get through after A log logN �1 rounds. Then 2A log logN = logAN copies of the packet
will be transmitted in the last round. Note that the probability of each copy surviving
is independent of the others. Hence the probability that none of these copies reach their
destination is at most (1� 3=5)log

AN which is at most 1=Nk+2 for an appropriate choice for
the constant A. Thus, the probability that some packet does not reach its destination is at
most N logN=Nk+2 which is o(1=Nk).

Next we show that each round takes O(logN) time with high probability. We assume
inductively that at the beginning of round i the total number of packets (counting each copy
once) to be transmitted from any row in Stage 0 of the algorithm or received by any row in
Stage 3 of the algorithm is at most q logN for some constant q > 1. Clearly the basis of the
induction is true since at the beginning of the �rst round there are exactly logN packets
sent by each row in Stage 0 and received by each row in Stage 3. The average number of
copies that were sent from a row in Stage 0 or that were destined for a row in Stage 4 that
did not get through is at most 2q logN=5. The value of q is chosen such that the probability
that more than q logN=2 copies do not get through in any row can be shown to be small,
i.e., o(1=Nk+1), using Cherno� bounds. At the beginning of the next stage, each unsent
copy will be duplicated and hence with high probability, the number of packets in any row
in the next round will be at most q logN . Since there are log logN rounds the probability
that the inductive hypothesis will not hold in the beginning of any one round is at most
A � log logN � o(1=Nk+1) which is o(1=Nk).

Now we assume that the inductive hypothesis is true and show that each round takes
only O(logN) steps with high probability. Consider any round i. From the inductive
hypothesis, the congestion of any node in Stage 0 or 3 is at most q logN which is O(logN).
In Stage 1, a node at level l can receive packets from any one of the 2l input nodes, each
packet with a probability of 2�l. The total number of packets which pass through an input
node is at most q logN by our inductive hypothesis. Therefore the average number of
packets passing through the node is q logN2l2�l which is q logN . The value of q is chosen
so that the probability that any node gets more than 2q logN packets can be shown to
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be o(1=Nk+1), using Cherno� bounds. The analysis for Stage 2 is similar. Thus we have
shown that if the inductive hypothesis is true, the congestion of any node is O(logN) with
high probability. Therefore, using Ranade's scheme to schedule the packets, the routing will
complete in C logN steps with probability at least o(1=Nk+1), for an appropriate constant
C. The ACKs follow the path of packet in the reverse direction. Therefore the congestion
in any node due to ACKs can be no more than the congestion due to packets and is also
therefore O(logN). Since we are using Ranade's algorithm to schedule the packets, the
probability that the ACKs will not reach their destinations in D logN time is at most
o(1=Nk+1), for some suitably large constant D. We choose the constant B in the algorithm
to be at least C +D so that the algorithm waits long enough for both the packet routing
and the routing of ACKs to �nish before starting the next round of routing. The probability
that either the packet routing or the ACK routing fails to complete in some round is at
most 2A log logNo(1=Nk+1) which is o(1=Nk).

The probability that either some packet remains untransmitted after the last round or
that the inductive hypothesis does not hold for some round or that some round fails to
complete in B logN steps is simply 3o(1=Nk) which is O(1=Nk). Thus the algorithm suc-
cessfully routes every packet to its destination in O(logN log logN) steps with probability
at least 1�O(1=Nk).

aa aa
If the number of worst-case faults is smaller there is a simpler way of routing without

any routing tables.

Theorem 3.3.4 Given a buttery with N1�� worst-case faults (for any constant � > 0),
it is possible to identify N � o(N) good nodes in the buttery such that any permutation
routing problem on the good nodes can be routed in O(logN) steps with probability greater
than 1� 1=Nk, for any �xed constant k, without any routing tables.

Proof: We choose the good nodes in the buttery much in the same way as before except
that our threshold is much smaller. Any good node must have fault-free row and the input
node in the row of a good node must reach at least N � t middle nodes using fault-free
paths of length logN , for t = N1��=2. Using Lemma 3.3.1, we can show that the number of
good nodes is at least N ��(N1��=2). The algorithm is the same as the previous algorithm
except that we now need only a constant number of routing rounds with high probability.
This is because each unsent packet at each round has only �(1=N �=2) probability of hitting
a fault. Therefore it is su�cient to have �(k=�), i.e., some constant, number of rounds
before every packet is delivered with probability at least 1� 1=Nk.

aa aa
3.3.2 Fault-tolerant circuit-switching

In this section, we examine the ability of the Bene�s network to establish disjoint paths
between its inputs and outputs when some of its switches fail. We assume that no path
can pass through a faulty switch. The primary result of this section is that for arbitrarily
small positive constants � and �, there is a constant b such that given a b-dilated logN -
dimensional Bene�s network with f = N1�� worst-case switch failures, we can identify a set
of N � 2N1�� input and output nodes such that it is possible to route edge-disjoint paths
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in any permutation between the corresponding input and output edges. (A b-dilated Bene�s
network is one in which each edge is replaced by b parallel edges, and each 2� 2 switch is
replaced by a 2b� 2b switch.) As an example, a 2-dilated Bene�s network can tolerate up topa
N=4 worst-case switch failures and still route arbitrary permutations between 75 percent

of its inputs and outputs.
In a logN -dimensional Bene�s network, levels 1 through 2 logN � 1 can be decomposed

into two disjoint sub-Bene�s networks of dimension logN � 1, a top sub-Bene�s network and
a bottom sub-Bene�s network. Note that the two paths that originate from input edges that
share an input node cannot use the same sub-Bene�s network. The same is true for paths
that end on output edges that share the same output node. For a full permutation, there
are 2N input-output pairs which require paths to be routed between them. The standard
algorithm presented below for setting the switches in a Bene�s network, due to Waksman
[Wak68], uses bipartite graph matching to split the set of 2N pairs into two sets of N pairs
which are each then routed recursively in one of the smaller sub-Bene�s networks.

We present Waksman's algorithm with a twist. We will call this algorithm RANDSET
(for RANDom switch SETting). The way RANDSET di�ers from Waksman's algorithm is
that it randomly chooses which of the two sets of N pairs to route through the top (and
bottom) sub-Bene�s network. The input to RANDSET is a permutation � represented as a
2N � 2N bipartite graph. The nodes of the graph represent the 2N input edges and the
2N output edges of the network. An edge in the bipartite graph from input i to output
�(i) indicates that a path must be routed from i to �(i) in the network. The �rst step is
to merge pairs of nodes in the bipartite graph that correspond to input edges (or output
edges) that share the same input (or output). The result is a 2-regular N � N bipartite
graph. The second step is to split the edges of this graph into two perfect matchings, M0

and M1. Next, we pick a binary value for random variable X at random. If X = 0 then we
recursively route the paths in matching M0 through the top sub-Bene�s network and those
in M1 through the bottom sub-Bene�s network. If X = 1 we do the reverse. The following
lemma shows that RANDSET chooses the path from i to �(i) uniformly from among all
possible paths.

Lemma 3.3.5 For any i, the path chosen by algorithm RANDSET between input i and
output �(i) in a 2N -input Bene�s network passes through any of the N middle nodes (nodes
in level logN) with equal probability (1=N).

Proof: At the �rst stage, the path from i to �(i) goes to the top or the bottom sub-
Bene�s network with probability 1=2 depending on whether the matching that contains the
edge corresponding to this input-output pair is chosen to be routed through the top or
the bottom. The decisions made at the succeeding levels of the recursion are similar and
independent of all other decisions.

aa aa
It is important to remember that given a permutation, the paths themselves are highly

correlated and determining one path gives some information about the others.
We will classify the input and output nodes of the Bene�s network as either good or bad

depending on whether they can reach a su�ciently large number of middle nodes. Let F
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be the set of faulty switches in the Bene�s network. In a fault-free Bene�s network, there is a
path from each input (and output) node to each of the N middle nodes. The middle nodes
in fact form the leaves of a complete binary tree with the input (or output) node as the root.
The faults could make some of these paths unusable. We will declare an input (or output)
node bad if the number of middle nodes that it cannot reach exceeds a certain threshold.
The threshold will be chosen so that it is possible to establish edge-disjoint paths between
the good (i.e., not bad) inputs and outputs in any permutation. (The 2 inputs coming into
an input (or output) node are good or bad depending on whether the corresponding input
(or output) node is good or bad).

Let BAD(t) be the set consisting of input nodes as well as output nodes for which
more than t middle nodes are unreachable. The �rst and last logN + 1 levels of the Bene�s
network each form a logN -dimensional buttery. By using Lemma 3.3.1 for each of these
butteries, we know that jBAD(t)j � fN=t.

Theorem 3.3.6 For any constants 0 < � < � � 1, there exists a constant b = d1 + (2� �)=(�� �)e
such that a b-dilated Bene�s network with N1�� worst-case switch faults has a set of N �
2N1�� input nodes and output nodes between whose input and output edges it is possible to
route any permutation using edge-disjoint paths.

Proof: We will declare any input or output node in BAD(N1+���=2) to be bad. Since we
need the number of good input nodes and good output nodes to be equal we may have to
declare some extra input nodes or output nodes to be bad. From Lemma 3.3.1, we know
that BAD(N1+���=2) is at most 2N1��. Thus, the number of good input nodes (or output
nodes) is at least N � 2N1��.

We now prove that we can route any permutation between the good inputs and good
outputs using edge-disjoint paths. In this proof, we will simply show that for every permu-
tation, such a set of paths exists , without showing how to compute these paths e�ciently.
Later, we give an e�cient procedure for computing these paths.

Given a permutation � on the good inputs and outputs, we will select paths using
RANDSET in b rounds. In the �rst round, we route all the paths using RANDSET. Some
of these paths pass through faults in the network. The number of paths that pass through
faults is at most 2N1��, since each fault can kill at most 2 paths. These paths are not
permissible and have to be rerouted in the second round using RANDSET. Note that every
good input node (or output node) has at most N1+���=2 unreachable middle nodes. Thus,
from Lemma 3.3.5, the probability that any one of the paths hits a fault in the �rst logN+1
levels is at most N�(���)=2. The probability that it hits a fault in the second logN + 1
levels is also at most N�(���)=2. The net probability that the path will hit a fault is at most
N�(���). Even though the probabilities that any two paths hit a fault are correlated, the
expected number of paths that hit faults is at most 2N1��N�(���). This implies that there
is a non-zero probability that RANDSET will �nd paths such that at most 2N1���(���)

paths hit faults. Note this also means that there exists a way of selecting the paths so that
at most 2N1���(���) paths hit faults. We select paths such that this criterion is satis�ed
and route the paths that hit faults again using RANDSET. We continue to do the rerouting
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until the expected number of paths that hit faults drops below 1. At this point with non-
zero probability RANDSET routes all of the paths without hitting any faults. In particular,
such a set of paths exist. The expected number of paths that hit faults in the ith round is
2N1���(i�1)(���). Thus, for b = d1 + (2� �)=(�� �)e, the number of paths that hit faults
at the end of the bth round is less than 1. Therefore all paths will be routed by the end of
the bth round. Since we use at most b rounds of routing and since each edge of the Bene�s
network has been replaced by b edges we will obtain edge-disjoint paths for the permutation.aa aa
Derandomizing RANDSET

In the proof of Theorem 3.3.6, we show the existence of edge-disjoint paths by using the
fact that algorithm RANDSET will �nd them with non-zero probability. In this section
we construct a deterministic algorithm that always �nds these paths using the technique
due to Raghavan [Rag88] and Spencer [Spe87] to remove the randomness. Further, like
Waksman's algorithm for �nding the switch settings in a fault-free Bene�s network with N
input nodes, the algorithm runs in O(N logN) time.

Let P be the random variable which denotes the number of paths that pass through
faults at some stage of rerouting. Let X be the binary random variable used by RANDSET
to make its random decision to select which matching is to be routed through which sub-
Bene�s network. Let us further de�ne two random variables, Pl and Pr to denote the number
of paths that RANDSET routes through faults in the left buttery and the right buttery
respectively. Let U(P ) be an upperbound on E(P ) that is de�ned as E(Pl) + E(Pr). In
the proof of Theorem 3.3.6, we used the fact that there is a non-zero probability that
RANDSET will �nd a set of paths with at most U(P ) paths hitting faults. We will de�ne a
procedure DSET (for Deterministic switch SETting) that will deterministically �nd such a
set of paths. Algorithm DSET is the same as RANDSET except that instead of selecting a
random value for X , we select the \better" choice for X as follows. We compute U(P j(X =
i)) = E(Plj(X = i)) +E(Prj(X = i)), for i = f0; 1g. We then choose X to be the value of i
that yields the minimum of the two values computed above.

Theorem 3.3.7 Given a (partial) permutation � to be routed, Algorithm DSET determin-
istically computes paths such that not more than U(P ) paths hit faults in each round, and
has the same asymptotic running time as RANDSET.

Proof: We will prove the theorem by induction on the size of the Bene�s network. The base
case is trivial. Consider an N -input Bene�s network with a (partial) permutation � to route.
From the de�nition of U(P ) we have the following.

U(P ) = E(Pl) +E(Pr)

=
1
a

2
(E(Plj(X = 0)) +E(Plj(X = 1)))

+
1
a

2
(E(Prj(X = 0)) + E(Prj(X = 1)))

=
1
a

2
(U(P j(X = 0)) + U(P j(X = 1))) (7)
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Let i be the value chosen for X in Step 2 of DSET. From Equation 7 it is clear that
U(P j(X = i)) � U(P ). For X = i, let random variables Pt and Pb be the number of
paths passing through faults in the top and bottom sub-Bene�s networks respectively but
not in the �rst or the last stage of the Bene�s network. Let C be the number of paths
that pass through faults in the �rst or the last stage of the Bene�s network. Algorithm
DSET eliminates paths that pass through faults in the �rst or last levels before recursively
routing through the smaller sub-Bene�s networks. The number of paths eliminated in this
manner is C. By the induction hypothesis, we can assume that DSET routes no more than
U(Pt)+U(Pb) paths through faults in the smaller sub-Bene�s networks. Hence DSET routes
at most C + U(Pt) + U(Pb) paths through faults. This equals U(P j(X = i)) which is at
most U(P ). Thus DSET routes at most U(P ) paths through faults in each round.

Now we deal with the question of how e�ciently U(P j(X = i)), for i 2 f0; 1g, can be
calculated in step 2 of DSET. For every nodem in the Bene�s network, letREACH(m) be the
set of middle nodes reachable from node m using fault-free paths. We can precompute the
cardinality of REACH(m) as follows. The values for the middle nodes are trivially known.
We then compute the values for levels on both sides adjacent to levels where the values are
known and continue in this manner. This takes only O(N logN) steps of precomputation
and does not a�ect the asymptotic time complexity of the algorithm. Given the values of
jREACH(m)j, the values of U(P j(X = i)) can be easily calculated by summing up the
appropriate values of jREACH(m)j=N . This is an O(N) time computation. Since Step 1
of the algorithm takes N time just to set N switches in the �rst level, this will not a�ect
the asymptotic time complexity . Hence using DSET yields the same asymptotic time
complexity as RANDSET and takes time linear in the size of the Bene�s network.

aa aa
3.4 Emulations on faulty butteries

In this section, we show that for any constant � > 0, a logN -dimensional buttery with
N1�� worst-case faults (the host H), can emulate any computation of a fault-free version
of itself (the guest G) with only constant slowdown. We assume that a faulty node cannot
perform computations and that packets cannot route through faulty nodes. For simplicity
we assume that the butteries wrap around, i.e., the nodes of level 0 are identi�ed with the
nodes of level logN .

We model the emulation of G by H as a pebbling process. There are two kinds of
pebbles. With every node v of G and every time step t, we associate a state pebble (s-
pebble), hv; ti, which represents the entire state of the computation performed at node v
at time t. The s-pebble contains local memory values, registers, stacks, and anything else
that is required to continue the computation at v. We will view G as a directed graph by
replacing each undirected edge between nodes u and v by two directed edges: one from u to
v and the other from v to u. With each directed edge e and every time step t, we associate
a communication pebble (c-pebble), [e; t], which represents the message transmitted along
edge e at time step t.

The host H will emulate each step t of G by creating an s-pebble hv; ti for each node v
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of G and a c-pebble [e; t] for each edge e of G. A node of H can create an s-pebble hv; ti
only if it has previously created s-pebble hv; t � 1i and has received all of the c-pebbles
[e; t� 1], where e is an edge into v. It takes unit time to create an s-pebble. It can create
a c-pebble [g; t] for an edge g out of v only if it contains an s-pebble hv; ti. A node of H
can also transmit a c-pebble to a neighboring node in H in unit time. A node of H is not
permitted to transmit an s-pebble since an s-pebble may contain a lot of information. Note
that H can create more than one copy of an s-pebble or c-pebble. The ability of H to create
redundant pebbles is crucial to our emulation schemes. In our emulations, each node of H
is assigned a �xed set of nodes of G to emulate, and creates s-pebbles for them for each
time step.

3.4.1 Assignment of nodes of G to nodes of H

We now show how to map the computation of G to the faulty buttery H . The host H has
N1�� arbitrarily distributed faults. We will �rst divide H into sub-butteries of dimension
� logN=2, at levels i� logN=2, for integer i = 0 to 2=��1. (Without loss of generality, we will
assume that 2=� and � logN=4 are integers.) The buttery contains as subgraphs N1��=2

sub-butteries between each of these levels of division. There are a total of (2=�)N1��=2

sub-butteries in all. The faults in the network may make some of these sub-butteries
unusable. We will identify \good" and \bad" sub-butteries according to the following
rules.
RULE 1: A sub-buttery that contains a node that lies in a buttery row in which there
is a fault is a bad sub-buttery (even if the fault lies outside of the sub-buttery).
RULE 2: In order to apply Rule 2, we embed a Bene�s network in the buttery. The
edges of the �rst stage of the Bene�s network traverse the buttery in increasing order of
dimension and the edges of the second stage in decreasing order of dimension. The input
nodes, the middle nodes, and the output nodes of the Bene�s network are all embedded in
level 0 of the buttery (which is the same as level logN). For � = 2�=3, identify the set of
bad inputs/outputs (they are the same set here) according to the procedure outlined in the
proof of Theorem 3.3.6 in Section 3.3.2. Any sub-buttery that contains a node that has
a bad input/output at the end of its buttery row is a bad sub-buttery. In the following
two lemmas, we will bound the number of bad sub-butteries.

Lemma 3.4.1 For any � > 0, the number of rows in which there is either a fault or a bad
input or output is at most N1�� + 2N1�2�=3.

Proof: The number of rows containing a fault is at most N1��, since there are at most
N1�� faults. By Theorem 3.3.6, for � = 2�=3, the number of bad inputs and outputs is at
most 2N1�� = 2N1�2�=3.

aa aa
Lemma 3.4.2 For su�ciently large N and any �xed � > 0, at least half the sub-butteries
of H are good.

Proof: The total number of sub-butteries is (2=�)N1��=2. By Lemma 3.4.1, the number
of rows containing either a fault or bad input or output is at most N1�� + 2N1�2�=3.
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Since each bad row passes through 2=� di�erent sub-butteries, the total number of sub-
butteries identi�ed as bad by Rules 1 and 2 cannot exceed 2(N1��+2N1�2�=3)=�. Observe
that 2(N1�� + 2N1�2�=3)=� is at most N1��=2=�, for su�ciently large N .

aa aa
Now we will divide the guest G into overlapping sub-butteries of dimension � logN=2

and map them to the good sub-butteries of H . For any node v of G, two nodes of H will
receive the initial state of the computation of node v, i.e., s-pebble hv; 0i. These two nodes
in H will create the s-pebbles for v. The mapping proceeds as follows. Take the guest G
and cut it into sub-butteries at levels i� logN=2, for integers i = 0 to 2=� � 1. Map each
sub-buttery to a good sub-buttery of H in such a way that at most two sub-butteries
of G are mapped to each good sub-buttery of H . Now cut G again to produce a second
set of sub-butteries, this time at levels (�=4 + i�=2) logN , for integers i = 0 to 2=� � 1.
Map the sub-butteries evenly to good sub-butteries of H as before. The mapping of each
sub-buttery of G to a sub-buttery of H is one-to-one. Thus at most four nodes of G are
mapped to each node of H . Further, note that each sub-buttery belonging to the �rst set
intersects N �=4 sub-butteries belonging to the second set and vice-versa.

3.4.2 Building constant-congestion paths

We de�ne the boundary nodes of G and H as follows. We call the nodes v of G belonging
to levels i� logN=4�1 and i� logN=4, for i = 0 to 4=��1, boundary nodes since each lies on
the boundary of some sub-buttery that was cut out of G. Let the set of boundary nodes
of G be denoted by BG . Similarly we de�ne the nodes in the levels where H was cut to form
sub-butteries, i.e., levels i� logN=2, and i� logN=2� 1, for i = 0 to 2=�� 1, the boundary
nodes of H . Let us denote this set BH.

