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Abstract-Designing checks to detect or locate errors in the 
data plays an important role in the design of fault tolerant 
systems. Recently, the problem of synthesizing the data-check 
(DC) relationship has received a lot of attention in the context 
of a natural paradigm for concurrent error detection/location 
known as algorithm-based fault tolerance (ABET). Banerjee and 
Abraham have shown that an ABET scheme can be modeled as 
a tripartite graph consisting of processors (P), data (D), and 
checks (C). Any technique for designing ABET systems requires 
a procedure for synthesizing a DC relationship, which not only 
has a low overhead but also has all the properties required by 
the designer. 

The main contribution of this work is to propose a simple and 
novel algorithm called RANDGEN to generate DC graphs. This 
synthesis approach itself is very fast and can be fully parallelized. 
By simply varying its parameters, the same algorithm RANDGEN 
can produce DC graphs with a wide spectrum of properties, 
many of which have been considered very important in recent 
ABET designs. 

RANDGEN produces s-error-detectable DC graphs with 
asymptotically the least number of checks for the first time. 
RANDGEN can also produce s-error-locatable DC graphs using 
only a small number of checks. This is the first general 
procedure for producing error-locatable graphs for any value of 
s. Another important outstanding problem in DC graph design 
is providing fast and practical methods for actually locating 
the errors in the data from the output pattern at the checks. 
We show that RANDGEN can be used to design DC graphs, 
which permit easy diagnosis, again with a small number of 
checks. It has been pointed out previously that “uniform” checks 
may simplify the design of the ABET system. We show how 
RANDGEN can be modified very simply to produce uniform 
s-error-detectable/locatable DC graphs. Finally, we show how 
one can generalize these results to synthesize strictly s-error- 
detectable/locatable DC graphs which can detect/locate up to 
s  data errors even when s  or fewer check computations are 
erroneous. 

Index Terms- Algorithm-based fault tolerance, checksum en- 
coding, concurrent error detection, concurrent error location, 
majority diagnosis, randomized algorithms, uniform checks. 
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I. INTR~DuCD~N 

T HE QUESTION OF how to use a minimum number 
of checks for data such that one can locate (or just 

detect) any set of at most s  errors is an important question in 
fault tolerance. Much recent interest in designing data-check 
relationships for error detection and location has been in the 
area of algorithm-based fault tolerance (ABFI). ABFT was 
introduced as a technique to detect and locate errors in matrix 
computations [13]. There have been many applications of this 
technique to a variety of problems, including fast Fourier trans- 
forms [8], [15], [25], [30], sorting [9], and signal processing 
applications such as matrix multiplication, matrix inversion, 
LU decomposition, QR  decomposition, FIR filtering, etc. [7], 
[13], [14], [16], [18], [23], [27]. It has also been applied to 
various architectures such as linear array [l], [14], mesh array 
[13] and hypercube [3]. ABm is a very attractive method for 
concurrent error detection and fault location due to its low 
hardware and time overhead. Many methods for analyzing 
ABlT systems also exist [4], [12], [17], [19], [24], [26]. 

In [4], a graph-theoretic model for studying AHFI schemes 
was proposed. The scheme was represented as a tripartite graph 
whose vertex set was PuDuC and its edge set was PDUDC, 
where P, D, and C are the set of processors, data, and checks, 
respectively, and PD and DC are the edges between P and 
D and between D and C, respectively. An edge (u, v) E PD 
implies that processor ‘1~ affects the value of data element v  in 
the computation; that is, if processor u fails, v  could have an 
error. An edge (v, Z) E DC implies that check z checks data 
element V. The set of data elements affected by a processor 
21 E P is said to be its data set. The set of data elements 
checked by a check z E C is said to be its error set . In this 
paper, the checks are assumed to be of the simplest type. A 
check operates on any nonempty subset of the data and will 
detect exactly one error in its error set. More formally, a check 
z outputs a binary value of 0 or 1. It is 0 when all the data 
elements in its error set are error-free. It is 1 when exactly 
one of the data elements is in error. If there is more than one 
error in its error set, its output value is arbitrary and, hence, 
the check is undependable. 