Let � be the function that maps an s-pebble, hv; ti to the node in H that creates it.
The creation of hv; ti requires that node �(hv; ti) of H gets all the c-pebbles [e; t] from some
other node of H , for every edge e into v. Suppose that hv; ti is mapped to some node
m = �(hv; ti) in the interior of a good sub-buttery of H . Then the neighbors of m in H
also contain the s-pebbles of the neighbors of v in G. In this casem will receive the required
c-pebbles from all its neighbors in H .

On the other hand, if the s-pebble for v is mapped to some node m 2 BH, the neighbors
ofm inH may not create the s-pebbles of the neighbors of v in G. However, since every node
v of G is mapped to two nodes of H , there is another node m0 of H which also creates an
s-pebble for v. It is important to note that by the property of our mappingm0 is necessarily
a node in the center of a sub-buttery of H , i.e., in level � logN=4 or � logN=4 � 1 of the
sub-buttery. Node m0 of H will send to node m c-pebbles for all of the edges e into v.

To facilitate the transmission of c-pebbles we will establish constant-congestion fault-
free paths in H , using the results of Section 3.3.2, between all pairs of nodes m and m0 of
H that create the s-pebbles for the same node v in BG . The number of paths originating
in a row of H is at most the number of nodes mapped to sub-buttery boundaries in that
row, which is at most 4 � 2=�, i.e., a constant. Similarly the number of paths ending in any
row is 8=�. We can divide the paths into 8=� sets such that each set has at most one path
originating in a row and one path ending in a row. Note that all paths start and end in



CHAPTER 3. FAULT TOLERANCE OF HYPERCUBIC NETWORKS 48

rows which have good inputs and outputs for doing Bene�s-type routing. Therefore, each set
can be routed with constant congestion using the results of Section 3.3.2. Since there are
only a constant number of such sets the total congestion is also a constant.

3.4.3 The emulation

We will now formally describe the emulation and prove its properties. Initially, nodes of
H contain s-pebbles hv; 0i for nodes v of G. We say that H has emulated T steps of the
computation of G i� for every node v, an s-pebble hv; T i has been created. The emulation
algorithm is executed by every node m of H and proceeds as a sequence of macro-steps.
Each macro-step consists of the following three sub-steps.

1. Computation step. For each node v of G that has been assigned to m, m creates a
new s-pebble hv; ti, provided that m already contains s-pebble hv; t�1i and c-pebbles
[e; t� 1] for every edge e into v.

2. Communication step. For every node v whose s-pebble was updated from hv; t � 1i
to hv; ti in the computation step, node m sends a c-pebble to each of its neighbors
in the sub-buttery of H that contains m. In addition, if m is a node in one of
the center levels (levels � logN=4 or � logN=4� 1 in the sub-buttery), it starts four
c-pebbles, one for each edge out of v, along on their way to the node m0 that also
creates s-pebbles for v.

3. Routing step. Node m moves every c-pebble [e; t] that is passing through it en route
to its destination, one step closer to that destination.

Lemma 3.4.3 Each macro-step takes only a constant number of time steps to execute.

Proof: There are at most 4 s-pebbles mapped to each node. Therefore the computation
step takes constant time. Every s-pebble that is updated can cause at most 8 c-pebbles to
be sent. Therefore the communication step takes only constant time. There can be only a
constant number of c-pebbles in transit residing at any node at any time step. The reason
is that there are only a constant number of paths passing through every node. Furthermore,
since every c-pebble moves in every macro-step and only a constant number of c-pebbles
enter a particular path at any macro-step, there can be only a constant number of c-pebbles
on a particular path resident at a particular node at a particular time. Thus the routing
step also takes only a constant number of time steps.

aa aa
Theorem 3.4.4 Any computation on a fault-free buttery G that takes time T can be
emulated in O(T + logN) time by H.

Proof: We will show that only O(T + logN) macro-steps are required for a T -step com-
putation of G. The �nal result will then follow from Lemma 3.4.3.

The dependency tree of an s-pebble represents the functional dependency of this s-pebble
on other s-pebbles and can be de�ned recursively as follows. Let � be the function that
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maps an s-pebble, hv; ti to the node in H that creates it. As the base case, if t = 0, the
dependency tree of hv; ti is a single node, hv; 0i. If t > 0, the creation of s-pebble, hv; ti,
requires an s-pebble hv; t � 1i and a c-pebble [e; t � 1] for each edge e into node v in G.
These c-pebbles are sent by other s-pebbles. There are two cases. If �(hv; ti) is a node in
BH, then s-pebble hv; ti gets all of its c-pebbles from the other s-pebble for node v which
we will denote by hv; t� 1i0. If �(hv; ti) is not a node in BH, then it gets its c-pebbles from
s-pebbles hu; t � 1i such that u is a neighbor of v in G and �(hu; t � 1i) is a neighbor of
�(hv; ti) in H . The dependency tree of hv; ti is de�ned recursively as follows. The root of
the tree is hv; ti. The subtrees of this tree are the dependency trees of hv; t�1i and hv; t�1i0
in the �rst case and the dependency trees of hv; t � 1i and all s-pebbles hu; t � 1i in the
second case.

We will bound the number of macro-steps, T 0, that is required by H to emulate a T -step
computation of G. Let hv; T i be an s-pebble that was updated in the last macro-step. We
will now look at the dependency tree of hv; T i. For every tree node s, we can associate
a time (in macro-steps) �(s) when that s-pebble was created. We choose a critical path,
sT ; sT�1; : : : ; s0, of tree nodes from the root to the leaves of the tree as follows. The root
of the tree, sT , is hv; T i. The creation of sT requires the s-pebble hv; T � 1i and c-pebbles
[e; T � 1]. If the s-pebble hv; T � 1i was created after all the c-pebbles were received then
choose sT�1 to be hv; T � 1i. Otherwise, choose the s-pebble which sent the c-pebble that
arrived last at node �(hv; T i). After choosing sT�1, we choose the rest of the sequence
recursively in the subtree with sT�1 as the root. We will de�ne a quantity li as follows. If
�(si) and �(si�1) are the same node or neighbors in H , then li = 1. Otherwise, li is the
length of the path by which a c-pebble generated by si�1 is sent to si. From the de�nition of
our critical path and because a c-pebble moves once in every macro-step, �(si)��(si�1) = li.
Thus,

T 0 =
X

0<i�T
(�(si)� �(si�1)) =

X
0<i�T

li:

Now suppose that some li is greater than one. This corresponds to some long path taken by
some c-pebble to go from �(si�1) in the center level of a sub-buttery of H to �(si) in BH.
Thus li is the length of the path taken in H , which is at most 4 logN . The key observation
is that since �(si�1) is a node in the center level, working down the tree from si�1 there can
be no more long paths until we reach an s-pebble mapped to the boundary BH, i.e., li�j = 1
for 1 � j � � logN=4� 1. Thus T 0 =

P
0<i�T li can be no more than (16=�+ 1)T + 4 logN

which is O(T + logN).
aa aa

We can extend these results to the shu�e-exchange network using Schwabe's proof
[Sch90] that an N -node buttery can emulate an N -node shu�e-exchange network with
constant slowdown, and vice versa.

Theorem 3.4.5 Any computation on a fault-freeN -node shu�e-exchange network G which
takes time T can be emulated in O(T+logN) time by a an N -node shu�e-exchange network
H with N1�� worst-case faults, for any constant � > 0.

Proof: Schwabe [Sch90] shows how to emulate the computation of a fault-free buttery
on a fault-free shu�e-exchange network and vice versa. First we use this result to map the
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computation of a buttery B to the faulty shu�e-exchange networkH . Any node of B that
is mapped to a faulty node of H is declared faulty. If there is any routing path required
for the emulation that passes through this faulty node of H , then we declare the nodes of
B that use this path to be faulty. The number of faults in B will only be a constant factor
more than N1��, since both the load and the congestion of the paths used in the emulation
are constant. Now we use Theorem 3.4.4, to emulate a fault-free buttery, B0, on B. We
again use Schwabe's result to emulate the fault-free shu�e-exchange network, G, on the
fault-free buttery B0. Each of these emulations has constant slowdown. Therefore the
entire emulation of G on H has constant slowdown.

aa aa
3.4.4 Emulating normal algorithms on the hypercube

Many practical computations on the hypercube are structured. (Please refer to Section 3.1
for the de�nition of a hypercube.) The class of algorithms in which every node of the
hypercube uses exactly one edge for communication at every time step and further all of
the edges used in a time step belong to the same dimension of the hypercube are called
leveled algorithms (also known as regular algorithms [BCS92]). A useful subclass of leveled
algorithms are normal algorithms . A normal algorithm has the additional restriction that
the dimensions used in consecutive time steps are consecutive. Many algorithms such as
bitonic sort, FFT, and tree-based algorithms like branch-and-bound can be implemented on
the hypercube as normal algorithms [Lei92]. An additional property of normal algorithms
is that they can be emulated e�ciently by bounded-degree networks such as the shu�e-
exchange network and the buttery. We state a result due to Schwabe [Sch91] to this
e�ect.

Lemma 3.4.6 An N -node buttery can emulate any normal algorithm of an N -node hy-
percube with constant slowdown.

We require the following well known result on embedding a buttery in a hypercube (For a
stronger result that the buttery is a subgraph of the hypercube, please refer to [GHR90]).

Lemma 3.4.7 An N -node buttery can be embedded in an N -node hypercube with constant
load, congestion, and dilation.

Theorem 3.4.8 An N -node hypercube with N1�� worst-case faults (for any �xed � > 0)
can emulate any normal algorithm on an N -node fault-free hypercube with only constant
slowdown.

Proof: Let the faulty N -node hypercube be H and the fault-free N -node hypercube be
G. H has some set of N1�� faulty nodes. H emulates any normal algorithm of G using a
sequence of constant-slowdown simulations. Let an N -node buttery, B, be embedded in H
in the manner of Lemma 3.4.7. Any node of B which is mapped onto a faulty node of H will
be considered faulty. Since this is a constant load embedding the number of faulty nodes
in B is O(N1��). Clearly, H can emulate any computation of B (the faulty nodes of B do
no computation) with constant slowdown using the constant load, dilation and congestion
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embedding of B in H . Let B0 be a fault-free N -node buttery. From Theorem 3.4.4, B
can emulate B0 with a constant slowdown. Now, from Lemma 3.4.6, B0 can emulate any
normal algorithm of G with a constant slowdown. Putting all these simulations together,
we can obtain a constant-slowdown simulation of any normal algorithm on G on the faulty
hypercube H .

aa aa
3.5 Random faults

In this section we show that an N -input host buttery H can sustain many random faults
and still emulate a fault-free N -input guest buttery G with little slowdown. In particular,
we show that if each node in H fails independently with probability p = 1= log(k)N , where
log(k) denotes the logarithm function iterated k times, the slowdown of the emulation is
2O(k), with high probability. For any constant k this slowdown is constant. Furthermore,
for some k = O(log�N) the node failure probability, p, is constant, and the slowdown
is 2O(log�N). Previously, the most e�cient self-emulation scheme known for an N -input
buttery required !(log logN) slowdown [Tam92a].

The proof has the following outline. We begin by showing that the host, H , can emulate
another N -input buttery network Bk with constant slowdown. As in H , some of the nodes
in Bk may fail at random (in which case it is not necessary forH to emulate them), but Bk is
likely to contain fewer faults than H . In turn, Bk can emulate another buttery Bk�1 with
even fewer faults. Continuing in this fashion, we arrive at B1, which with high probability,
contains so few faults that it can emulate the guest, G, with constant slowdown. There
are k+ 1 emulations, and each incurs a constant factor slowdown, so the total slowdown is
2O(k).

3.5.1 Emulating a buttery with fewer faults

We begin by explaining how H emulates Bk . The �rst step is to cover the N -input
buttery Bk with overlapping (log(k)N)2-input sub-butteries. For ease of notation, let
Mk = (log(k)N)2 (For simplicity, we assume that logMk is an integral multiple of 4). For
each i from 0 to 4 logN= logMk, there is a band of disjoint Mk-input sub-butteries in Bk

spanning levels (i logMk)=4 through ((i + 4) logMk)=4 � 1. We call these sub-butteries

the band i sub-butteries. Note that each band i sub-buttery shares M
3=4
k rows with

M
1=4
k di�erent band i � 1 sub-butteries, and M

3=4
k rows with M

1=4
k di�erent band i + 1

sub-butteries.
Each Mk-input sub-buttery in Bk will be emulated by the corresponding sub-buttery

in H . We say that an Mk-input sub-buttery in Bk fails if more than �
pa
Mk logMk nodes

inside the corresponding Mk-input sub-buttery in H fail, where � is a constant that will
be determined later. If a sub-buttery in Bk fails, then H is not required to emulate any
of the nodes that lie in that sub-buttery. As we shall see, if it does not fail, then the
corresponding sub-buttery in H contains few enough faults that we can treat them as
worst-case faults, and apply the technique from Section 3.4 to recon�gure around them.
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The following lemma bounds the probability that a sub-buttery in Bk fails.

Lemma 3.5.1 For � > 2e, an Mk-input sub-buttery in Bk fails with probability at most
1= log(k�1)N .

Proof: An Mk-input sub-buttery fails if the corresponding Mk-input sub-buttery in
H contains more than �Mk logMk faults. An Mk-input sub-buttery in H contains a
total of Mk logMk = 2(log(k)N)2(log(k+1)N) nodes, each of which fails with probability
1= log(k)N = 1=

pa
Mk . Thus, the expected number of nodes that fail is

pa
Mk logMk =

2(log(k)N)(log(k+1)N). Since each node fails independently, we can bound the probabil-
ity that more than �

pa
Mk logMk nodes fail using a Cherno�-type bound. For � > 2e,

the probability that more than �
pa
Mk logMk nodes fail is at most 2��

pa
Mk logMk (for a

proof, see [Rag90]). Since �
pa
Mk logMk > log(k)N , this probability is at most 2� log(k)N =

1= log(k�1)N .
aa aa

The next lemma shows that if a sub-buttery in Bk does not fail, then the corresponding
sub-buttery in H can emulate it with constant slowdown.

Lemma 3.5.2 If an Mk-input sub-buttery in Bk does not fail, then the corresponding
sub-buttery in H can emulate it with constant slowdown.

Proof: Since the number of faults in an Mk-input sub-buttery that does not fail is mostpa
Mk logMk , we can treat them as worst-case faullts and apply Theorem 3.4.4 with � � 1=2.aa aa
The next lemma shows that the host H can emulate any computation performed by an

N -input buttery network Bk with constant slowdown. Recall that H is not required to
emulate nodes in Bk that lie in sub-butteries in Bk that have have failed.

Lemma 3.5.3 The host H can emulate Bk with constant slowdown.

Proof: By Lemma 3.5.2, each Mk-input sub-buttery in Bk that has not failed can be em-
ulated by the corresponding sub-buttery in H with constant slowdown using the technique
of Section 3.4. (Note that each node in Bk may be emulated by as many as four di�erent
sub-butteries in H .) In order to emulate the entire network Bk , it is also necessary to
emulate the connections between the sub-butteries. As in Section 3.4, letM1��

k denote the
number of faults in an Mk-input sub-buttery of H . For a sub-buttery that has not failed,
� � 1=2. By Lemma 3.4.1, the number of rows containing either a fault or an input or

output that is bad for Bene�s routing is at most M1��
k + 2M

1�2�=3
k , which is approximately

2M
2=3
k . Each band i sub-buttery that does not fail shares M

3=4
k rows with each of the

band i � 1 sub-butteries (and band i + 1 sub-butteries) with which it overlaps. Thus,
for each pair of overlapping butteries, most of the shared rows are both fault-free and
good for routing in both sub-butteries. The emulation strategy of Section 3.4 covers each

Mk-input sub-buttery in H with smaller sub-butteries, each having M
�=2
k inputs. If a

smaller sub-buttery is used in the emulation, then none of the rows that pass through it
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contain either a fault or a bad input or output. Thus, the M
3=4
k connections between the

two sub-butteries in bands i and i� 1 (and i+ 1) can be emulated by routing constant-
congestion paths of length O(logMk) through the shared rows. The rest of the proof is
similar to that of Theorem 3.4.4.

aa aa
3.5.2 Emulating a series of butteries

So far we have shown that the host H can emulate an N -input buttery Bk that con-
tains some faulty nodes. Although our ultimate goal is to show that H can emulate the
guest network G, which contains no faulty nodes, we have made some progress. In the
host network, H , each node fails independently with probability 1= log(k)N . In Bk , each
(log(k)N)2-input sub-buttery fails with probability 1= log(k�1)N . A node in Bk fails if it
lies in a sub-buttery that fails. Since each node in Bk lies in at most four (log(k)N)2-input
sub-butteries we have reduced the expected number of faults from (N logN)= log(k)N in
H to fewer than 4N logN= log(k�1)N in Bk .

The next step is to show that buttery Bk can emulate a buttery Bk�1 with even fewer
faults. In general, we will cover buttery Bj with (log

(j)N)2-input sub-butteries. For ease

of notation, let Mj = (log(j)N)2. We say that an Mj -input sub-buttery in Bj fails if
the corresponding Mj -input sub-buttery in Bj+1 contains more than �

pa
Mj Mj+1-input

sub-butteries that have failed. The following three lemmas are analogous to Lemmas 3.5.1
through 3.5.3.

Lemma 3.5.4 For � > 8e, the probability that an Mj-input sub-buttery in Bj fails is at

most 1=(log(j�1)N).

Proof: The proof is by induction on j, starting with j = k and working backwards to j = 0.
The base case is given by Lemma 3.5.1. For each value of i from 0 to 4 logMj= logMj+1,
there is a band of disjointMj+1-input sub-butteries in Bj+1 that span levels (i logMj+1)=4
through ((i+4) logMj+1)=4. These Mj+1-input sub-butteries can be partitioned into four
disjoint classes according to their band numbers. Two bands of sub-butteries belong to
the same class if their band numbers di�er by a multiple of four. There are at most

Mj logMj=Mj+1 logMj+1 = (log(j)N)2=(log(j+1)N)(log(j+2)N)

sub-butteries in each of these classes, and within a class, the sub-butteries are disjoint.
By induction, each sub-buttery fails independently with probability at most 1= log(j)N .
Thus, in any particular class, the expected number of sub-butteries that fail is at most
(log(j)N)=(log(j+1)N)(log(j+2)N), which is less than log(j)N . Using Cherno�-type bounds
as in Lemma 3.5.1, for � > 8e, the probability that more than (�=4) log(j)N = (�=4)

pa
Mj

of these sub-butteries fail is at most 2�(�=4) log(j)N , which is less than 1=4 log(j�1)N . Thus,
the probability that a total of � log(j)N sub-butteries fail in the four classes is at most
1= log(j�1)N .

aa aa
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Lemma 3.5.5 If an Mj-input sub-buttery in Bj does not fail, then the corresponding
Mj -input sub-buttery in Bj+1 can emulate it with constant slowdown.

Proof: If anMj-input sub-buttery in Bj does not fail, then at most �
pa
Mj = � log(j)N of

the overlapping Mj+1-input sub-butteries in the corresponding Mj-input sub-buttery in

Bj+1 fail. Each of these sub-butteries contains Mj+1 logMj+1 = 2(log(j+1)N)2 log(j+2)N

nodes. Since the total number of nodes in all of these sub-butteries is at most 2� log(j)N(log(j+1)N)2 log(j+2)N ,
i.e., approximately

pa
Mj , we can treat them all as if they were worst-case faults and apply

Theorem 3.4.4 with � � 1=2.
aa aa

Lemma 3.5.6 For 1 � j < k, buttery Bj+1 can emulate Bj with constant slowdown.

Proof: The proof is similar to the proof of Lemma 3.5.3.
aa aa

Theorem 3.5.7 For any �xed  > 0, with probability at least 1 � 1=2N
1�

, an N -input
buttery in which each node fails with probability 1= log(k)N can emulate a fault-free N -
input buttery with slowdown 2O(k).

Proof: The host network, H = Bk+1, can emulate network B1 with a net slowdown equal
to the product of the slowdowns of the emulations of Bj by Bj+1, 1 � j � k. Since we have
shown that each of these emulations have constant slowdown, the slowdown of the emulation
of B1 by H is 2O(k). In B1, each sub-buttery with (logN)2 inputs fails with probability
1= log(0)N = 1=N . Using Cherno�-type bounds as in Lemma 3.5.1, the probability that
more than N1� of these sub-butteries fail is at most 1=2N

1�
. If fewer than N1� of them

fail, then we can treat the nodes contained in these sub-butteries as if they were worst-case
faults. In this case, the total number of worst-case faults is at most 2N1� log2N log logN .
Hence, by applying Theorem 3.4.4 with � � , B1 can emulate the guest network G with
constant slowdown.

aa aa
3.6 Open problems

Some of the interesting problems left open by this chapter are listed below.

1. Can the buttery (or any other bounded-degree network) tolerate random faults with
constant failure probability and still simulate itself with constant slowdown? (Please
refer to Conjecture 4.3.9.)

2. Can anN -node buttery (or any otherN -node bounded-degree network) toleratemore
than N1�� worst-case faults (e.g., N= logN) and still simulate itself with constant
slowdown?

3. Can anN -input Bene�s network tolerate �(N) worst-case switch failures and still route
disjoint paths or constant congestion paths in any permutation between some set of
�(N) inputs and outputs?

4. Can an N -input buttery be embedded with constant load, congestion, and dilation
in an N -input buttery with more than logO(1)N (e.g., N1��) worst-case faults?



4.1 Introduction

One of the most popular ways to construct a parallel computer is to arrange the processors
as a two-dimensional array. Commercial machines including the Intel Touchstone, and
MasPar MP-1 have this topology, as do experimental machines such as the J-Machine and
Mosaic. In this chapter we study the ability of machines like these to tolerate faults. We
show, for example, that anN�N two-dimensional array can sustainN1�� worst-case faults,
for some �xed � < 1, and still emulate a fault-free N �N array with constant slowdown.

A d-dimensional array with side-length N consists of Nd nodes, each labeled with a
distinct d-tuple (r1; r2; : : : ; rd), where 1 � ri � N for 1 � i � d. Two nodes are connected
by a pair of oppositely directed edges if their labels di�er by 1 in precisely one coordinate.
For example, in a 4-dimensional array with side-lengh 8, nodes (3; 2; 4; 8) and (3; 2; 3; 8) are
neighbors, while (3; 2; 4; 8) and (3; 2; 3;7) are not. A two-dimensional array is also called a
mesh and is shown in Figure 5. The nodes labeled (j; i), 1 � i � N , are said to belong to
the jth row of the mesh. The nodes labeled (i; j), 1 � i � N are said to belong to the jth

column of the mesh. The nodes in an array represent processors and the edges represent
communication links. An array is assumed to be synchronous. At each time step each
edge can transmit a single message. Sometimes two nodes are considered to be neighbors
if they di�er in precisely one coordinate and their values in that coordinate are 1 and N .
In this case we say that the array has wrap-around edges. A two-dimensional array with
wrap-around edges is also called a torus. All of the results in this chapter hold whether or
not the array has wrap-around edges.

We use the same fault model as Chapter 3. We assume that faults are static and that
their locations are known. We allow information about the locations of the faults to be
used in recon�guring the network. We assume that a faulty node can neither compute nor
communicate. In this chapter, we deal primarily with the worst-case fault model. Alla

This chapter describes joint research with Bruce Maggs and Richard Cole.
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Figure 5: A 4� 4 Mesh.

of our results can be extended to handle edge failures by viewing an edge failure as the
failure of one of the nodes incident on the edge. In Section 4.4, we use a weaker fault model
for one-dimensional arrays by allowing faulty nodes to communicate, though they cannot
compute. We show that even in this weaker fault model the linear array cannot tolerate as
many worst-case faults as two- or higher- dimensional arrays.

4.1.1 Embeddings

The simplest way to show that a network with faults, H , can emulate a fault-free network,
G, is to �nd an embedding of G into H . As in Chapter 3, we call H the host graph and G
the guest graph. An embedding maps nodes of G to non-faulty nodes of H , and edges of G
to non-faulty paths in H . Recall that the three important measures of an embedding are its
load (l), congestion (c), and dilation (d). Leighton, Maggs, and Rao [LMR88] showed that
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if the embedding has load l, congestion c, and dilation d, then the packets can be routed so
that the slowdown of the emulation is O(l + c+ d).

In order for an embedding-based emulation scheme to have constant slowdown, the
load, congestion, and dilation of the embedding must all be constant. Unfortunately, any
embedding of anN -node (2- or 3-dimensional) array into an array of the same size containing
more than a constant number of worst-case faults, or �(N) random faults must have more
than constant load or dilation [GE84, KKL+90]. Thus, in order to tolerate more than a
constant number of worst-case faults or constant-probability failures, a more sophisticated
emulation technique is required.

4.1.2 Redundant computation

All of the emulations in this chapter use a technique called redundant computation. Recollect
that we used this technique in Chapter 3 to tolerate faults in hypercubic networks. The
basic idea is to allow H to emulate each node of G in more than one place. This extra
freedom makes it possible to tolerate more faults, but it adds the complication of ensuring
that di�erent emulations of the same node of G remain consistent over time. In this section,
we describe informally the basic ideas involved in using this technique to tolerate faults in
the mesh. A complete and formal description will be provided in the succeeding sections of
this chapter.

The ideal way for a host mesh to emulate a guest mesh is to map each guest node to the
corresponding host node. However, this strategy will only work if there are no faults in the
host graph. If the host graph contains faults, then some regions in the host may contain too
many faults to emulate the corresponding regions in the guest. We call each such region in
the host a core. The cores will not be used in the emulation. Instead, we use the technique
of redundant computation to emulate the regions of the guest that correspond to cores in
the host.

The technique can be most easily understood by examining the following case. Suppose
that the host is 3k � 3k mesh and contains a single core which is a k � k square submesh
located at the host's center, and all of the faults in the host lie in this core. In this case,
we divide the guest mesh into two regions that overlap called the outerskirt and the patch.
The patch is a 2k � 2k square and the outerskirt is a \square annulus" of width 2k (see
Figure 6). The width of the region of overlap of the patch and the outerskirt is k. The
outerskirt can be embedded in a one-to-one fashion into the corresponding region of the
host. The patch can also be embedded with constant load, dilation, and congestion into
a region of the host that contain no faults, i.e., a region of the host not intersecting the
core. Note that some nodes of the guest are in both the patch and the outerskirt. The
computation performed by these nodes will be emulated in two di�erent nodes of H .

The host H can now emulate the patch and the outerskirt independently with constant
slowdown. The only problem in this emulation arises due to the fact that the patch does
not contain all the neighbors (in G) of the nodes on its border. Similarly, the outerskirt
does not contain all the neighbors (in G) of the nodes in its (inner) border. Therefore, these
border nodes will not receive inputs from some of their neighbors in this emulation and
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Figure 6: The patch and the outerskirt

cannot be emulated even for one step. In fact, it can be seen that nodes at a distance i� 1
from the border of the patch or the (inner) border of the outerskirt will stop computing
in the ith step for the lack of inputs from some of their neighbors. But observe that if
we emulate for less than k steps, i.e., for less than the width of the overlapping region, at
least one copy of the computation of every node of G computes for all k steps. This is
crucial since after k steps of the emulation, the copy of the computation that computed all
k steps can update the copy of the computation that stopped computing. This update is
performed by routing update messages and takes time proportional to the size of the host,
i.e., �(k) steps. Thus, after the update is complete, every copy of the computation of G
has computed for k steps and the total time taken is �(k). Repeating this over and over
again yields a constant-slowdown emulation of G on H .

The actual emulation algorithm described later in this chapter is in some ways simpler
than the one presented here. However the emulation scheme presented here best illustrates
the fundamental principles involved.
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4.1.3 Previous work

A large number of researchers have studied the ability of arrays and other networks to
tolerate faults. The most relevant papers are described below.

Raghavan [Rag89] devised a randomized algorithm for solving one-to-one routing prob-
lems on N �N meshes. He showed that even if each node fails with some �xed probability
p � :29, any packet that can reach its destination does so in O(N logN) steps, with high
probability. In [Mat92], Mathies improves the p � :29 bound to p � :4.

Kaklamanis et al. [KKL+90] improved upon Raghavan's result by devising an O(N)-step
deterministic algorithm. Their algorithm can also tolerate worst-case faults. If there are k
faults in the network, it runs in time O(N + k2). Kaklamanis et al. also showed that an
N �N array with constant-probability failures or up to O(N) worst-case faults can sort or
route some set of N2 items in O(N) time. They also showed that, with high probability, an
N�N array with constant-probability failures can emulate a fault-freeN

pa
logN�Npa

logN
array with O(logN) slowdown.

Aumann and Ben-Or [AB92] use Rabin's information dispersal technique [Rab89] to
show that an N �N mesh H with slack s, s = 
(logN log logN), can emulate a fault-free
N � N mesh G with slack s with constant slowdown, even if every node or edge in H
fails with some �xed probability p > 0 at some point during the emulation. (In a slack s
computation, each node v in G emulates s virtual nodes. In each superstep, v emulates one
step of each virtual node, and each virtual node can transmit a message to one of v's four
neighbors.) Aumann and Ben-Or assume that in a single step, an edge in H can transmit
a message that is logN times as large as the largest message that can be transmitted in a
single step by G.

In [BCH91], [BCH92a], and [BCH92b], Bruck, Cypher, and Ho show that by adding k
spare processors to an array, it is possible to tolerate up to k worst-case node or edge failures
and still �nd a working fault-free array as a subgraph of the faulty-array. The degree of
each node, however, is proportional to k. Ajtai et al. analyze the technique of adding spare
processors to larger classes of graphs which include arrays in [AAB+92].

4.1.4 Our results

In Section 4.2 we show that an N � N array can tolerate logO(1)N worst-case faults and
still emulate a fault-free array with constant slowdown. Previously it was only known
that a constant number of worst-case faults could be tolerated with constant slowdown.
Section 4.2 introduces most of the terminology that is used throughout this chapter. If a
faulty node is allowed to communicate, but not compute, then the recon�guration scheme
presented in this section can be used to tolerate logO(1)N worst-case faults on an N -node
one-dimensional array with constant slowdown.

Two- or higher-dimensional arrays can tolerate even more worst-case faults with constant
slowdown. In Section 4.3 we present a method called multi-scale emulation for tolerating
N1�� worst-case faults on an N �N array with constant slowdown, for some �xed � < 1.
This result nearly matches the O(N) upper bound on the number of worst-case faults
that can be tolerated with constant slowdown. Using the technique in Section 3.5, it is
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possible to use the scheme for tolerating N1�� worst-case faults to construct a scheme
for tolerating constant-probability node failures with slowdown 2O(log�N). Previously, the
smallest slowdown known for constant-probability node failures was O(logN) [KKL+90].

In Section 4.4 we show that an N -node linear array cannot tolerate more than logO(1)N
worst-case faults without su�ering more than constant slowdown, even if faulty nodes are
allowed to communicate, provided that the emulation is static. In a static emulation, each
host node a emulates a �xed set  (a) of guest nodes. Redundant computation is allowed;
a guest node u may belong to  (a) and  (b) for distinct a and b. In this case we say that
there are multiple instances of the guest node u. For each guest time step, a emulates
the computation performed by each node u in  (a). Furthermore, for every guest edge
e = (v; u) into u, for each instance u0 of u in the host, there is a corresponding instance v0

of v at some host node such that for each guest time step v0 sends a packet for the edge e
to u0. All known emulations are static (e.g., [Fel85, KLM+89, Sch90]).

4.2 A simple method for tolerating worst-case faults on the
mesh

In this section, we show that an N �N mesh with logO(1)N worst-case faults can emulate
any computation of an N�N fault-free mesh with only constant slowdown. The procedure
for recon�guring the computation around faults consists of two steps. The �rst is a process
by which the faults are enclosed within square regions of the mesh called boxes . We will
call this step the growth process . We will describe this process in Section 4.2.1. The next is
an emulation technique that will map the computation of the fault-free mesh (the guest) to
nodes in the faulty mesh (the host). The boxes grown in the �rst step will determine how
the mapping of the computation is done. This is described Section 4.2.2. For simplicity,
we assume that the mesh has wrap-around edges which connect nodes in the �rst row to
the corresponding nodes in the last row and nodes in the �rst column to the corresponding
nodes in the last column. This assumption can be easily done away with at the cost of
considering some special cases for faults near the boundary of the mesh.

4.2.1 The growth process

The growth process grows boxes according to a set of rules on the faulty mesh, i.e., the host.
There are two types of boxes. The �rst type is called a core. A core has too many faults in
it to perform any role in the emulation. The second type is a �nished box . A �nished box
can emulate a submesh of the same side-length with constant slowdown. A �nished box of
side-length 3k consists of a core of side-length k surrounded by a skirt of width k as shown
in Figure 7.

At every stage of the growth process, there is a set of boxes, some of which are cores while
others are �nished boxes. At the beginning of the growth process, every fault is enclosed
in a box with unit side-length which is a core. In every stage of the growth process, we
pick a core, say of side-length k, and grow a skirt of width k around it. If the core or the
skirt intersects some other core, we take the smallest square box that contains both the
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Figure 7: A �nished box

cores and turn this bounding box into a core. Any old cores enclosed completely inside this
newly formed core are removed from the set of cores. If the core or the skirt intersects a
�nished box, we �nd the smallest square box that contains both the core and the core of the
�nished box and turn this bounding box into a core. We also remove the �nished box from
the list of �nished boxes. If the skirt does not intersect any other boxes, the newly created
box is labeled as a �nished box. We continue applying these rules until either some core
grows to be too large to grow a skirt around it or no core remains and no two �nished boxes
intersect. For the former outcome, some core must have side-length greater than N=3. We
now show that this cannot happen if there are fewer than (logN)=2 faults.

Note that our rules for growing cores assign each fault to a unique core. Initially, every
fault is assigned to the unit-sized core enclosing it. Inductively, when two or more cores
are merged to form a new core, every fault assigned to the old cores is now assigned to the
new core. A core is said to contain all the faults assigned to it. Note that a fault may be
geometrically located in the region of a core and yet not be contained in that core.

Lemma 4.2.1 If the number of faults is less than (logN)=2, then the growth process ter-
minates with non-overlapping �nished boxes.

Proof: Let F (k) denote the minimum number of faults that a core of side-length k contains.
We will show by induction that F (k) � (logk)=2 + 1. As the base case, F (1) = 1, which
satis�es the hypothesis. Assume that we have a core of side-length k > 1. This core must
have been created by merging two cores according to one of the two merging rules stated



CHAPTER 4. FAULT TOLERANCE OF PROCESSOR ARRAYS 62

previously. Let the side-lengths of these two cores be denoted by x and y. In both cases,
x+ y � bk=2c+ 1. Using the inductive hypothesis, we have

F (k) � F (x) + F (y)

� (logx)=2 + 1 + (log y)=2 + 1

The values of x and y that minimize the right hand side of this inequality are x = bk=2c
and y = 1. Substituting these values, we have

F (k) � (log bk=2c)=2 + 2

� (logk)=2 + 1 (8)

This proves our inductive hypothesis.
Now suppose that there is a core of side-length greater than N=3. Then there must be at

least F (bN=3c+ 1) faults, which is more than logN=2. This is a contradiction. Thus there
can never be a core of side-length more than N=3 in side-length. Therefore, the growth
process must terminate with non-overlapping �nished boxes.

aa aa
4.2.2 The Emulation

In this section, we will show that if the growth process terminates with a set of non-
intersecting �nished boxes, then the host H can emulate the guest G with constant slow-
down.

As in Section 3.4, the emulation of G by H is described as a pebbling process. There
are two kinds of pebbles. With every node v of G and every time step t, we associate a
state pebble (s-pebble), hv; ti, which contains the entire state of the computation performed
at node v at time t. We will view G as a directed graph by replacing each undirected edge
between nodes u and v by two directed edges: one from u to v and the other from v to
u. With each directed edge e and every time step t, we associate a communication pebble
(c-pebble), [e; t], which contains the message transmitted along edge e at time step t.

As in Section 3.4, the host H will emulate each step t of G by creating an s-pebble hv; ti
for each node v of G and a c-pebble [e; t] for each edge e of G. A node of H can create an
s-pebble hv; ti only if it contains s-pebble hv; t�1i and all of the c-pebbles [e; t�1], where e
is an edge into v. The creation of an s-pebble takes unit time. It can create a c-pebble [g; t]
for an edge g out of v only if it contains an s-pebble hv; ti. A node of H can also transmit a
c-pebble to a neighboring node in H in unit time. A node of H is not permitted to transmit
an s-pebble since an s-pebble may contain a lot of information. In our emulations, each
node of H is assigned a �xed set of nodes of G to emulate, and creates s-pebbles for them
for each time step.

Using the growth process of the previous section, we grow a collection of non-overlapping
�nished boxes on the faulty mesh H . If the faulty mesh H has fewer than (logN)=2
faults placed arbitrarily by an adversary, then the growth process will terminate with non-
intersecting �nished boxes. Every node of H that does not belong to any of the �nished
boxes will simulate the computation of the corresponding node of G. Every �nished box
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Figure 8: Mapping the computation inside a �nished box

of H will be responsible for simulating the corresponding submesh of G. However since
some of the nodes inside the core of the �nished box are faulty, we must make sure that no
computation is mapped to them. In fact, there will be no computation mapped to any node
inside the core. All the computations will be mapped to the skirt of the �nished box which is
completely fault-free. Since we would like each �nished box to do its share of the emulation
with constant slowdown, we need to avoid long communication delays caused by the fact
that the core is unusable. To do this we use the technique of redundant computation for
hiding communication latency. Therefore some nodes of G will be simulated by two di�erent
nodes in H .

The computation of G corresponding to a �nished box is mapped with replication to the
skirt of that �nished box as follows (See Figure 8). First, the submesh of G corresponding
to a �nished box is divided into two overlapping regions: the patch and the outerskirt. The
patch is a square piece of the computation of side-length 2k as shown in Figure 8. The
outerskirt consists of the entire submesh of G with a square of side-length k removed from
its center. The patch and the outerskirt are mapped to the �nished box as follows. The
outerskirt is of the same size and shape as the skirt of the �nished box. Therefore every
node in the outerskirt is mapped to its corresponding node in the skirt. Let the �nished box
be of side-length 3k. The patch, which is a square of side-length 2k, is mapped to a square
of side-length k=2 called the patch region shown in Figure 8. This is done in the simplest
manner by mapping squares of side-length 4 of the patch to one node of the square in the
�nished box.



CHAPTER 4. FAULT TOLERANCE OF PROCESSOR ARRAYS 64

We now observe some properties of the mapping. The nodes on the border of the patch
have duplicates in the interior of the outerskirt which perform the same computation. The
nodes of the �nished box to which these duplicates are mapped form a ring. Similarly, the
nodes in the border of the outerskirt have duplicates in the interior of the patch which are
mapped to a ring in the �nished box (See Figure 8). (Formally, a ring in a square region is
a set of nodes that are equidistant from the border of the region.) We will call both these
rings interior rings, or i-rings for short. The two rings in the �nished box to which the
border of the patch and the border of the outerskirt are mapped are called border rings , or
b-rings for short.

A node H containing an s-pebble for a node v of G needs to receive c-pebbles corre-
sponding to each of the edges into v in G in order for the computation to proceed. If this
s-pebble is in the interior of the patch or the outerskirt, the s-pebbles of its neighbors are
also in the patch or outerskirt respectively. Therefore it can obtain the required c-pebbles
from these nodes in one time step. However, the s-pebbles in the border of the patch or
the outerskirt have may not have neighboring s-pebbles close by in H . Since the patch
and the outerskirt overlap, every s-pebble in the border of the patch or the outerskirt has
an s-pebble for the same node computation in the interior of the outerskirt or the patch
respectively. In our emulation, every s-pebble in the border will receive the c-pebbles for
all of its incoming edges from its duplicate copy that is mapped to one of the i-rings in the
�nished box.

We now lay down constant-congestion paths from each s-pebble on an i-ring to its
duplicate on a b-ring. The c-pebbles will be routed along these paths during the emulation.
Note that these paths are determined o�-line before the start of the emulation. Each b-ring
and i-ring is a square with 4 sides. The nodes on each side of an i-ring need to be connected
to the appropriate nodes on the appropriate side of the corresponding b-ring. Given two
sides whose nodes need to be connected, draw two paths connecting the endpoints of one side
to the endpoints of the other side. The pairs of endpoints that are chosen to be connected
by a path are such that the paths and the two sides enclose a region. Further, the paths are
chosen such that that this enclosed region does not intersect the core and this region can be
partitioned into squares of side-length k=4, where 3k is the side-length of the �nished box.
From Figure 8, it can be seen that it is possible to choose such paths for every pair of sides.
Now route all the required paths inside the enclosed region by using the squares as simple
crossbars. Each square is used to either pass paths right across or to turn all or a subset of
these paths by 90 degrees. It is clear that paths have length �(k). The congestion created
by these paths is a constant. Since there are only eight such pairs of sides to be connected,
the total congestion of these paths is also a constant.