The graph model is independent of the exact implementation 
of the check. However,  one simple implementation of such 
a check is to use a (unweighted) checksum of all the data 
elements in the error set. The checks themselves are computed 
by some dedicated processors. For example, if our checks 
are simple checksums, each such processor will independently 
compute the value of its assigned output checksum from the 
system inputs and then compare it with the checksum obtained 
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f rom the data elements in its error set. It is important to 
note that processors dedicated to comput ing checks are not 
represented in the PDC graph in this approach.  For the sake 
of simplicity of presentation, first, we assume that either 
the processors comput ing the checks are not faulty or they 
are capable of exposing their own faults (by employing any  
concurrent error detection technique). This assumption and  
the preceding checking phi losophy are also inherently present 
in all previous papers  on  PDC graphs-based ABET system 
design [4], [12], [20], [21], [28]. However,  in Section VII, 
we show how we can easily extend the results obtained 
in the previous sections of our  paper  to the more realistic 
situation when these processors dedicated to checking can also 
become faulty and  have no  alternate way of exposing their 
own faults. 

One  of the main goals of research in ABET is to design 
efficient systems that are t-fault locatable (or detectable), that 
is, assuming that not more than t processors can fail in a  
computat ion one  would like to locate exactly which, if any, 
of the processors failed (or simply detect that there has  been  
a  failure). As is traditionally done,  here we assume that a  
faulty processor results in an  error in at least one  of its data 
elements in the computation. The  importance of the graph-  
theoretic model  is that the fault detectability and  locatability 
propert ies of the computat ion can be  derived directly as  a  
property of the tripartite graph. 

Designing t-fault-detectable or - locatable systems involves 
many  degrees of f reedom. One  could assume that the ar- 
chitecture is not chosen a  priori. In this case one  could 
add  checks to the algorithm to make it error tolerant and  
then project its data dependence  graph to obtain the best 
fault tolerant architecture [27]. This could be  said to be  a  
synthesis for fault tolerance approach.  Or, alternately, one  
could assume that the algorithm and  architecture are already 
given, that is, the PD graph is fixed, and  that the checks 
must be  added  for some desired fault tolerance [4], [12], 
[20], [21], [28]. This could be  called a  design for fault 
tolerance approach.  Let the maximum number  of data elements 
affected by  any  t processors in the given PD graph be  
MAX. One  of the known approaches for designing t-fault- 
detectable/locatable PDC graphs is to design a  DC graph 
that is s-error detectable/locatable such that s equals MAX 
[4]. The  unit system approach [20], [21], [28], on  the other 
hand,  first generates a  unit system in which each element of P 
is connected to exactly one  element of D. For this unit system, 
a  t-error-detectable/locatable DC graph is synthesized. The  
PDC graph formed by  either taking the product  of the given 
nonfault tolerant system with the unit system [20], [21] or by  
taking the composite of various unit systems [28] gives us  
a  t-fault-detectable/locatable system. For the purpose of this 
paper,  it is important to note that in any  of these methodologies 
we require a  systematic procedure to design DC relationships 
that can detect or locate a  specif ied number  of errors. W e  now 
formally define what it means  for a  DC graph to detect/ locate 
s errors. 

Lemma 1.1: A DC graph is s-error detectable iff every 
possible nonempty  set of errors in the data of cardinality at 
most s makes at least one  of the checks output a  1. 

Lemma 1.2: A DC graph is s-error locatable iff every 
possible set of errors in the data of cardinality at most s gives 
a  different output pattern at the checks,  that is, no  two distinct 
sets of errors of cardinalities at most s can give the same 
output pattern at the checks.  

In Section II, we  descr ibe a  versatile algorithm that can 
be  used to generate DC graphs with a  variety of properties. 
Section III deals with error-detectable DC graphs.  In Section 
IV, we consider error-locatable graphs.  In Section V, we show 
how to use this algorithm to design DC graphs for easy  
diagnosis. Section VI deals with a  generat ion of “uniform” 
checks.  Section VII considers the case when the processors 
comput ing the checks can also fail. This section shows that 
our  results extend naturally to deal with er roneous check 
computat ions as  well. In the last section, we provide some 
concluding remarks. 