We now describe the actual emulation. The algorithm for emulation is similar to the
algorithm in Section 3.4.3. Each node m of H executes the following algorithm which
proceeds as a sequence of macro-steps. Each macro-step consists of the following three
sub-steps.

1. COMPUTATION STEP: For each node v of G that has been assigned tom, m creates
a new s-pebble hv; ti, provided that m has already created hv; t� 1i and has received
c-pebbles [e; t� 1] for every edge e into v.
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2. COMMUNICATION STEP: For every node v such that s-pebble hv; ti was created in
the computation step of the current macro-step and for every edge e out of v, node
m starts c-pebbles [e; t] along on their way to nodes of H that require [e; t] from m.

3. ROUTING STEP: Move every c-pebble [e; t], which has not reached its destination
and is currently at node m one step closer to its �nal destination.

Note that in the communication step, if the s-pebble, hv; ti, is in the interior of the patch
or the outerskirt, the c-pebbles are sent only to neighboring nodes of H . However, if it is
on an i-ring it sends a copy of all its c-pebbles to its duplicate on the respective b-ring in
addition to sending the appropriate c-pebbles to its neighboring nodes.

Lemma 4.2.2 A macro-step takes a constant number of time steps.

Proof: At each node ofH , there are at most two s-pebbles to be updated in the computation
step and hence this step takes constant time. Each s-pebble update can cause at most 4
c-pebbles (the outdegree of the graph) to be sent. If the s-pebble is on the i-ring, it must
send four additional c-pebbles to its duplicate on the b-ring. Thus the communication step
takes only constant time. Since the paths used for routing have constant congestion and
since a c-pebble in transit to its destination moves in every macro-step, there are at most a
constant number of c-pebbles resident in a node at any time step that have not yet reached
their destinations. Therefore, the routing step also takes constant time.

aa aa
Theorem 4.2.3 Any computation on a fault-free mesh G that takes time T can be emulated
by the faulty mesh H with less than (logN)=2 worst-case faults in O(T +N) time steps.

Proof: From Lemma 4.2.1, we know that since the number of worst-case faults in H is
less than (logN)=2, the growth process terminates with non-overlapping �nished boxes.
The computation of G is mapped inside each of these �nished boxes and each node of H
performs the emulation algorithm as described earlier in this section. We will show that only
O(T + N) macro-steps are required to emulate a T -step computation of G. The theorem
will then follow from Lemma 4.2.2. The proof is similar to that of Theorem 3.4.4. Let � be
the function that maps an s-pebble, hv; ti to the node in H that contains it. The dependency
tree of an s-pebble represents the functional dependency of this s-pebble on other s-pebbles
and can be de�ned recursively as follows. As the base case, if t = 0, the dependency tree
of hv; ti is a single node, hv; 0i. If t > 0, the creation of s-pebble hv; ti requires s-pebble
hv; t� 1i and all c-pebbles [e; t� 1] such that e is an incoming edge of node v in G. These
c-pebbles are sent by some other s-pebbles. There are two cases. If hv; ti is an s-pebble
in the border of the patch or the outerskirt, then it gets all its c-pebbles from the other
s-pebble for node v which we will denote by hv; t� 1i0. If hv; ti is not on the border of the
patch or the outerskirt then its gets its c-pebbles from hu; t� 1i such that u is a neighbor
of v in G. The dependency tree of hv; ti is de�ned recursively as follows. The root of the
tree is hv; ti . The subtrees of this tree are the dependency trees of hv; t� 1i and hv; t� 1i0
in the �rst case and the dependency trees of hv; t� 1i and hu; t� 1i, for all neighbors u of
v in G in the second case.
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Let the emulation of T steps of G take T 0 time (in macro-steps) on H . Let hv; T i be
an s-pebble that was updated in the last macro-step. We will now look at the dependency
tree of hv; T i. For every tree node s, we can associate a time (in macro-steps) �(s) when
that s-pebble was created. We choose a critical path, sT ; sT�1; � � � ; s0, of tree nodes from
the root to the leaves of the tree as follows. Let sT = hv; T i be the root of the tree. sT
requires the s-pebble hv; T � 1i and c-pebbles he; T � 1i. If the s-pebble hv; T � 1i was
created after all the c-pebbles were received then choose sT�1 to be hv; T � 1i. Otherwise,
choose the s-pebble which sent the c-pebble that arrived last at node �(hv; T i) to be sT�1.
After choosing sT�1, we choose the rest of the sequence recursively in the subtree with sT�1

as the root. We will de�ne a quantity li as follows. If �(si) and �(si�1) are the same node
or neighbors in H , then li = 1. Otherwise, li is the length of the path by which a c-pebble
generated by si�1 is sent to si. From the de�nition of our critical path, �(si) � �(si�1)
equals li. This is because a c-pebble moves once in every macro-step. Therefore

T 0 =
X

0<i�T

(�(si)� �(si�1)) =
X

0<i�T
li

Now suppose that some li is greater than 1 and has a value of k. This corresponds to some
long path taken by some c-pebble to go from �(si�1) in the i-ring to �(si) in the b-ring of
some �nished box. The key observation is that since �(si�1) is a node in an i-ring, we can
encounter no more long paths on the critical path until we reach an s-pebble embedded in
the b-ring, i.e., the values of lj , i� 1 � j � i��(k) are necessarily equal to 1. Thus

P
i li

is at most O(T +N). Thus the total number of macro-steps, T 0, is at most O(T +N).
aa aa

It is possible to apply the construction described in this section recursively to show that
we can tolerate logO(1)N worst-case faults in an N �N mesh with constant slowdown.

Theorem 4.2.4 For any constant c, an N � N mesh with logcN worst-case faults can
simulate the computation of a fault-free N �N mesh with constant slowdown.

Proof: In Theorem 4.2.3, we showed that an N � N mesh can tolerate any number of
faults less than logN=2 with constant slowdown. We will now show how to tolerate any
number faults less than log2N=16 with a greater but still constant slowdown. Iterating
this argument several times, we can show that the mesh can tolerate logcN faults, for any
constant c, with constant slowdown.

We will describe the emulation of G on H as consisting of two parts: a constant-
slowdown emulation of G on a new network B and a constant-slowdown emulation of B on
H . First, the mesh H is subdivided into

pa
N �pa

N submeshes. Any submesh that has less
than (log

pa
N)=2 = (logN)=4 faults is declared to be good. The rest of the submeshes are

declared to be bad. Network B is an N �N mesh and has faulty nodes as de�ned below.
Every node of B in a submesh that corresponds to a good submesh of H is fault-free. Every
node of B in a submesh that corresponds to a bad submesh of H is faulty.

The emulation of B on H is described below. H needs to emulate only the non-faulty
nodes of B. H will not use any node in a bad submesh. Since a good submesh has less than
logN=4 faults, we could use it to perform the computations of a �(

pa
N) � �(

pa
N) mesh
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with constant slowdown, using the recon�guration scheme described earlier in this section.
Each such good submesh of H will emulate the corresponding submesh of B and some
extra computation surrounding this submesh of width �(

pa
N). This extra computation

covers the latency of the communication between adjacent submeshes in B. This leads to
a constant-slowdown emulation.

The emulation of G on B is done as follows. We embed B in a
pa
N � pa

N mesh B0 by
embedding each submesh of B into a single node of B0. A node in B0 is de�ned to be faulty
i� the corresponding submesh in B has faults. The number of submeshes of B with faults
is less than logN=4, since the total number of faults in H is less than log2N=16. Therefore,
B0 has less than logN=4 faults and hence we can use the growth process to grow a set of
non-overlapping �nished boxes in B0. This yields a set of non-overlapping �nished boxes in
B whose cores are regions embedded into the cores of the �nished boxes of B0. Using these
�nished boxes we can perform an emulation of G on B with constant slowdown.

aa aa
4.3 Multi-scale emulation

In this section, we will show that an N � N mesh, H , with any set of N1�� faults (for
some constant 0 � � < 1 ) can simulate any computation of a fault-free N � N mesh, G,
with constant slowdown. (Note that unlike the result proved in Section 3.4, we prove this
result for a �xed � < 1.) The broad outline of our proof is similar to that in Section 4.2.
First we grow a collection of �nished boxes on the faulty mesh H (Section 4.3.1). Then
we map the computation of G to H using the �nished boxes created by the growth process
(Section 4.3.2). Finally, we perform the emulation as a series of macro-steps (Section 4.3.3).
The major di�erence between the emulation scheme in this section and that in Section 4.2 is
that in this section we allow a �nished box to contain smaller �nished boxes. In emulating
the region of the guest mesh assigned to it, a �nished box will in turn assign portions of
this computation to each of the smaller boxes that it contains. These smaller boxes might
in turn contain even smaller boxes and hence the term multi-scale emulation.

4.3.1 The growth process

In this section, we show how to grow boxes on the faulty mesh H . We have two types
of boxes: a core, which is not capable of performing any portion of the emulation, and
a �nished box, which consists of a core surrounded by a skirt. An (�-�)-ensemble is a
collection of �nished boxes, each with a skirt of width � times the side-length of its core.
Every �nished box B in the ensemble has a unique level number. Unlike Section 4.2, the
two �nished boxes in an (�-�)-ensemble may intersect. The intersecting region of a �nished
box B in the ensemble is de�ned to be the region formed by nodes that lie both in B and
in some other �nished box with a smaller level number than B. The boxes in the ensemble
satisfy the following properties.

1. Every fault in the mesh H is contained in and assigned to the core of some �nished
box in the ensemble.
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2. The perimeter of the intersecting region of every �nished box B is at most � times
the side-length of B.

Initially, every fault is enclosed in a unit-sized core. The growth process produces an
(�-�)-ensemble of boxes. It proceeds in rounds until there are no more cores left. Each
round produces either a new core or a new �nished box. The round number in which a
�nished box is produced is also its level number. At the beginning of each round, a core of
the smallest side-length (say k) is selected and a skirt of width �k is grown around it to
form a box (call this box B). If k > N=(2�+ 1) then the side-length of B will have to be
bigger than the size of the mesh itself and this is not possible. If this condition arises the
growth process halts and is said to have failed. If this condition does not arise then one of
the following steps is executed after which the growth process proceeds to the next round.

Expand Step If the perimeter of the intersecting region of B is more than � times the
side-length of B, then �nd the smallest bounding box that contains the core of B as
well as the cores of all the �nished boxes that intersect the skirt or core of B and turn
this box into a new core. The �nished boxes whose cores were included in this new
core will cease to exist.

Create Step Otherwise the perimeter of the intersecting region of B is at most � times
the side-length of B. We declare box B to be a �nished box.

Note that in the Expand step the intersecting region of B is computed using the collection
of �nished boxes that exist during that round.

Lemma 4.3.1 The growth process produces an (�-�)-ensemble of �nished boxes, provided
that it does not fail.

Proof: We must show that both the properties of an (�-�)-ensemble are satis�ed when
the growth process does not fail. The growth process must terminate since at each round
either the Expand step or the Create step is executed, each of which either increases the
side-length of a core without changing the total number of cores or decreases the total
number of cores by one. Property 1 is satis�ed initially and since the Expand step forms
a new core by enclosing a group of old cores, by induction this property will hold after
every round. When a �nished box B is created in the Create step, the perimeter of the
intersecting region of B is at most � times its side-length. New �nished boxes created in
later rounds do not a�ect this intersecting region since they all have greater level numbers
than B. Some of the �nished boxes of level number less than B may cease to exist due to
the application of the Expand Step in some later rounds. However, this can only decrease
the perimeter of intersecting region of B. Thus Property 2 will be true for all the �nished
boxes when the growth process terminates.

aa aa
Theorem 4.3.2 For any constants � and �, there exists a constant � < 1 such that for any
set of O(N1��) faults in H the growth process grows an (�-�)-ensemble of �nished boxes.
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Proof: We must show that for any value of � and � there is some � such that the growth
process never fails, i.e., no core of side-length more than N=(2�+ 1) is ever created. Then,
by using Lemma 4.3.1, we can then infer the theorem.

Let F (k) denote the minimum number of faults that a core of side-length k contains.
We show by induction that F (k) � Ak1��, for some choice of constants A and � < 1. In
order to satisfy the basis of the induction, we will choose A to be small enough such that

F (k) � Ak1��, for all k �
l
1
a

�

m
. Inductively, suppose that a new core of side-length k is

formed in some round. Let x be the side-length of the core selected in this round and let
y1; y2; � � � ; ym be the side-lengths of the other cores that were enclosed to form this new
core. Using the fact that the minimum number of faults in the new core is at least the sum
of the minimum number of faults in the cores used to form this new core and further using
the inductive hypothesis, we have

F (k) � F (x) + F (y1) + � � �+ F (ym)

� Ax1�� +Ay1��1 + � � �+ Ay1��m

� Ax1�� +Ay1�� (9)

where y =
Pm

i=1 yi. The last inequality follows from the fact that f(z) = Az1�� is a convex
function.

If a new core was formed, then it must have been formed in the expand step. Since
the cores yi belong to �nished boxes created in earlier rounds, x � yi, for all i. Therefore,
the maximum side-length of the new core is no more than (2� + 1)x + 2(1 + �)(maxi yi),
which is no more than (4�+ 3)x. This implies that x � k=(4�+3). Further, the perimeter
of the intersecting region of the box formed with the core of side-length x is greater than
�(2� + 1)x. This implies that the sum of side-lengths of the intersecting �nished boxes,
(2� + 1)y, should be at least �(2� + 1)x=4 which is at least (�(2�+ 1)=4) � (k=(4�+ 3)).
Putting these together with Equation 9, we obtain

F (k) � A

�
ka

4�+ 3

�1��
+A

�
�ka

4(4�+ 3)

�1��
� Ak1�� (10)

provided � is chosen close enough to 1 such that 1+(�=4)1�� � (4�+3)1��. This completes
the inductive proof that F (k) � Ak1�� for all values of k.

A core of side-length more thanN=(2�+1)must necessarily contain more than F (N=(2�+
1)) faults. Therefore there must be more than CN1�� faults in the mesh, where constant
C = A=(2� + 1)1��. Thus the growth process will never fail and will always produce an
(�-�)-ensemble of �nished boxes for any set of CN1�� = O(N1��) faults.

aa aa
4.3.2 Mapping the computation

In this section, we show how to map the computation of the fault-free N � N mesh G to
the faulty N � N mesh H . The mapping that we are about to describe requires that an
(�-�)-ensemble of �nished boxes be grown in H , for some constants � and � such that � is
less than some �xed fraction of �. We choose values of � and � that obey this constraint.
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Next, we choose � < 1 such that for any set of �(N1��) faults an (�-�)-ensemble of boxes
can be grown using the growth process outlined in Section 4.3.1. By choosing the constants
�, �, and � in this manner, the computation of the guest G can be mapped to host H with
any set of �(N1��) faults.

We will use the pebbling terminology introduced in Section 4.2 to describe the mapping.
A mapping of the computation of G onto H is said to be valid if no s-pebble of G is mapped
to a faulty node in H and no communication path between two s-pebbles passes through a
faulty node inH . The mapping is produced by amapping process that progresses iteratively
in rounds. Initially, the s-pebble of every node of G is mapped to the corresponding node
of H . Like a regular mesh computation, each s-pebble gets c-pebbles from the s-pebbles
mapped to the neighboring nodes in H . This initial mapping is not a valid one since it
maps s-pebbles to faulty nodes of H . The mapping process selects a �nished box at the
beginning of each round in the decreasing order of their level numbers. The mapping process
terminates when all �nished boxes in the ensemble have been selected. In each round, the
mapping process locally changes the mapping inside the selected �nished box such that
no s-pebbles are mapped to the core of that �nished box. This is done in a way similar
to that of Section 4.2 where s-pebbles were removed from the core by duplicating some
of the s-pebbles and setting up constant-congestion paths between duplicated s-pebbles.
After all the rounds are completed, no s-pebble will be mapped to a faulty node and no
communication will pass though a faulty node. This will be the �nal mapping.

A mesh-like computation is said to be mapped onto some �nished box B if each node
in B has exactly one s-pebble mapped to it. Further, each s-pebble mapped to some node
m in B receives a c-pebble from each of the s-pebbles mapped to neighboring nodes of m
in B. Our mapping process will ensure that the following invariant will hold true at the
beginning of every round.

Invariant 4.3.3 Suppose B is a level l �nished box that is selected at some round. At the
beginning of this round, for every �nished box B0 of level k, k � l, either no computation
is mapped to B0, or a mesh-like computation is mapped to B0. Further, no communication
path passes through any node in B0.

The invariant is true at the beginning of the �rst round since every �nished box has a mesh-
like computation mapped onto it and there are no communication paths. At the end of each
round, this invariant will hold true inductively. Later in this section, we will outline the
steps involved in a speci�c round of the mapping process in which the computation within
the chosen �nished box is remapped. We now show that the iterative mapping process
produces upon termination a mapping that does not map computation or communication
to faulty processors.

Theorem 4.3.4 The iterative mapping process upon termination produces a valid mapping
of the computation of G into H.

Proof: We must show that every faulty node of H has neither an s-pebble mapped to it nor
a communication path passing through it in the �nal mapping produced by the iterative
mapping process. A node v of H is said to be active at a particular round of the mapping
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process if it either has an s-pebble mapped to it or has a communication path passing
through it in the beginning of this round. A node is said to be inactive if it is not active. In
the �rst round, every node in H is active. A key property of the iterative mapping process
is that if in some round a node v becomes inactive it remains inactive through the remaining
rounds. For a contradiction, suppose that an inactive node v becomes active. Let B be the
�nished box selected in the last round in which v was inactive. Since only nodes inside B
are a�ected by the remapping v must be in B. From Invariant 4.3.3 and the fact that v is
inactive, it must be the case that no computation was mapped to B. This means that no
computation was remapped in this round, which is a contradiction.

We now show that no faulty node remains active at the end of the mapping proccess.
From Property 1 of an (�-�)-ensemble of �nished boxes, every fault in H is contained in
some core of some �nished box. Let v be a faulty node in H and let B be the �nished
box whose core contains this fault. If v is already inactive in some round before B is
selected, it will remain inactive through the rest of the rounds. Otherwise, if v is active
in the round that B is selected, it follows from Invariant 4.3.3 that there must an s-pebble
mapped to v but no communication paths passing through v at the beginning of this round.
The remapping of computation inside B will remove the computation from v and no new
communication path will pass through v. Therefore v becomes inactive and remains that
way through the rest of the mapping process. Thus no faulty node remains active at the
end of the mapping process.

aa aa
Remapping the computation within a �nished box

In this section, we show how to remap the computation within a �nished box chosen in
some round of the iterative mapping process. Let box B of level l and side-length (2�+1)k
be selected at some round of the mapping process. We assume that Invariant 4.3.3 is true
at the beginning of this round. Later we show that this invariant is true at the end of the
round after the remapping. If there is no computation mapped to B at the beginning of
the round, no remapping needs to be done and the invariant holds at the end of the round.
Otherwise a mesh-like computation is mapped to the nodes of B at the beginning of this
round, The computation within B is partitioned into two overlapping pieces, the outerskirt
and the patch. The region consisting of nodes in B not more than distance �k=5 from the
boundary of B is called the outer region. The outerskirt is embedded somewhere within
this region. Similarly a square box of side-length 3�k=5 is demarcated as the patch region.
(See Figure 9). The patch will be embedded somewhere inside this region.

The �rst step in remapping the computation within B is to place a b-ring and an i-ring
in each of the two regions (See Figure 9). A free ring in the patch region or the outer region
is de�ned to be a ring that does not pass through any �nished boxes B0 at a smaller level
than B. The b- and i-rings satisfy the following ring properties .

1. The i-ring and the b-ring of the outer region must be free rings. Further, between
the i-ring and the b-ring of the outer region there must be �(k) free rings. A similar
condition must hold for the i-ring and the b-ring of the patch region. Further, the
i-ring of the patch region must have side-length �(k).
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Figure 9: Layout of �nished box B.

2. For any constant-load embedding of s-pebbles into a side of the i-ring of one region
and any constant-load embedding of the duplicates of these s-pebbles into the corre-
sponding side of the b-ring of the other region, there must be paths of length �(k)
from every s-pebble to its duplicate. These paths must have constant congestion and
must not pass through any �nished boxes B0 at a smaller level than B.

The procedure for �nding rings with these properties is outlined in Section 4.5.
Having determined the i-rings and the b-rings, the next step is to determine the size and

layout of the patch and the outerskirt. Recall that a mesh-like computation was mapped
into box B at the beginning of this round. Unlike Section 4.2, the size of the outerskirt
and patch will depend on the choice of the of the i- and b-rings. The computation mapped
between the b-ring of the outer region and the boundary of B at the beginning of this round
forms the outerskirt. The computation mapped within the i-ring of the outer region at the
beginning of this round forms the patch. Remapping the outerskirt and the patch to nodes
within B must be done with care so that Invariant 4.3.3 is true at the end of this round.

The outerskirt is embedded in the region of B between the b-ring in the outer region
and the boundary of B. Since the size and shape of the outerskirt is the same as the region
in which it is embedded, we simply map each s-pebble in the outerskirt to the corresponding
node in that region of B.

The patch must be embedded into the square region enclosed by the b-ring in the patch
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region. This is trickier since the patch is a constant factor larger in size than the square
region in which it is embedded. In particular, we must ensure that each �nished box B0 at
a smaller level than B which intersects this square region receives a mesh-like computation
or receives no computation at all. The columns and rows of this square region that intersect
such a �nished box B0 will be called a bad column or a bad row . The rest of the rows and
columns are said to be good rows and good columns respectively. Since the total perimeter
of such boxes B0 is at most �(2�+ 1)k, for a small enough value of �, the majority of the
columns and rows will be good. Our embedding is described by two functions � and � such
that a node in the ith row and the jth column of the patch is mapped to the �(i)th row
and the �(j)th column of the square region. The function � is selected so that for all i,
�(i) � �(i+ 1) � �(i) + 1. Further, for any value of j there are at most a constant number
of values of i with �(i) = j and if the jth row is bad there is exactly one value of i with
�(i) = j. The function � is chosen with similar properties for the columns. That such
functions � and � exist follows from the fact that the patch is at most a constant factor
bigger than the square region and that a majority of the rows and columns of the square
region are good. This completes the embedding of the s-pebbles to nodes within B.

Finally, the constant-congestion paths between the s-pebbles in the i-ring and their
duplicates in the b-ring are set up. These paths should not pass through any �nished boxes
at levels lower than B. These paths can be set up since the i-ring and b-ring satisfy the
second ring property mentioned earlier in this section. As in Section 4.2, the s-pebble on
the b-ring receives c-pebbles from its duplicate on the i-ring using these paths.

We now show that Invariant 4.3.3 inductively holds at the end of the round in which B
was selected.

Theorem 4.3.5 Invariant 4.3.3 is true after the computation within B has been remapped.

Proof: We must show that each �nished box B0 at a smaller level than B has a mesh-like
computation mapped to it or no computation mapped to it at all. All such boxes B0 that
do not intersect B are not a�ected by the remapping at all. From ring property 1, we
know that no box B0 at a smaller level than B can intersect the b-ring in the outer region.
Therefore any intersecting box B0 not entirely contained in B must intersect the region
where the outerskirt is embedded. Since the embedding of this region does not change in
the course of the remapping, all such boxes B0 still have a mesh-like computation mapped
to them.

We will now look at boxes B0 contained entirely within B. Since the b-rings do not pass
through B0, either B0 is contained entirely in the region where the outerskirt is embedded
or entirely in the region between the b-ring of the outer region and the core of the box
or entirely inside the square region where the patch is embedded. In the �rst case, the
embedding inside B0 does not change by the remapping and it continues to have a mesh-
like computation mapped to it. Further, the communication paths to the i-ring of the outer
region do not pass through B0. In the second case, no computation is mapped to B0 and
no communication path passes though the nodes in it. In the third case, observe that every
row or column of B0 is in a bad row or bad column of the square region. Thus � and � map
exactly one row and one column respectively of the patch to these rows and columns. Thus
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a mesh-like computation is mapped to B0. Finally, it is easy to see that none of the newly
formed communication paths pass through any of the �nished boxes B0.

aa aa
4.3.3 The emulation

The emulation procedure is the same as that in Section 4.2. Each node m of H executes the
following algorithm which proceeds as a sequence of macro-steps. Each macro-step consists
of the following three sub-steps.

1. COMPUTATION STEP: For each node v of G that has been assigned tom, m creates
a new s-pebble hv; ti, provided that m has already created hv; t� 1i and has received
c-pebbles [e; t� 1] for every edge e into v.

2. COMMUNICATION STEP: For every node v such that s-pebble hv; ti was created in
the computation step of the current macro-step and for every edge e out of v, node
m starts c-pebbles [e; t] along on their way to nodes of H that require [e; t] from m.

3. ROUTING STEP: Move every c-pebble [e; t], which has not reached its destination
and is currently at node m one step closer to its �nal destination.

Lemma 4.3.6 Each macro-step takes only a constant number of time steps to execute.

Proof: We will prove that the maximum number of s-pebbles mapped to any node of H
and the maximum number of communication paths passing through any node of H is a
constant when the mapping process terminates. We prove this by using induction on the
rounds of the mapping process. There is exactly one s-pebble mapped to every node of H
and no communication paths passing through any node at the beginning of the �rst round of
the mapping process. So the hypothesis is true at the beginning of the �rst round. Suppose
the hypothesis is true at the beginning of some round. Let the �nished box selected at
this round be B. If there is no computation mapped to B and no communication passing
through it no remapping is done and the hypothesis remains true at the beginning of the
next round. Otherwise, from Invariant 4.3.3, there is mesh-like computation mapped to B
and no communication path passes through any of its nodes. Remapping the computation
within each �nished box B causes at most a constant number of s-pebbles to be mapped
to any node within it. Furthermore, the maximum number of paths created in this round
that pass through a node in B is a constant. Since no communication path created before
this round uses a node in B, the inductive hypothesis is true at the beginning of the next
round.

Since there are only a constant number of s-pebbles mapped to any node of H , the
computation step takes only constant time. Since each s-pebble can produce at most 8
c-pebbles that need to be sent, there are at most a constant number of c-pebbles created
at each step. Thus the communication step takes only constant time. There can be only a
constant number of c-pebbles in transit residing at any node at any time step. The reason
is that there are only a constant number of paths passing through every node. Furthermore,
since every c-pebble moves in every macro-step and only a constant number of c-pebbles
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enter a particular path at any macro-step, there can be only a constant number of c-pebbles
on a particular path resident at a particular node at a particular time. Thus the routing
step also takes only a constant number of time steps.

aa aa
Theorem 4.3.7 Any computation on an N �N fault-free mesh G that takes time T can
be emulated by an N �N faulty mesh H with O(N1��) worst-case faults (for some constant
� < 1) in time O(T +N).

Proof: We show that we require only O(T +N) macro-steps for a T -step computation of
G. The �nal result then follows from Lemma 4.3.6.

Let B1; B2; � � � ; Bm be the �nished boxes in the descending order of their level numbers
and let their side-lengths be k1; k2; � � � ; km. The iterative mapping process produces a series
of mappings, �0; �1; � � � ; �m, where �i is the mapping of s-pebbles to H at the end of the ith

round. The mapping �i is obtained from the mapping �i�1 by remapping the computation
within Bi. The �nal mapping generated by the mapping process is �m. Let sT ; sT�1; � � � ; s0
be a sequence of s-pebbles, where si = hvi; tii. This sequence is called a T -sequence if for
all i, ti+1 = ti + 1 and vi and vi+1 are either the same node of G or neighbors in G and si
sends a c-pebble to si+1. For a given mapping �i and a T -sequence sT ; � � � ; s0, li;j is 1 if
nodes �i(sj) and �i(sj�1) are the same node or neighboring nodes in H . Otherwise, li;j is
the length of the path by which a c-pebble generated by sj�1 is sent to sj . If li;j > 1 the
path that corresponds to it is referred to as a long path.

We show that for any T -sequence sT ; sT�1; � � � ; s0, P0<j�T lm;j is O(T + N). We will
de�ne a series of weights wi;j , 0 � i � m and 0 < j � T and ci; di, 0 � i �m. The weights
are chosen such that for any value i the following two properties are satis�ed.

1.
P

j wi;j +
P

j�i(cj + dj) �Pj li;j .

2. For all j, wi;j is less than some �xed constant.

The weights wi;j are chosen to balance all long paths (except perhaps one long path per
�nished box) inside the �nished boxes Bh, h � i. The weights ci and di are chosen to
balance a long path in Bi that has not been balanced by the weights wi;j.

Initially, we will de�ne w0;j = l0;j, for all values of j and c0 = d0 = 0. Since �0 simply
maps the s-pebbles of G to the corresponding node of H , every l0;j and hence every w0;j is
1. Clearly,

P
w0;j + c0+ d0 =

P
l0;j. Further, for all values of j, w0;j can be bounded from

above by a �xed constant.
Inductively assume that we have determined the weights wi�1;j , 0 < j � T and cj; dj ,

0 � j � i� 1, such that the two properties mentioned above are satis�ed. We choose wi;j ,
0 < j � T , ci, and di as follows. Suppose that �i�1 maps no computation onto box Bi.
Then no remapping is necessary and so li;j = li�1;j , for all values of j. In this case we set
wi;j = wi�1;j , for all j, and set ci = di = 0.

Otherwise, from Invariant 4.3.3, �i�1 maps a grid-like computation onto box Bi. The
mapping �i di�ers from �i�1 in that s-pebbles inside box Bi are remapped. Since s-pebbles
outside Bi are not a�ected, li;j = li�1;j for all j such that �i�1(sj) is not in Bi. We de�ne
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wi;j = wi�1;j for all such values of j. (Note that if �i�1 maps an s-pebble sj outside Bi but
adjacent to its border and sj�1 on the border of Bi, then li;j = li�1;j . This is because the
remapping inside Bi will not the change the location of sj�1.)

We now look at s-pebbles mapped inside Bi by �i�1. The new mapping �i introduces
long paths for s-pebbles sj such that �i�1(sj) lies on a b-ring of Bi. For all such s-pebbles
sj , li;j equals the length of the communication path in Bi which is �(ki), where ki is
the side-length of Bi. For all other s-pebbles sj , li;j = li�1;j. We determine the weights
wi;j for each s-pebble sj such that �i�1(sj) is in Bi as follows. We will consider every
maximal subsequence, sh+p; sh+p�1; � � � ; sh, of the T -sequence such that �i�1(sh+q) is in Bi,
for 0 � q � p. Let I be a set of integers q such that li;h+q > 1. There are 3 cases depending
on the value of jI j.

If jI j = 0 there are no long paths and for every 0 � q � p, li;h+q = li�1;h+q = 1.
Therefore we will de�ne wi;h+q = wi�1;h+q for every 0 � q � p, and set ci = di = 0. If
I 6= 0, let L be

P
q2I(li;h+q � li�1;h+q), which equals the net increase in the values of li;q in

the subsequence.
If jI j = 1, there is exactly one long path. Note that this can happen only if either �i(s0)

or �i(sT ) is in box Bi. This is so because a maximal subsequence of a T -sequence that has
neither �i(s0) nor �i(sT ) in Bi must necessarily enter and leave the box Bi. Therefore such
a subsequence must neccessarily use long paths an even number of times. If �i(s0) is in Bi

make ci = L, where L = �(ki). Otherwise set ci = 0. Similarly if �i(sT ) is in Bi make
di = L. Otherwise set di = 0. For every 0 � q � p, set wi;h+q = wi�1;h+q.

If jI j > 1, let J be the set of integers q such that �i(sh+q) is in some free ring either in
the patch region or in the outer region. Recall that nodes in the free rings are not contained
in any �nished box Bl; l > i. The value of L is jI j�(ki) since each long path in Bi is �(ki)
in length. This increase must be distributed evenly among the weights of the s-pebbles
sh+q ; q 2 J . Thus for all q 2 J , wi;h+q = wi�1;h+q + L=jJ j. For any two s-pebbles sh+q1
and sh+q2 such that q1; q2 2 I , the subsequence sh+q1 ; � � � ; sh+q2 contains at least �(ki)
s-pebbles sh+q0 , such that q0 2 J . This is so because the the i-ring and the b-ring of the
patch region or the outer region were chosen such that there are �(ki) free rings between
them. This implies that jJ j = �(kijI j) and thus L=jJ j is a constant. For all other q 62 jJ j,
li;h+q = li�1;h+q and wi;h+q = wi�1;h+q. We also set ci = di = 0. After all such subsequences
have been dealt with we go to the next iteration.

The weight assignments in all three cases maintain the condition that
P

j wi;j+
P

j(cj+
dj) � Pj li;j. Further, for all i and j, wi;j is at most a constant. This is so because if the

weight of some sj increases at the i
th iteration, i.e., wi;j > wi�1;j , then it will never increase

again since �i(sj) is in a free ring of the �nished box selected in the ith iteration and hence
is not contained in any of the �nished boxes at a lower level that will be considered in
future rounds. Thus its weight will never change after this iteration. Further, as we saw
earlier, the increment wi;j�wi�1;j is also a constant. Thus, we have a series of weights wi;j ,
0 � i � m and 0 < j � T and ci; di, 0 � i � m that satisfy the two properties mentioned
previously.

We bound
P

j lm;j by bounding
P

j wm;j and
P

i�m(ci + di). The fact that wm;j is a
constant for all j implies that

P
j wm;j is O(T ). We bound the summation

P
i(ci + di) as
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follows. The value of ci or di is either zero or �(ki). Thus
P

i ci can be no more than the
sum of the side-lengths of all the boxes in the (�-�)-ensemble, i.e.,

P
i ki. We show that

this quantity is O(N). Observe that since the core of Bi has at least �(k
1��
i ) faults and

since there are �(N1��) faults in the mesh,X
i

�(k1��i ) � �(N1��)

The maximum value of
P

i ki with the above constraint is when all but one of the values
of ki equal zero, i.e., when one value of ki is �(N) and the rest are zero. Thus

P
i ki and

hence
P

i ci is O(N). Similarly,
P

i di can be shown to be O(N). Therefore,X
j

lm;j �
X
j

wm;j +
X
i�m

(ci + di) = O(T +N)

Let the emulation of T steps of G take T 0 macro-steps. Furthermore, let hv; Ti be an
s-pebble that was updated in the last macro-step. As in the proof of Theorem 4.2.3, we
can de�ne the dependency tree of hv; T i and choose the critical path, sT ; sT�1; � � � ; s0, of
tree nodes from the root to the leaves of the tree. The critical path is a T -sequence. As in
Theorem 4.2.3, we can show that T 0 =

P
0<j�T lm;j. Thus T 0 is O(T +N).

aa aa
4.3.4 Random Faults

In Section 3.5, we used the worst-case fault result for a buttery to derive a method for
tolerating random faults on the buttery. In a similar manner, we can use the worst-case
faults result of Theorem 4.3.7 and derive the following result for the mesh.

Theorem 4.3.8 For any �xed  > 0, with probability at least 1�1=2N
2�

, an N �N mesh
in which each node fails independently with some constant probability p > 0 can emulate a
fault-free N �N mesh with 2O(log�N) slowdown.

Proof: The proof is similar to the proof of Theorem 3.5.7 in Section 3.5.
aa aa

Though 2O(log�N) is a very slowly growing function of N , it is not a constant. A stronger
result is given in the following conjecture.

Conjecture 4.3.9 An N �N mesh in which each node fails independently with some con-
stant probability p > 0 can emulate a fault-free N �N mesh with constant slowdown, with
high probability.

We believe that we can prove this conjecture, using a construction along the lines of the
construction for the worst-case faults. In its details, this latter construction is considerably
more intricate. Resolving this conjecture will be of great interest, since then the mesh will
become the �rst bounded-degree network known to tolerate constant-probability failures
with constant slowdown.
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4.4 A limit on the fault-tolerance of linear arrays

Unlike two- or higher-dimensional arrays, the one-dimensional linear array is not very tol-
erant of faults. It is easy to see that a linear array cannot tolerate more than a constant
number of worst-case faults. This is because by placing f(N) faults, an N -node linear
array can be split into disjoint pieces of size N=f(N), for any function f(N) that can grow
arbitrarily slowly with N . Emulating the entire linear array on one of these pieces entails
a slowdown of at least f(N). However, if we are to assume a weaker model of faults where
faulty nodes cannot compute but can let communication pass through them, we can toler-
ate logO(1)N worst-case faults with constant slowdown using the scheme of Section 4.2 in
one dimension. A natural question is if there is a scheme to tolerate more than logO(1)N

worst-case faults in a linear array in this weaker fault model. In this section, we prove that
this is not the case. We show that an N -node linear array with more than logO(1)N worst-
case faults cannot perform a static emulation of a fault-free N -node array with constant
slowdown. In this section, and this section only, we assume that faulty nodes are allowed
to communicate with their neighbors but cannot compute.

In a static emulation, a redundant guest graph G0 = (V 0; E0) is embedded in the host H .
The redundant graph is de�ned as follows. For every node v in the guest graph G = (V;E),
there is set of nodes �(v) in V 0. Each set �(v) contains at least one node, and for u 6= v,
�(v) and �(u) are disjoint. We call the nodes in �(v) the instances of v in G0. The graph
G0 is called redundant because it may contain several instances of each guest node. For
every node v0 2 �(v), and every edge (u; v) in E, the redundant graph contains a directed
edge (u0; v0), for some u0 2 �(u). The embedding maps nodes of G0 to non-faulty nodes in
the host, and edges of G0 to paths in the host. In this section we allow the paths to pass
through faulty host nodes.

The host simulates T steps of the guest graph's computation as follows. The embedding
of G0 into H maps a set  (a) of nodes of G0 to each host node a. Node a emulates each
node v0 2  (a) by creating an s-pebble hv0; ti for 1 � t � T . An s-pebble hv0; ti represents
the state of node v0 at time t. Node a can create an s-pebble hv0; ti, only if it has already
created an s-pebble hv0; t � 1i, and has received all of the c-pebbles of the form [e; t � 1],
where e is an edge (u0; v0) into v0. A c-pebble [e; t� 1] represents the communication that
v0 receives from its neighbor u0 in step t � 1. After creating an s-pebble hv0; ti, node a can
create all of the c-pebbles of the form [g; t] for each edge g out of v0. At each host time step
a host node a can create a single s-pebble (and the corresponding c-pebbles) and can send
and receive one c-pebble on each of its edges. A c-pebble for an edge (u0; v0) is sent along
the path from u0 to v0 that is specifed by the embedding. Note that a node u0 may send
c-pebbles to a neighbor v0, but receive c-pebbles from a di�erent instance v00 of guest node
v.

4.4.1 Bounding the load, congestion, and dilation

The following three lemmas show that if a static emulation has slowdown s, then the load
and congestion of the embedding of G0 into H cannot exceed s, and the average dilation of
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the edges on any cycle in G0 cannot exceed s.

Lemma 4.4.1 Suppose that for any T , the host can perform a static emulation of a T -step
guest computation in Ts steps. Then the maximum load on any host node is at most s.

Proof: Let l be the load of the embedding. Then some node a in H must simulate l nodes
of G0. For each of these nodes, a must create T s-pebbles. Since a can create at most one
s-pebble at each step, the total time is at least lT . Thus, if the slowdown is s, the load can
be at most s.

aa aa
Lemma 4.4.2 Suppose that for any T , the host can perform a static emulation of a T -step
guest computation in Ts steps. Then the maximum congestion on any host edge is at most
s.

Proof: Let c be the congestion of the embedding. Then there is some host edge e through
which c paths pass. For each of these paths, T c-pebbles must pass through e. Since e
can transmit at most one c-pebble at each step, the total time is at least cT . Thus, if the
slowdown is s, the congestion can be at most s.

aa aa
Lemma 4.4.3 Suppose that for any T , the host can perform a static emulation of a T -step
guest computation in at most Ts steps. Then the average dilation of the edges on any cycle
in G0 is at most s.

Proof: Suppose that there is a cycle of length L in G0 with dilation D (the dilation of a
cycle is the sum of the dilations of its edges). Let v0L�1; v0L�2; : : : ; v00 denote the nodes on
the cycle. For any t, the s-pebble hv00; ti cannot be created until a c-pebble [(v01; v00); t� 1]
arrives at the host node that simulates v00. Since a c-pebble can traverse at most one host
edge at each time step, the time for the c-pebble to travel from the node that simulates v01
to the node that simulates v00 is at least the dilation of the edge (v01; v00). The dilation is also
a lower bound on the time between the creation of s-pebbles hv01; t� 1i and hv00; ti. Working
our way around the cycle, we see that the time between the creation of s-pebbles hv00; t�Li
and hv00; ti is at least the dilation of the cycle, D. Thus, for any T that is a multiple of L,
the time between the start of the emulation and the creation of s-pebble hv00; T i is at least
TD=L. For D=L > s, this pebble is not created until after step Ts, a contradiction.

aa aa
4.4.2 Bounding the number of faults

Theorem 4.4.4 For any s, there is a pattern of h(s)(logN)2s worst-case faults, for any
h(s) > 26s+4s6s+5, such that it is not possible for an N -node host linear array with these
faults to perform a static emulation of an N -node guest linear array with slowdown s.

Proof: We begin by placing a layer of g(s) blocks of f(s) consecutive faults in an N -node
array so that the number of non-faulty nodes in the gap between each pair of blocks at most
N=g(s). Formulas for g(s) and f(s) will be determined later.
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Next we �nd a block of faults B that some edges of the redundant graph must cross.
Because the slowdown is s, and at most N=g(s) host nodes lie between any pair of blocks,
for g(s) > s, its not possible for the entire emulation to take place in one gap. (If it did,
then the load in the gap would be greater than s, which is forbidden by Lemma 4.4.1.)
Since the emulation uses host nodes in at least two gaps, there must be some block B such
that some, but not all, of the the guest nodes are emulated on its left, and some, but not
all, of the guest nodes are emulated on its right.

Now we �nd a cycle C in the redundant graph G0 that crosses B. Let u be a node in
the guest graph G such that every instance of u in G0 on the right-hand side of B receives
its left input from the left of B; if there is no such u, then let u be a node in the guest
graph such that every instance of u on the right hand side of B receives its right input from
the left of B; in the latter case interchange the role of left and right inputs in what follows.
Note that there is always such a node u since it is not possible for the host to emulate the
entire guest on the right side of B. Select one of the instances, u0, of u and follow the left
input edge into u0 (i.e., the input edge coming from the node in G0 that corresponds to the
left neighbor of u in the guest) back to where it came from. It must lead across B to some
node v0 in G0 on the left side of B. Now follow the right input edge into v0 back to some
other node w0 in G0. Node w0 may be on either side of B. If it's on the left, follow the right
input edge into w0. If it's on the right, follow the left input edge. Repeat this process until
some node in G0 is visited twice (i.e., a cycle C is formed.)

The next thing to show is that on one side of B or the other, cycle C visits at least
l consecutive nodes of the guest graph, where l > f(s)=s, and these nodes are simulated
within distance sl=2 of B in the host. If the slowdown of the emulation is s, then by
Lemma 4.4.3 the dilation of any cycle is at most s times the number of redundant graph
nodes on the cycle. (The dilation of a cycle or path is equal to the sum of the delays of
the edges on the cycle or path.) Let us de�ne a segment to be a set of nodes visited by C
between crossings of block B. Suppose that cycle C crosses block B a total of 2h times.
Then there are 2h segments. Associate with each segment the dilation of the edges into
the nodes on the segment. Note that the average ratio of the dilation of a segment to the
number of nodes on the segment must be at most s (since the ratio for the entire cycle C
is at most s). Now classify segments into two types: long and short. A short segment is
one containing fewer than f(s)=s nodes. Since a short segment has dilation at least f(s),
it's ratio of dilation to length (number of nodes) is more than s. Since the average ratio
is at most s, there must be some long segment whose ratio of dilation to length is at most
s. Thus, there must be some set of l � f(s)=s nodes emulated within distance sl of B.
Let v01; v02; : : :v0l denote the nodes that were visited on (say) the right side of B, where v1
is the leftmost node in the guest graph. We will call the sl host nodes on the right of B
the emulation region. (Note that in the construction of the cycle, we visited v0l �rst and v01
last.)

Now we show that some communication must pass over the emulation region. Although
nodes v1; v2; : : : ; vl are consecutive in the guest graph, their instances aren't necessarily
embedded in the host in consecutive order. Suppose that v0i is the node embedded the
farthest to the right. If i > l=2, then the path in the cycle from the left side of B to v0l
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to v0l�1 and on to v0i overlaps all of nodes v01, v02; : : : ; v0l=2. On the other hand, if i � l=2,

then the path from v0i to v0i�1 to v01 and back across to the left side of B overlaps all of
nodes v0l=2+1; v

0
l=2+2; : : : ; v

0
l. In either case, we have a set of l=2 consecutive nodes in the

guest graph that the host emulates, and some other edges of G0 overlap their emulation
with congestion 1.

We now proceed recursively within the emulation region. One last issue that must be
dealt with is that some of the l=2 nodes that the host is emulating within the emulation
region may receive some of their inputs from outside the emulation region. However, since
the embedding has congestion at most s (by Lemma 4.4.2), at most 2s right inputs can
enter the emulation region from outside. Thus, there must be a set of at least (l=2)=2s =
l=4s redundant graph nodes that the host emulates within the emulation region that are
consecutive in the guest and receive all of their inputs from within the emulation region.
At this point we have placed g(s) blocks of f(s) faults in the network and we have proved
that on one side of one of the blocks, there is an emulation region of size sl in which at
least l=4s nodes of the guest are emulated, for some l � f(s)=s, and some other edges of
G0 cause congestion 1 in the emulation region. In order to recurse on sets of of l=4s guest
nodes, where l � f(s)=s, we need f(s) > 4s2.

We are now going to place an additional layer of faults in the network. Because we do
not know where the emulation region is, we will place faults immediately adjacent to both
sides of each of the g(s) blocks of faults in the �rst layer. Also, because we do not know
how large the emulation region is, we will place the faults in patterns of size 2; 4; 8; : : :; N
on top of each other. (Note that N is the size of the entire array.) In a pattern of size 2k ,
we will place g(s) blocks of f(s) consecutive faults at spacings of 2k=g(s). Thus, in each
pattern there are g(s)f(s) faults, and there are at most logN patterns on each side of the
blocks in the �rst layer. The total number of faults in the second layer is 2g2(s)f(s) logN .

The entire emulation region must lie under some pattern P of faults of size 2k, where
2k < 2sl. The blocks of faults in this pattern are spaced at a distance of 2k=g(s), which is
at most 2sl=g(s). In this region, at least l=4s guest nodes are emulated. If the slowdown is
at most s, and (l=4s)=(2sl=g(s))> s, then by Lemma 4.4.1 it is not possible for the entire
emulation to be performed entirely between two blocks of faults in this pattern. (Thus, we
need g(s) > 8s3.) Arguing as we did for the �rst layer, we can show that on one side of one
of the blocks of P , there is an emulation region of size sl0 in which at least l0=4s nodes are
emulated. But now two units of congestion pass over the new emulation region (possibly in
opposite directions).

A third layer of faults is now placed in the network. As before, a set of patterns of faults
is placed around each block in the second layer. There are 2g(s)2 logN blocks in the second
layer. Thus, there are 4g(s)3(logN)2f(s) faults in the third layer.

By applying 2s+1 layers of faults, we �nd an emulation region over which at least s+1
units of congestion (in one direction) pass, which is a contradiction by Lemma 4.4.2. The
2s+1st layer contains 22sg(s)2s+1(logN)2sf(s) faults. The total number of faults contained
in all the 2s+ 1 layers is at most twice the number of faults contained in the 2s+ 1st layer
alone, since the number of faults in the ith layer is at least double the number of faults in the
i� 1st layer. Thus the total number of faults is 22s+1g(s)2s+1(logN)2sf(s) = h(s) log2sN ,
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Figure 10: Finding i- and b-rings.

where h(s) = 22s+1g(s)2s+1f(s), g(s) > 8s3 and f(s) > 4s2.
aa aa

4.5 Finding the i- and b-rings

In this section, we will show how to �nd i- and b-rings in a �nished box B of side-length
(2� + 1)k satisfying the two ring properties outlined in Section 4.3.2. The ring properties
are as follows.

1. The i-ring and the b-ring of the outer region must be free rings. Further, between
the i-ring and the b-ring of the outer region there must be �(k) free rings. A similar
condition must hold for the i-ring and the b-ring of the patch region. Further, the
i-ring of the patch region must have side-length �(k).

2. For any constant-load embedding of s-pebbles into a side of the i-ring of one region
and any constant-load embedding of the duplicates of these s-pebbles into the corre-
sponding side of the b-ring of the other region, there must be paths of length �(k)
from every s-pebble to its duplicate. These paths must have constant congestion and
must not pass through any �nished boxes B0 at a smaller level than B.

Recollect that the patch region is a square region in B of side-length 3�k=5 and the outer
region is an annular region of width �k=5. In the center of the patch region, we place a
square of size �k=5. (See Figure 10). The i-ring of the patch is required enclose this square.
This guarantees that the i-ring of the patch has size �(k). A trapezoid is a four sided �gure
consisting of two parallel sides and two non-parallel sides. We de�ne the ith column of a
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trapezoid to be the set of nodes in the trapezoid at a distance i from the longer parallel side
of the trapezoid. By joining the corners of the square in the patch region to the respective
corners of the patch region, we partition the patch region, excluding the area enclosed by
the square, into four trapezoidal regions (See Figure 10). Similarly, the outer region is
also partitioned into four trapezoidal regions by joining each corner of the box B to the
appropriate corner of the square forming the inner boundary of the outer region. Each ring
in the outer or patch region consists of four sides and each side is a column of one of the
trapezoids.

We will de�ne four distinct zones , each of which is made up of three parts (A zone is
marked with dotted lines in Figure 10). The �rst part of a zone consists of one of the four
trapezoids in the outer region (called the outer trapezoid) and the last part consists of the
corresponding trapezoid in the patch region (called the patch trapezoid). The middle part
is called the �tting and joins the outer trapezoid to the patch trapezoid (See Figure 10).
The �tting is either a trapezoidal region or a rectangular region adjoining a trapezoidal
region (The patch region is positioned in such a way that this is true.). Each of the four
sides of a ring in the patch region or the outer region is a trapezoidal column in one of
the four zones. Choosing b- and i-rings is equivalent to �nding two trapezoidal columns in
the patch trapezoid and and two trapezoidal columns in the outer trapezoid of each of the
four zones. Further, the four trapezoidal columns, one in each zone, that correspond to a
particular ring must be chosen so as to have the same column number.

Since it is easier to work with rectangular grids, we will embed each of the four zones
into a single rectangular grid R with �k=5 rows and 3�k=5 columns. Note that R is not
part of the guest or the host, it is a tool of the construction only. The grid formed by the
�rst �k=5 columns of R is called the outer grid , the next �k=5 columns the �tting grid ,
and the last �k=5 columns the patch grid . The outer trapezoid, the �tting, and the patch
trapezoid of each zone are embedded into the outer grid, �tting grid and the patch grid
respectively.

Embedding the outer trapezoid or the patch trapezoid into the respective grids can
be done by embedding the nodes in the ith trapezoidal column of the outer or the patch
trapezoid to nodes in the ith column of the respective grid. Any constant-load and constant-
dilation embedding will do for our purposes. We describe such an embedding below. The
nodes in each trapezoidal column are grouped into �k=5 groups such that each group con-
tains some constant number of consecutive nodes of the column. Further, the cardinality of
any two groups in a column di�er by at most one and for all i < j the cardinality of the ith

group is at most the cardinality of the jth group of the same column. For every trapezoidal
column, the ith such group is mapped to the ith node of the corresponding column of the
grid. The dilation of this embedding is at most 2 and the load is constant.

We can use the above technique to embed the �tting as well. The main di�erence is that
since the �tting may have more than �k=5 columns, we would have to embed a constant
number of columns of the �tting to one column of the �tting grid. Note that the four sides
that form a ring either in the outer region or in the patch region are embedded into the
same column in the outer grid or the patch grid respectively. Therefore a column in the
outer or patch grid corresponds to the ring in the outer or patch region that gets mapped
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to it.
We de�ne regions in R called obstacles as follows. The region of R to which a �nished

box B0 (or a portion of it) at a smaller level than B is embedded is de�ned to be an obstacle.
It must be noted that the total perimeter of the obstacles in R is at most some constant
times the total perimeter of the intersecting region of B.

A free column of R is de�ned to be one that does not pass through any obstacles. From
the correspondences between columns in R and rings in the �nished box B, in order to
�nd i- and b-rings in B with the required ring properties, it is su�cient to choose i- and
b-columns in R with the following column properties .

1. The i-column and the b-column of the outer grid must be free columns. Further,
between the i-column and the b-column of the outer grid there must be �(k) free
columns. A similar condition must hold for the i-column and the b-column of the
patch grid.

2. The nodes of the i-column in one grid can be connected to the b-column of the other
grid in any permutation using constant-congestion paths of length �(k) that do not
pass through any of the obstacles.

Note that from the de�nition of the obstacles, if path p in R avoids all obstacles then the
paths in the four zones that are mapped to p also avoid all the �nished boxes at a smaller
level than B.

For technical reasons, we would like the placement of the obstacles in the outer grid,
patch grid, and the entire rectangular grid R itself to be symmetric about the column in
the center of these respective grids, i.e., the obstacles in the �rst half of the columns of the
grid are a mirror image of the obstacles in the second half of the columns of the grid. To
satisfy this condition we �rst copy every obstacle in one half of the outer grid to the other
half by reecting this obstacle about its center column. We do the same for the patch grid
and then �nally for the entire rectangular grid R. This copying can increase the perimeter
of the obstacles by at most a constant factor.

We will de�ne a square box in R to be owless as follows.

De�nition 4.5.1 A square box F of side-length q is said to be owless i� either more than
q=4 rows or more than q=4 columns pass through obstacles.

A column of R that does not intersect any of the owless boxes is called a live column.
Note that a live column is also a free column, since a box of size 1 that is not owless can
contain no obstacles.

Theorem 4.5.2 For a small enough value of �, a majority of the columns in the outer
grid, �tting grid and patch grid will be live columns.

Proof: Let f denote the number of columns in R that are not live. We can bound f in
terms of the total perimeter of the obstacles in the grid by the following counting argument.
Initially, let each non-live column have 1 unit of credit associated with it. The total amount
of credit in the system is f . For each non-live column h let the largest owless box that
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intersects h be box H . This non-live column distributes its unit of credit evenly to nodes
on the perimeters of the obstacles contained entirely in H . After every non-live column has
redistributed its unit of credit, the total number of credits in the nodes on the perimeters
of the obstacles is still f .

We will now determine the maximum credit some node s on the perimeter of an obstacle
receives. Node s may receive credits from many di�erent non-live columns. First we look
at non-live columns with smaller column numbers than the column of s. Let the farthest
such column from s that contributes to s be at a distance q from s. The owless box F
that intersects this non-live column and contains s must have side-length at least q. The
total perimeter of the obstacles of a owless box of size at least q must be at least q=4,
since such a owless box has at least q=4 rows or q=4 columns that pass through obstacles.
Therefore the contribution of this non-live column is at most 4=q. Further, note that every
non-live column between this non-live column and the column of s can contribute at most
4=q. This is because box F intersects all these columns and hence the size of the largest
owless box intersecting these columns is at least q. Thus the total contribution to s from
non-live columns with smaller column numbers than its own column is at most q �4=q which
equals 4. Similarly the total contribution to s from non-live columns with greater column
numbers than its own column can also be bounded by 4. Therefore s receives at most 8
credits.

We will now bound the number of columns that are not live. The perimeter of the ob-
stacles is at most some constant c (independent of �) times the perimeter of the intersecting
region of B, i.e., at most c�(2�+1)k. Thus the total number of credits in the nodes on the
perimeters of the obstacles is equal to f and is at most 8c�(2�+ 1)k. By making � small
enough, we can make this quantity less than �k=10. It now follows that for this choice of
� the majority of the columns in the outer, �tting and patch grids (each grid has �k=5
columns) are live columns.

aa aa
4.5.1 Permuting grids

We de�ne a permuting grid as follows. An l �m rectangular grid with obstacles is said to
be a permuting grid if

1. Each node on the left side of the grid is connected by a path to a distinct node on
the right side of the grid. The paths have constant congestion, do not pass through
any obstacles, and each path has length �(m). These paths are called the horizontal
paths.

2. There are at least m=4 paths from nodes on the top side of the grid to nodes on the
bottom side of the grid such that the congestion of these paths is also a constant.
These paths do not pass through any of the obstacles and each path has length �(l).
These paths are called the vertical paths.

Note that the horizontal and vertical paths in a permuting grid are required to satisfy
di�erent properties.
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Lemma 4.5.3 The nodes on the left side of an l �m permuting grid can be connected in
any permutation to the nodes on the right side of the grid using constant-congestion paths
of length �(m) that do not pass through any obstacles, provided l = O(m).

Proof: The idea is to use the horizontal and vertical paths in the grid as a crossbar. Each
node on the left side of the permuting grid is assigned a vertical path such that no vertical
path is assigned more than four nodes. A path from node v in the left side to �(v) in
the right side is routed in three stages. In the �rst stage, a path is routed from v along
the horizontal path originating at v to the node where this horizontal path �rst meets the
vertical path assigned to v. In the next stage, the path goes along this vertical path to the
node where this vertical path �rst meets the horizontal path ending at �(v). In the last
stage, the path goes along this horizontal path to the destination node �(v). It is easy to
see that this path has length �(l+m) = �(m).

The total congestion on any node in the grid can be split into a sum of three parts. The
congestion of a node due to paths in the �rst (last) stage is at most the congestion of the
horizontal paths and hence is constant. The congestion due to paths in the middle stage is
constant since it is at most 4l=m times the congestion of the vertical paths. The reason is
that at most 4l=m nodes use a particular vertical path as its middle stage. Hence the net
congestion is a constant.

aa aa
The live columns in the outer and patch grids are the set of columns from which we

choose the i- and b-columns. Recollect that live columns do not pass through owless boxes.
We choose � as small as is required by Theorem 4.5.2 so that the majority of the columns
in the outer, �tting and patch grids are live columns. Note that since the obstacles are
symmetric about the middle column of the outer grid, the live columns of the outer grid
are symmetric about the middle column as well. Similarly the live columns in the patch
grid and the entire rectangular grid R are symmetric about their middle columns. The
live columns with the smallest column number in the outer grid and the patch grid are
chosen to be the i-column of the outer grid and the b-column of the patch grid respectively.
The live columns with the largest column number in the outer grid and the patch grid are
chosen to be the b-column of the outer grid and the i-column of the patch grid respectively.
The i- and b-rings in the �nished box B are the rings that correspond to the chosen i- and
b-columns. Let the grid between the i-column and b-column in the outer grid be O, the
grid between the b-column of the outer grid and b-column of the patch grid be F, and the
grid between the b-column and i-column of the patch be P.

Theorem 4.5.4 The grids O, F, and P are permuting grids.

Proof: First we show that O is a permuting grid. O is a �k=5�m grid, for somem � �k=5.
It has at least �k=10 � m=4 live columns which can serve as the vertical paths in the grid.
Now we grow constant congestion paths that do not hit obstacles from every node on the
left side of O (i-column) to the corresponding node on the right side of O (b-column). These
will serve as the horizontal paths of the permuting grid.

The �rst step is to grow constant-congestion paths that do not hit obstacles from every
node in the i-column to nodes in the middle column of O. Every node in the middle column
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need not have a path ending in it but every node in the i-column must have a path originating
in it. We de�ne a series of (square) boxes of sizes 2i; 0 � i � log2(�k=5) (For simplicity, we
assume that �k=5 is a power of 2). The left side of every box consists of a set of adjacent
nodes in the i-column. All the boxes of a particular size are numbered consecutively starting
from the top and ending at the bottom of the i-column. Boxes of size 1 are the individual
nodes in the i-column itself. Given boxes of size 2i, we obtain boxes of size 2i+1 by enclosing
every odd numbered box of size 2i and the succeeding even numbered box with a box of
size 2i+1. There will be exactly one box of the largest size and this box encloses O. It is
important to note that none of these boxes are owless since the i-column is a live column.

We grow paths iteratively from smaller sized boxes to larger sized boxes. At the be-
ginning of the ith iteration, we assume that each box of size 2i�1 has paths of congestion
8 and maximum length 4 � 2i�1 originating from every node on its left side and ending at
some node on its right side. We show how to construct paths of congestion 8 and maximum
length 4 � 2i for every box of size 2i.

For i = 0, it su�ces to observe that each box of size 1 has no obstacles in it, since these
boxes are not owless. For i > 0, each box of size 2i encloses two smaller boxes of size
2i�1 (See Figure 11). Let D denote the rectangular box formed by the the �rst half of the
columns of the big box. D encloses both the smaller boxes of size 2i�1. Since the big box
is not owless, there are at least (3=4)2i rows that do not hit the obstacles (call this set of
rows L) and at least (3=4)2i columns that do not hit obstacles. Of the latter set of columns,
at least (1=4)2i columns lie within D (call this set of columns V ). Let Q denote the set of
paths that are inductively assumed to exist inside both the smaller boxes. We use L and
V to extend the paths in Q to nodes on the right side of the big box (See Figure 11.) The
paths in Q can be ordered sequentially from top to bottom. Likewise the columns in V are
ordered sequentially from left to right and the rows in L are ordered sequentially from top
to bottom.

First we group the nodes on the left side of the big box into consecutive groups of size
8 each. To the nodes in the ith such group we assign the ith row in L. The paths from the
left side of the big box to the right side of the big box are grown sequentially starting from
the �rst group of nodes.

The �rst group of nodes uses paths in Q until they hit the centermost column in V .
Then each of these 8 nodes uses this column in V to reach its assigned row in L. Then
it takes this assigned row to reach the right side of the big box (See Figure 11). When
routing the next group we must make sure that we do not overlap these paths with the
paths already routed since this would increase the congestion. Let w be the column in
V that was used by the previous group of nodes. Further suppose that the last node in
this group turned upwards into column w to reach its row in L. In this case, we use the
column in V that succeeds w for the current group of nodes. Similarly, if the last node of
the previous group turned downwards into column w we use the column in V that precedes
w for the current group. As before, the paths in the current group follow paths in Q until
they hit the chosen column in V and then use this column until their assigned row in L.
These paths do not share edges with any of the previous paths. We use this procedure to
route paths from all the groups of nodes. Since we have 2i=8 columns to the right and to
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Figure 11: A new path constructed from paths q, v, and l.

the left of the centermost column in V and since there are at most 2i=8 groups of nodes, we
will never run out of columns in V . Since the paths outside of a group do not overlap, the
congestion is at most 8. The maximum length of any path is at most the maximum length
of any path in Q (4 � 2i�1 by the inductive hypothesis) added to the maximum length of the
newly added portion (at most 2 � 2i) which is 4 � 2i.

After constructing paths in progressively bigger boxes, we will have constructed paths
from every node of the i-column to the right side of a square box of size �k=5. These paths
can be truncated at the middle column of O. Note that the obstacles in O are symmetric
about its middle column. From this symmetry, exactly the same paths reected about the
middle column connect every node in the b-column to the same set of nodes in the middle
column. Concatenating these two sets of paths, we obtain paths from every node in the
b-column to a corresponding node in the i-column of congestion at most 8 and length at
most 8�k=5 = �(m). Thus O is a permuting grid.
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The proof that F and P are permuting grids is similar.
aa aa

Theorem 4.5.5 The b- and i-columns chosen in this manner satisfy both of the column
properties.

Proof: The �rst property is true since the i- and b-column of the outer grid or the patch grid
are chosen so that there are �(k) live columns between them. The second property follows
from Lemma 4.5.3 and Theorem 4.5.4. To connect the nodes of the i-column of the patch
grid to the b-column of the outer grid in some arbitrary permutation, we use the permuting
grid P followed by the permuting grid F. One of the grids will be used to route the required
permutation and the other will route the identity permutation. From Lemma 4.5.3, the
paths obtained have constant congestion and do not pass through obstacles. Furthermore
each path is �(k) in length. To connect the nodes from the b-column of the patch grid to
the i-column of the outer grid in an arbitrary permutation, we use grid F followed by grid
O.

aa aa



5.1 Introduction

Transient faults in a parallel computer can cause errors to appear in the data that it
computes. Algorithm-Based Fault Tolerance (ABFT) was introduced as a concurrent error
detection (CED) technique to detect and locate errors in matrix computations [HA84]. In
ABFT, checking the correctness of the computation is carried out concurrently with the
computation itself. In the case of matrix computations simple checksum computations are
typically used to do the checking. There have been many applications of this technique to
a variety of problems including Fast Fourier Transforms [CM88a, JA88, THC90], sorting
[CM88b], and signal processing applications like matrix multiplication, matrix inversion, LU
decomposition, QR decomposition, FIR �ltering etc. [CA86, HA84, JA86, L85, LP88, RB90,
VJ90]. It has also been applied to various architectures such as the linear array [A87, JA86],
the mesh [HA84], and the hypercube [B88]. ABFT is a very attractivemethod for concurrent
error detection and fault location due to its low hardware and time overhead. Many methods
for analyzing ABFT systems also exist [BA86a, GRR90, LP86, NA88, RR88, VJ89].

In [BA86a], a simple graph-theoretic model for ABFT schemes was proposed. This
model can be used for synthesizing ABFT systems as well as for analyzing the fault de-
tectability and locatability properties of existing systems. The model is described below.
An ABFT system is represented as a tripartite graph called the PDC graph whose vertex
set is P [D[C and whose edge set is E1[E2, where P , D and C are the sets of processors,
data, and checks, respectively, and E1 and E2 are the edges between P and D and between
D and C, respectively. The bipartite graph with vertex set P [D and edge set E1 is called
the PD graph. The bipartite graph with the vertex set D[C and edge set E2 is called the
DC graph. An edge (u; v) 2 E1 implies that processor u a�ects the value of data element
v in the computation, i.e., if processor u fails, v could have an error. An edge (v; z) 2 E2

implies that check z checks data element v. The set of data elements a�ected by a processor
u 2 P is said to be its data set. As is traditionally done, we assume that a faulty processor
results in an error in at least one of the data elements in its data set. The set of dataa

This chapter describes joint research with Niraj Jha [SJ91, SJ].
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Figure 12: 2-fault detecting 1-fault locating PDC graph.

elements checked by a check z 2 C is said to be its error set. The checks are of the simplest
kind. A check operates on a non-empty subset of the data and will detect exactly one error
in its error set. More formally, a check z outputs a binary value of 0 or 1. The output of
check z is 0 when all of the data elements in its error set are error-free. The output of check
z is 1 when exactly one of the data elements is in error. If there is more than one error in
the error set of the check, its output value is arbitrary and hence the check is undependable.

An example of a 2-fault detecting 1-fault locating PDC graph is given in Figure 5.1.
If any two processors are faulty, at least one check outputs a 1. Therefore, the system is
2-fault detecting. Also if exactly one processor is faulty, the outputs at the checks uniquely
identify the processor. If only c1 is 1 the faulty processor is p1. If c1 and c2 are 1 the
faulty processor must be p2. In all other cases in which some check outputs a 1, the faulty
processor is p3. Therefore the system is 1-fault locating.

The graph model itself makes no assumption about the implementational details of the
ABFT system, for example, the architecture of the machine on which the ABFT system is
run or the exact manner in which a check is implemented. It insists however that individual
checks be extremely simple computations. The checks themselves are computed by some
dedicated hardware not represented in the PDC graph. A simple implementation of a check
is to use an (unweighted) checksum of all the data elements in the error set. The hardware
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computing a check will independently compute the value of the assigned output checksum
from the system inputs and then compare it with the checksum obtained from the data
elements in its error set. If these two values tally, the check outputs a 0, otherwise the
check outputs a 1.

One of the main goals of research in ABFT is to design e�cient systems which are
t-fault locatable (or detectable), i.e., assuming that not more than t processors can fail
in a computation, one would like to locate exactly which, if any, of the processors failed
(or simply detect that there has been a failure). There are many di�erent approaches to
designing t-fault locatable (or detectable) ABFT systems. Two popular approaches are the
synthesis for fault tolerance approach [VJ90] and the design for fault-tolerance approach
[BA86a, GRR90, NA89, NA90, VJ91]. Both of these approaches require a systematic pro-
cedure to design DC graphs which can detect or locate a speci�ed number of errors. It
is also desirable that the number of checks used in the DC graph design be as small as
possible. The focus of our work is to devise a method for generating such DC graphs.

We now formally de�ne what it means for a DC graph to detect or locate s errors.

De�nition 5.1.1 A DC graph is s-error detectable if every possible non-empty set of errors
in the data of cardinality at most s makes at least one of the checks output a 1.

De�nition 5.1.2 A DC graph is s-error locatable if every possible set of errors in the data
of cardinality at most s gives a di�erent output pattern at the checks, i.e. no two distinct
sets of errors of cardinalities at most s can give the same output pattern at the checks.

5.1.1 Chapter outline

The outline for the rest of the chapter is as follows. In Section 5.2, we describe a versatile
algorithm called RANDGEN that can be used to generate DC graphs with a variety of
properties.

The minimum number of checks required for a DC graph with n data elements to be
s-error detectable has been shown to be 
(s logn) [GRR90]1. In Section 5.3, we show how
to construct an s-error detectable DC graph with an asymptotically optimal number of
checks.

There were no general methods known previously for designing s-error locatable graphs
with a small number of checks. A lower bound for the minimum number of checks required
for a DC graph to be s-error locating is 
(s logn) [BA86a]. In Section 5.4, we show that
RANDGEN produces an s-error locatableDC graph withO(s2 logn) checks. Since typically
s� n, the number of checks is at most a small multiplicative factor from the optimal.

It must be noted that s-error locatability only ensures that no two distinct sets of error
patterns of size s or less have the same output pattern at the checks. It does not provide
us with an e�cient algorithm to diagnose, i.e., actually locate the errors from the output
pattern at the checks. No e�cient algorithm for diagnosis is currently known for a general
s-error locatable DC graph. In fact, the known algorithm is enumerative in its approacha

1All logarithms in this chapter are to the base 2.
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and tries to enumerate various possible sets of errors and check if the output pattern at the
checks can be caused by them [VJ89] and could be time-consuming for even small values
of s. Therefore, we must design DC graphs explicitly for easy diagnosis. In Section 5.5,
we introduce a class of s-error locatable DC graphs which allow easy diagnosis and show
how RANDGEN can generate them with only a constant factor overhead in the number of
checks.

Uniform checks [VJ91] which are all identical and check the same number of data ele-
ments have been shown to simplify ABFT design. In Section 5.6, we show how RANDGEN
can be modi�ed to produce such uniform checks for s-error detection/location. Finally, in
Section 5.7 we present concluding remarks.

5.2 An algorithm for generating DC graphs

In this section, we propose a simple and e�cient algorithm called RANDGEN (for RANDom
GENeration) for generating DC graphs. By varying the input parameters of RANDGEN
one can synthesize, using only a small number of checks, DC graphs with a wide range of
properties that researchers in ABFT have found to be useful and important in their designs.
The construction algorithm RANDGEN is novel in that it is probabilistic, i.e. it makes
random decisions during the course of the construction by perhaps using a random number
generator. In order to construct a DC graph with n data elements, algorithm RANDGEN
takes two arguments: the number of checks, c, that can be used and a probability p. It
creates the DC graph by adding each edge (u; v), u 2 D and v 2 C with probability p,
where jCj = c. It is easy to see that RANDGEN is simple to implement and very fast.

Theorem 5.2.1 Algorithm RANDGEN runs in time O(cn), where c is the number of
checks in the graph and n the number of data elements.

It must be mentioned that since RANDGEN is probabilistic, our results will show that
with an overwhelmingly large probability the DC graphs produced will have the required
properties. The proof techniques used to prove these results are techniques from the theory
of random graphs [ES74, B85]. It must be mentioned that there are many random con-
structions known in graph theory to construct graphs with certain properties, for example,
expander graphs. While our constructions are similar in spirit, our contribution is that
random constructions can be a simple and useful tool to solve problems that arise in the
design of ABFT systems and can give better results than previously known deterministic
solutions to these problems.

5.3 Error detectability

We state the following lower bound from [GRR90] without proof.

Theorem 5.3.1 The number of checks, c, for s-error detectability is 
(s logn).
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The main theorem of this section shows that RANDGEN produces (with high probability)
an s-error detectable DC graph when parameter c = 3:8s logn and parameter p = 1

a

s are
used. Note that the number of checks used is asymptotically optimal. Before we prove the
theorem, we illustrate the algorithm RANDGEN for typical problem values. In [BA86b],
the problem of encoding a matrix of dimension 1024 � 1024 and analyzing the reliability
of various matrix multiplication algorithms is considered. We will use the encoding of
1024�1024 data values for s-error detection and location as a running example to illustrate
our constructions.

Example 5.3.2 Suppose we would like to construct a DC graph which can detect up to 3
(= s) errors for a data set consisting of a matrix of dimension 1024� 1024, i.e., 1048576
data elements. We take 228 checks and with each check we do the following. We consider
every data element and we include a data element in the error set of this check with a
probability of 1

a

3 (= 1
a

s ). When we are done with this process we are left with a DC graph
which is 3-error detecting with a probability of at least 1 � 1a

1048575, which is very close to
1. As a basis for comparison, notice that the traditional matrix row and column checksum
method, which can detect up to 3 errors, requires 2047 checks.

It should be pointed out that e�cient methods have already been given in [GRR90] for
generating s-error detectable DC graphs speci�cally for the particular cases of s = 2, 3 and
4. Then they give a special method for detecting up to 7 errors. However, as a comparison,
for this example their method would require 570 checks for detecting 5, 6 or 7 errors, whereas
our method would require 380, 456 and 532 checks, respectively. For s > 7 they have given
a general construction method. For s ranging from 8 to 15 they would require 9120 checks
whereas our method would require only 608, 684, 760, 836, 912, 988, 1064 and 1140 checks,
respectively. As the value of s and/or n increases, our method performs relatively even better
than the method in [GRR90]. One must note, however, that their method is deterministic
whereas ours is probabilistic.

We now prove the main theorem of this section. Throughout this chapter, e represents the
transcendental number 2.7182818...

Theorem 5.3.3 The algorithm RANDGEN, using parameter c = 3:8s logn and p = 1
a

s ,
produces an s-error detectable DC graph with probability at least 1 � 1a

n�1 . The time com-
plexity of constructing this graph is O(sn logn).

Proof: The algorithm RANDGEN clearly works for s = 1, since p = 1 and every check is
connected to all data elements. Of course, one such check would su�ce. So we will assume
that s > 1. We need to show that the DC graph satis�es the conditions of De�nition 5.1.1,
i.e., every non-empty set S � D; jSj � s, has a check z such that it is connected to exactly
one element of S. Let ES represent the event that there exists no such check for some set
S. The probability that the DC graph is not s-error detectable is simply the probability of
[SES , where S takes on the value of all nonempty subsets of D with cardinality not more
than s. We will split this union of events into smaller unions as follows and bound each
separately.
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Let event Ai; 1 � i � s, be [RER, where R takes all subsets of D of cardinality i. For
any single set S; jSj = i, and a particular check z, the probability that z is not connected to
exactly one element of S, i.e., that this check is \bad", is 1� ip(1� p)i�1. We now choose
p = 1

a

s which minimizes this expression for i = s. Observe that for this value of p

1� ip(1� p)i�1 = 1� i
a

s
(1� 1

a

s
)i�1 � 1� i

a

s
(1� 1

a

s
)s�1 � 1� ia

se
(11)

The last inequality follows by observing that

(1 +
1a

s� 1
)s�1 � e

From the independence in choosing the edges, the probability that all checks are \bad" for
a single set S is (1� ip(1� p)i�1)c. We next bound the probability of event Ai.

Prob(Ai) �
X

S;jSj=i

Prob(ES) � ni(1� ip(1� p)i�1)c

� nie�ci 1a
s
(1� 1

a

s
)i�1 � ni � 1a

n2i
=

1a
ni

(12)

using Equation 11 and choosing c = 3:8s logn � 2ea
log es logn.

Thus the probability of the DC graph being \bad", i.e. not satisfying the conditions of
De�nition 5.1.1, is simply

Prob([1�i�sAi) �
X

1�i�s

Prob(Ai) � 1a
n
+

1a
n2

+ � � �+ 1a
ns

� 1a
n� 1

Therefore the probability of a \good" DC graph, i.e. one which does satisfy the conditions
of De�nition 5.1.1, is at least 1 � 1a

n�1 . RANDGEN's time complexity follows from Theo-
rem 5.2.1. 2

For some applications, one may want to decrease even further the probability that the
constructed DC graph is not s-error detectable at the cost of adding more checks. One can
decrease this probability very quickly by the addition of some extra checks. In our example,
we can add 114 more checks to make the total number of checks 342 and the probability
of a bad DC graph goes down rapidly to 1a

10485762�1 � 1a
1012 . We can decrease this again by

adding more checks if need be.

Corollary 5.3.4 The algorithm RANDGEN, using c = (3:8s + 1:9sk) logn checks and
p = 1

a

s , produces an s-error detectable DC graph with probability at least 1� 1a
nk+1�1 .

Proof: Follows from the proof of the previous theorem by substituting the new value for c
at the appropriate step. 2

From the above discussions it is clear that there is a close relationship between the
probability of getting a good DC graph and the number of checks c. After �xing this
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probability to a value that one will be satis�ed with, one can do the computation backwards
and �nd the corresponding value of c.

One possible criticism of the above approach is that the probability of getting a good
DC graph cannot be made 1, although it can be made arbitrarily close to 1. However, one
should remember that any fault tolerant design has an inherent chance of failure. A system
which is assured to catch s faults/errors will fail in the unlikely (but still probable) event
that more than s faults/errors occur. As long as the probability of getting a bad DC graph
is small compared to the other reasons for failure, there should be no cause to worry. Even
so, the degradation in this construction is \gradual". Even a bad DC graph, improbable
as it may be, will still detect most sets of s or fewer errors.

If the designer still insists on having a guarantee that the DC graph obtained by RAND-
GEN is in fact good, then one can use the analysis procedures from [NA88] which, when
given a DC graph, can determine if it is s-error detectable or not. In the extremely rare
cases where the DC graph is found to be bad, one can use RANDGEN once again. Similar
arguments also hold for the subsequent sections where one can check if the conditions that
need to be satis�ed by the DC graph are actually satis�ed by it. However, this approach
of verifying the \goodness" of a DC graph may, in general, be time-consuming.

5.4 Error locatability

In this section we consider the problem of error locatability. Let n be the total number
of data elements, i.e., jDj, as before. The following simple lower bound was observed in
[BA86a].

Theorem 5.4.1 The number of checks, c, for s-error locatability is 
(s logn).

Proof: Clearly, from De�nition 5.1.2, there must be at least as many possible output
patterns as there are distinct sets of errors of cardinalities at most s.

2c �
X

0�j�s

 
n
j

!
= 
((

na
s
)s)

The theorem follows by taking logarithms on boths sides and observing that s � n. 2

Trivially, suppose s = 1. There is a simple way of achieving the lower bound of Theo-
rem 5.4.1 of dlog(n + 1)e checks. We observe that the total number of distinct nonempty
subsets of dlog(n+1)e checks (= 2dlog(n+1)e�1) is at least n. We simply connect each vertex
of D, i.e., each data element, to a distinct subset of the checks. One way of doing this is
as follows. Let the data elements be denoted by d1; d2; � � � ; dn and let q = dlog(n + 1)e.
For a data element di consider the q-bit binary vector which represents i. Then di would
be connected to all those checks which correspond to the 1's in the binary vector. A sim-
ilar scheme was used in [GRR90] for 2-error detection (not location). When di is in error,
exactly the checks in the corresponding unique subset have 1's. Hence the DC graph is
1-error locatable. We should add that in addition to 1-error locatability such a DC graph
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Figure 13: Su�cient conditions for s-error locatability.

also allows for easy diagnosis. The reason is that just by looking at the output pattern at
the checks, we can immediately locate the data element in error. However, this construction
does not extend in a natural way to s � 2.

The main result of this section is that RANDGEN with parameters c = (7:6s2 +
3:8s) logn and p = 1a

2s almost always produces an s-error locatable DC graph. The num-
ber of checks necessary for this algorithm is within a small constant factor from optimal
since typically s� n. As before, we �rst illustrate the construction procedure by stepping
through algorithm RANDGEN for our running example.

Example 5.4.2 Suppose that we would like to design checks such that one can locate up to
3 (= s) errors in the data set which consists of a matrix of dimension 1024 � 1024. First
take 1596 checks and with each check we do the following. We consider every data element
and we include a data element in the error set of this check with a probability of 1

a

6(=
1a
2s).

At the end of this process we get a DC graph which is 3-error locating with a probability of
at least 1� 1a

1048576 . It was not previously known how to design s-error locatable DC graphs
with a small number of checks for a general value of s. However, as a basis of comparison,
it must be noted that one would require 2047 checks to even locate only 1 error using the
traditional row and column checksum method. Our general method would require 760 checks
to locate up to 2 errors and only 228 checks to locate 1 error. Actually, to locate only 1
error, we need not use this general method. From the method presented at the beginning of
this section for this particular case, we need only dlog(n+ 1)e = 21 checks.

Before we prove our main theorem we need to state certain su�cient conditions for a DC
graph to be s-error locatable.

Theorem 5.4.3 For every S � D such that jSj = 2s � 1, and for every u 2 D; u 62 S,
suppose that there exists a check z which is connected to u but not to any member of S.
Then the DC graph is s-error locatable.
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Proof: The conditions in the theorem are pictorially depicted in Figure 1. Note that the
condition also holds for every set S of cardinality less than 2s � 1, since the condition can
be applied to an arbitrary superset of S of cardinality exactly 2s � 1. Consider any two
distinct subsets of D, namely R and T , such that their cardinalities are not more than s.
Take any element v 2 R � T , where � represents the symmetric di�erence2. Without loss
of generality, let v 2 R. Now by the conditions, there exists a check which is connected to
v but not to any element of R [ T � fvg, since the cardinality of this set is � 2s� 1. This
directly implies that this check outputs 1 when R is the set of errors and 0 when T is the
set of errors, i.e., these sets have di�erent output patterns at the checks. 2

Theorem 5.4.4 The algorithm RANDGEN, using c = (7:6s2 + 3:8s) logn checks and
p = 1a

2s , produces an s-error locatable DC graph with probability at least 1 � 1
a

n . The time
complexity for constructing this graph is O(s2n logn).

Proof: We will show that the DC graph satis�es the su�cient conditions of Theorem 5.4.3
with high probability.

Given a particular u 2 D and S � D, u 62 S; jSj = 2s � 1; let Eu;S be the event that
no check in C satis�es the conditions of Theorem 5.4.3. The probability that a particular
check does not satisfy the conditions is 1�p(1�p)2s�1. We now choose p so as to minimize
this probability. It can be easily checked that this is minimum for p = 1a

2s . For this value of
p,

1� p(1� p)2s�1 = 1� 1a
2s
(1� 1a

2s
)2s�1 � 1� 1a

2se
(13)

The last inequality follows from the fact that

(1 +
1a

2s� 1
)2s�1 � e

As the edges for each check are chosen independently, the probability that no check satis�es
the conditions of Theorem 5.4.3, i.e. Prob(Eu;S), is clearly (1 � p(1 � p)2s�1)c. Observe
that the probability that the DC graph does not satisfy the su�cient conditions is simply
the probability that at least one of the events Eu;S occurs, for some u and S, i.e., it equals
Prob([u;SEu;S) where S takes all subsets of D of cardinality 2s�1 and u takes on as values
all elements in D � S. We bound this probability as follows,

Prob([u;SEu;S) �
X
u;S

Prob(Eu;S) � n2s(1� p(1� p)2s�1)c

� n2se�c
1a
2s (1� 1a

2s )
2s�1 � n2s � 1a

n2s+1
=

1a
n

by using Equation 13 and choosing c = (7:6s2 + 3:8s) logn � ( 4ea
log es

2 + 2ea
log es) logn. Thus

the probability that the DC graph is s-error locatable is at least 1� 1
a

n . The time taken bya
2A�B = (A� B) [ (B �A)
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RANDGEN follows from Theorem 5.2.1. 2

As before, the probability that we get a \bad" DC graph, i.e., one which is not s-error
locatable, can be reduced very rapidly by adding some extra checks. By adding 3:8sk logn
extra checks we can decrease this probability to 1a

nk+1
. To illustrate this through the previous

example, we can add just 228 more checks to make a total of 1824 checks, then our chance
of producing a \bad" DC graph, i.e., a graph which is not 3-error locating, falls from 1a

1048576
to 1a

10485762 � 1a
1012 . We can continue to do this and our probability of producing a bad DC

graph goes down extremely rapidly.

Corollary 5.4.5 The RANDGEN algorithm, using c = (7:6s2 + 3:8sk + 3:8s) logn checks
and p = 1a

2s , produces an s-error locatable DC graph with probability at least 1� 1a
nk+1

.

DC graphs with a combination of properties
Some researchers [NA89] have used DC graphs with a combination of detection and location
properties for their design, i.e., DC graphs which are simultaneously s-error locatable and
t-error detectable. One simple way to generate these graphs is, of course, to use RANDGEN
twice: once for s-error locatability as shown in this section and once for t-error detectability
as shown in the previous section. By putting together the checks we would have aDC graph
which is both s-error locatable and t-error detectable with a total of (7:6s2+3:8s+3:8t) logn
checks. But in many cases this may not be necessary. Given speci�c values of s and t, one
could choose p appropriately and calculate the minimum value of c needed to simultaneously
satisfy the bounds for locatability in this section and the bounds for detectability in the
previous section. This value of c may turn out to be smaller than what one would get by
simply adding together the checks. But it is di�cult to give a rule of thumb in general
terms. We state below the case when t � 2s in which we get detectability for free. This was
�rst observed by Russel and Kime [RK75] in the di�erent context of system-level diagnosis.

Lemma 5.4.6 Any s-error locatable DC graph is also 2s-error detectable.

Proof: Consider any nonempty set of data elements S of cardinality at most 2s. We need
to show that some check is 1 if S is the set of data in error. One can always partition S into
non-intersecting sets S1 and S2 such that the cardinalities of both the sets are less than or
equal to s. Without loss of generality, let S1 be non-empty. From the conditions of s-error
locatability there must be a check, z say, that must be 1 when S1 is the set of errors and
must be 0 when S2 is the set of errors. This means that check z is connected to exactly
one element in S1 and no element in S2. Clearly, z must be 1 when S is the set of errors
since it is connected to exactly one data element in S. Thus any set of at most 2s errors is
detectable. 2
From Lemma 5.4.6, we know that if t � 2s it is su�cient to just design an s-error locatable
graph using RANDGEN.
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5.5 Designing DC graphs for easy diagnosis

We have so far dealt with the question of how to design DC graphs for s-error detectability
and s-error locatability. Given that some data elements are in error, the checks take on
binary values 0 or 1. Following convention, we will refer to this binary vector of check
outputs as the syndrome. An s-error locatable DC graph assures us that no two distinct
sets of errors in the data of cardinality less than or equal to s can give rise to the same
syndrome. The problem of actually �nding the set of data in error (or the set of processors
that are faulty), given a particular syndrome, is called diagnosis. Note that an s-error
locatable DC graph does not necessarily imply a simple and e�cient method for diagnosis.
It simply assures us that given enough time and/or hardware one can eventually diagnose
(locate) the errors/faults.

A straightforward, but brute-force approach, for diagnosing any syndrome in any s-error
locatable DC graph is to try all possible sets of errors of cardinality � s and see which one
is consistent with the given syndrome. Consistency of a set of errors with a syndrome is
determined by checking that every check with a 0 has either no error or more than 1 error in
its error set and every check with a 1 has one or more errors in its error set. This, of course,

requires us to try
P

1�i�s

 
n

i

!
di�erent sets. For each set, checking the consistency of

this set with the syndrome can be done in time proportional to the number of edges in the
DC graph. This enumerative approach of trying all possible sets is too time-consuming and
can be impractical even for moderate values of s. Although better results than this one are
known [VJ89], it seems quite likely that no e�cient non-enumerative algorithm to diagnose
an arbitrary s-error locatable DC graph exists. This is our main motivation for designing
DC graphs which are not only s-error locatable but also allow easy diagnosis. Therefore, we
will propose a simple diagnosis algorithm and show how we can use RANDGEN to generate
DC graphs that are not only s-error locatable but will also have the additional property
that this simple diagnosis algorithm can be used to correctly locate errors in this graph.

We propose the following simple and e�cient diagnosis algorithm called the majority
diagnosis algorithm. Given a syndrome, for every data element u 2 D the algorithm
decides if u is erroneous or error-free as follows. Let S represent the set of all checks that
are connected to a data element u. If the majority (half or more) of the checks in S output a
1, u is declared to be erroneous. Otherwise u is declared to be error-free. This algorithm is
very fast and runs in time linear to its input size, i.e. in time proportional to the number of
vertices and edges in the DC graph. Besides, each data element is decided to be erroneous
or not independently of the others and therefore the Majority Diagnosis algorithm can also
be executed extremely e�ciently in parallel. But this algorithm will not, of course, diagnose
correctly for any general s-error locating DC graph. The challenge is to synthesize s-error
locating DC graphs with the added property that this majority algorithm can be used to
correctly diagnose the errors. Also, we would like to do it without sacri�cing the results
of Section 5.4, which are close to asymptotically optimal. We answer this question in the
a�rmative in Theorem 5.5.6 by showing that only a constant factor overhead is needed to
accomplish this. First we de�ne some concepts.
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Figure 14: Necessary and su�cient conditions for s-majority diagnosability.

De�nition 5.5.1 A DC graph is said to be s-majority diagnosable i� the Majority Diag-
nosis algorithm can correctly locate any set of s or fewer errors from the syndrome.

Lemma 5.5.2 A DC graph is s-majority diagnosable i� for every u 2 D and S � D such
that jSj = s, the following is true: the cardinality of the set of checks connected to u but not
to any data element in S �fug is greater than the cardinality of the set of checks which are
simultaneously connected to u and some non-empty subset of S � fug.

Proof: Let I be the number of checks connected to the data element u and J be the number
of checks which are simultaneously connected to u and some non-empty subset of S � fug.
Therefore I � J checks are connected to u but not to any element in S � fug. A pictorial
representation of the conditions in the statement of the lemma is shown in Figure 14. We
�rst prove the necessity of the conditions.
Only if: Assume that we have an s-majority diagnosable graph. For contradiction, assume
that there is a set S � D of cardinality s and a data element u such that the condition
is not satis�ed, i.e., I � 2J . Let all the data elements in S � fug be erroneous and the
remaining data elements be error-free. Every check connected to only u and no element of
S �fug necessarily outputs 0. There are I � J such checks. The remaining checks that are
connected to u could all output 1 since they are connected to at least one erroneous data
element. There are J such checks. Since I � J � J the majority diagnosis algorithm will
diagnose u to be erroneous. This is a contradiction.
If: Now we prove that if the conditions are met then theDC graph is s-majority diagnosable.
Suppose we are given a set of errors T . Without loss of generality, we can assume jT j = s.
From the conditions in the statement of the lemma, we know that the number of checks
connected to a data element u and not to any element of T �fug is greater than the number
of checks simultaneously connected to u and some non-empty subset of T�fug. The former
set of checks always takes 1 or 0 depending on whether or not u is in the set of errors T .
Thus the majority of the checks connected to u necessarily have values 1 or 0, respectively.
2



CHAPTER 5. ALGORITHM-BASED FAULT TOLERANCE 102

Example 5.5.3 To illustrate the concepts we give an example of a 1-majority diagnosable
DC graph. Consider a set of 64 data elements arranged in a 4� 4� 4 cube. We associate
a check with the data elements in the same row either in the x, y or z coordinate axis. So
there are a total of 48 checks and each data element is connected to 3 checks, one in each
of the three coordinate axes. Given any data element u and any other data element v, the
number of checks connected to both u and v is at most 1, i.e., when u and v are in the
same row along either x; y or the z axis. Since this is always less than the number of checks
connected just to u and not to v, this arrangement is 1-majority diagnosable.

We now show the distinction between majority diagnosability and just error locatability.
It can be seen that the DC graph in this example is 2-error locatable. A quick way to prove
this is to note that the following algorithm always diagnoses up to 2 errors uniquely and
correctly. For each data element, compute the number of checks connected to it that output a
1. Declare the data elements with the maximum such non-zero number as erroneous and the
rest as error-free! However, the above example is not 2-majority diagnosable. To see this,
assume that the data elements in positions (x; y; z+1) and (x; y+1; z) are in error and the
others are error-free. Data element (x; y; z) will now be connected to 2 checks that output 1
and only one check that outputs 0: The majority diagnosis algorithm will incorrectly declare
(x; y; z) to be in error!

Note that an s-majority diagnosable DC graph is automatically s-error locatable since
by De�nition 5.5.1 the Majority Diagnosis Algorithm correctly and uniquely diagnoses any
set of errors of cardinality s or less from the syndrome. Another way to prove this is
to observe that the conditions in Lemma 5.5.2 imply the su�cient conditions for s-error
locatability in Theorem 5.4.3.

Before we prove the main theorem of this section, we need two lemmas from probability
theory. The following Generalized Cherno� bounds are from [Rag90].

Lemma 5.5.4 LetX1; X2; � � � ; Xm be independent Boolean random variables with Prob(Xi =
1) = p and Prob(Xi = 0) = 1� p. Let X =

P
1�i�mXi and � > 0. Then

Prob(X > (1 + �)�(X)) �
 

e�a
(1 + �)(1+�)

!�(X)

;

where �(X), the expected (or average) value of X, equals mp.

Lemma 5.5.5 LetX1; X2; � � � ; Xm be independent Boolean random variables with Prob(Xi =
1) = p and Prob(Xi = 0) = 1� p. Let X =

P
1�i�mXi and � > 0. Then

Prob(X � (1� �)�(X)) �
 

e��a
(1� �)(1��)

!�(X)

;

where �(X), the expected (or average) value of X, equals mp.

Theorem 5.5.6 The algorithm RANDGEN, using c = 60:5(s2 + 2s) logn checks, s > 1,
and p = 1a

8s , produces a DC graph which is s-majority diagnosable with probability at least
1� 1

a

n .
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Proof: We need to show that all the conditions of Lemma 5.5.2 are met with a high
probability. As before we try to show that the probability that one of these conditions is
not met is extremely small. Let the eventEu;S represent the event that the conditions are not
met for u 2 D and S � D; jSj= s, i.e., that the cardinality of the set of checks connected to
u is less than or equal to twice the cardinality of the set of checks connected simultaneously
to u and some non-empty subset of S�fug. The probability that we get a \bad" DC graph,
i.e. one which is not s-majority diagnosable, simply equals Prob([u;SEu;S), where u takes
on all values in D and S takes on all subsets of D of cardinality s.

Given a data element u 2 D and a S � D; jSj = s, we bound Prob(Eu;S) as follows.
We will assume that u 62 S. The case when u 2 S is similar. Let I be the cardinality of
the set of checks connected to data element u. Let J be the cardinality of the set of checks
connected to data element u as well as some non-empty subset of S � fug (= S for this
case). Note that both I and J can be expressed as the sum of independent binary random
variables. I =

P
iXi, where Xi is 1 if check i is connected to u and 0 otherwise.

�(I) = �(
X
i

Xi) =
X

1�i�c
�(Xi) = pc

Similarly, J =
P

i Yi, where Yi is 1 if check i is simultaneously connected to u and some
non-empty subset of S and 0 otherwise. It can be seen that �(Yi) = p(1� (1� p)s). Thus

�(J) = �(
X
i

Yi) = p(1� (1� p)s)c

Now clearly3

Prob(Eu;S) = Prob(2J � I)

� Prob(I � (1� �)�(I)) + Prob(2J � I jI > (1� �)�(I))

� Prob(I � (1� �)�(I)) + Prob(2J > (1� �)�(I)) (14)

where4 � is chosen to be 0:3968. Now we use Lemma 5.5.5 to bound the �rst term in
Equation 14.

Prob(I � (1� �)�(I)) �
 

e��a
(1� �)(1��)

!�(I)

= e
�(�+(1��) log(1��)a

log e )pc � e�0:01148
c
a

s � 1a
ns+2

using p = 1a
8s and c = 60:5(s2 + 2s) logn. Observe that for s > 1,

�(I)a
�(2J)

=
1a

2(1� (1� 1a
8s)

s)
� 1a

2(1� (1� 1a
16)

2)
� 4:129 (15)a

3In what follows, Prob(EjF ) denotes the conditional probability of event E given event F .
4This number was chosen to optimize the bounds that follow.
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Now we use Lemma 5.5.4 to bound the second term in Equation 14.

Prob(2J > (1� �)�(I)) = Prob

�
2J >

(1� �)�(I)a
�(2J)

2�(J)

�
� Prob(J > (1 + 1:49)�(J))

�
 

e1:49a
(1 + 1:49)(1+1:49)

!�(J)

� e�:7815(0:1175pc)

� e�:01147
c
a

s ; for p =
1a
8s

� 1a
ns+2

(16)

using Equation 15, the fact that �(J) � (1� e�
1
a

8 )pc and �nally substituting c = 60:5(s2 +
2s) logn.
The proof of these bounds for Prob(Eu:S) when u 2 S is similar. Each event Eu;S gives

rise to two terms and there are n

 
n

s

!
events in all. Thus the probability of a \bad" DC

graph is

Prob([Eu;S) � 2n

 
n
s

!
1a

ns+2
� 2n

nsa
s!

1a
ns+2

� 1a
n
; for s > 1:

2

As before, we can reduce the probability of getting a \bad" DC graph to 1a
nk

by using
c = 60:5(s2 + ks+ s) logn checks.

5.6 Uniform checks

It has been noted in [VJ91] that if all the checks have the same error-detection capability
and check the same number of data elements then their design is simpli�ed. Another
advantage of such uniform checks is that their hardware and time overheads can also be
uniform. Note that in DC graphs produced by RANDGEN, two checks could possibly
have di�erent error set cardinalities and hence not be identical. One can easily modify
RANDGEN to make it produce uniform checks. In RANDGEN we randomly included a
data element in the error set of a check with some probability p. Instead, for every check we
now simply pick as its error set a random subset of the data of a �xed cardinality leading
to an algorithm called UNIFGEN (for UNIForm GENeration). This algorithm has two
parameters: c, the number of checks and g, the cardinality of the error set of the uniform
checks. For every check, UNIFGEN picks uniformly and at random a subset of the data of
cardinality g. This will be the error set of this check. Like RANDGEN, by simply varying its
two parameters, UNIFGEN can generate DC graphs with uniform checks having a variety
of useful properties.
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We �rst consider the problem of generating uniform checks for s-error detection. We
will see that requiring \uniform" checks costs us nothing, i.e., UNIFGEN uses the same
number of checks as RANDGEN for generating s-error detectable DC graphs.

Theorem 5.6.1 The algorithm UNIFGEN, using c = 3:8s logn checks and g = n
a

s , produces
an s-error detectable DC graph with probability at least 1� 1a

n�1 .

Proof: The proof is similar to that of Theorem 5.3.3 and notations from the proof of that
theorem will be used here. As before we need to show that the DC graph satis�es the
conditions of Lemma 5.1.1, i.e., every set S � D; jSj � s, has a check z such that it is
connected to exactly one element of S. For any single set S; jSj = i � s, and a particular
check z, we �rst evaluate the probability that z is not connected to exactly one element of

S. The total number of ways of choosing the error set of check z is clearly

 
n
n
a

s

!
. Of these

the number of subsets which contain exactly one element from S is clearly

 
n� i
n
a

s � 1

!
i.

Hence the probability that the check is not connected to exactly one element of S is5

1� i

 
n� i
n
a

s � 1

!a 
n
n
a

s

! = 1� i
a

s

(n� i)
n
a

s
�1aa

(n� 1)
n
a

s
�1a � 1� ia

se
(17)

This is the same as what we had earlier in Equation 11. The rest of the proof is similar to
that of Theorem 5.3.3. 2

We can, of course, reduce the probability of getting a \bad" DC graph, i.e., one that is
not s-error detectable, to less than or equal to 1a

nk+1�1 by using (3:8s+ 1:9sk) logn checks,
as before.

We now turn to the problem of generating an s-error locatable DC graph with uniform
checks. Unlike the case of error detection, UNIFGEN does have an overhead of a small
constant factor in terms of the required number of checks when compared with RANDGEN
for this problem.

Theorem 5.6.2 The algorithm UNIFGEN, using c = (10:6s2 + 5:3s) logn checks and g =
na
2s , produces an s-error locatable DC graph with probability at least 1� 1

a

n , when n � 2:8s.

Proof: The proof is similar to that of Theorem 5.4.4 and notations from the proof of that
theorem will be used here. We need to show that the DC graph satis�es the conditions
of Theorem 5.4.3. We evaluate the probability that a particular check does not satisfy the
conditions as follows. The total number of ways of choosing a subset of size na

2s is clearly 
n
na
2s

!
. The number of subsets which contain an element u but no element from seta

5xia denotes the ith falling power of x, i.e. x(x� 1) � � � (x� i + 1)
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S; jSj = 2s � 1, is clearly

 
n� 2s
na
2s � 1

!
. Thus the probability that a particular check does

not satisfy the conditions of Theorem 5.4.3 is

1�

 
n� 2s
na
2s � 1

!a 
n
na
2s

! = 1� 1a
2s

(n� 2s)
na
2s�1aa

(n� 1)
na
2s�1a � 1� 1a

2se
4
a

3

(18)

when n � 2:8s. Compare this with what we had earlier in Equation 13. Now we continue in
a manner similar to the proof of Theorem 5.4.4. We need to select c = (10:6s2+5:3s) logn �
( 4e

4
a

3a
log es

2 + 2e
4
a

3a
log es) logn to complete the proof. 2

As before, we can reduce the probability of getting a \bad" DC graph, i.e., one which
is not s-error locatable, to less than or equal to 1a

nk+1
by using (10:6s2 + 5:3sk+ 5:3s) logn

checks.

5.7 Conclusions

In this chapter, we proposed an e�cient and easy to implement algorithm RANDGEN for
generating DC graphs with a small number of checks that satisfy a variety of properties
that have been found to be useful in ABFT designs. Though we have stated the results in
the context of ABFT, we feel that the techniques and ideas used here will also be useful
in the context of other fault tolerance problems. We introduced the concept of majority
diagnosability in an attempt towards explicitly designing DC graphs for easy diagnosis.
This is a good example of how one can simplify many issues by restricting the space of
possible designs. We also examined UNIFGEN, a variation of RANDGEN, that produces
DC graphs with uniform checks.

Our constructions were probabilistic and necessarily have a small probability of not
producing a DC graph with the required properties. We believe that since one can decrease
this probability very rapidly by adding only a few extra checks, this should not be of
much concern in practice. However the question of whether there are simple deterministic
constructions for these problems is of independent interest.
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