II. ALGORITHM FOR GENERATING DC GRAPHS 
In this section, we propose a  simple, efficient, and  versatile 

algorithm called FLANDGEN (RANDom GENeration). By 
just varying the input parameters of RANDGEN one  can 
synthesize, using only a  small number  of checks,  DC graphs 
with a  wide range of propert ies that researchers in ABFT have 
found to be  useful and  important in their designs. 

Let D be  the set of data elements and  C be  the set of 
checks.  Let the number  of data elements (IDI) be  n. The  
number  of checks (ICI) is denoted by  c. The  DC graph can be  
obtained by  constructing tuples (called edges)  (u, ZJ), where u  
is a  data element and  w is a  check.  The  construction algorithm 
RANDGEN is novel  in that it is probabilistic, that is, it makes 
random decisions during the course of the construction by  
perhaps using a  random number  generator.  To  construct a  DC 
graph with n  data elements, algorithm RANDGEN takes two 
arguments:  the number  of checks,  c, that can be  used and  a  
probability p. The  algorithm is as  follows: 
Algorithm RANDGEN(c, p) 
Let D be  the set of n  data elements and  C be  the set of c  
checks.  
For every pair (u, v), where u  E D and  u  E C do: 
Add edge  (u, w) to the DC graph with probability p. 
End RANDGEN 

It is easy  to see that RANDGEN is very fast and  simple 
to implement. It can also be  easily executed in parallel s ince 
essentially the decision to include or not include an  edge  is 
taken independent ly of other edges.  W e  state this formally as  
a  theorem. 

Theorem 2.1: Algorithm RANDGEN runs in time O(c.n), 
where c is the number  of checks in the graph and  n  the number  
of data elements. It can also be  executed in a  constant number  
of steps with c.n processors.  

Proof: It is easy  to see that RANDGEN takes constant 
time for each  possible edge  (u, u), where u  is a  data element 
and  2) is a  check.  Hence the total time taken is O(c.n). That 
each  pair (u, TJ) can be  considered in parallel is also clear. 0  

It must be  ment ioned that since RANDGEN is probabilistic, 
our  results will show that with an  overwhelmingly large 
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probability, the DC graphs produced will have  the required 
properties.’ 

The minimum number  of checks required for a  DC graph 
with n  data elements to be  s-error-detectable has  been  shown 
to be  s2(s log n) [12]. W e  show how to construct an  asymptot-  
ically optimal s-error-detectable DC graph, that is, using only 
O(s log n) checks.  Previously, there were no  general  methods 
known for designing s-error-locatable graphs.  A ( loose?) lower 
bound  for minimum number  of checks required for a  DC 
graph to be  s-error locating is fl(s log n) [4]. RANDGEN 
produces DC graphs with O(s2 log n) number  of checks 
which is very close to asymptotically optimal since typically 
s << n. 

It must be  noted that s-error locatability only ensures that 
no  two distinct sets of error patterns of size s or less have 
the same output pattern at the checks.  It does  not provide us  
with an  efficient algorithm to diagnose, that is, actually locate 
the errors from the output pattern at the checks.  No efficient 
algorithm for diagnosis is currently known for a  general  s- 
error-locatable DC graph. In fact, the known algorithm is 
enumerat ive in its approach and  tries to enumerate various 
possible sets of errors and  check if the output pattern at 
the checks can be  caused by  them [26] and  could be  time- 
consuming for even small values of s. As it is not clear 
that this algorithm can be  improved upon  drastically, we 
need  to design DC graphs explicitly for easy  diagnosis. W e  
introduce a  class of s-error-locatable DC graphs which allow 
easy diagnosis and  show how RANDGEN can generate them 
with only a  constant factor overhead in the number  of checks.  
“Uniform” checks [28], which are all identical and  check the 
same number  of data elements, have  been  shown to simplify 
ABFT design. W e  show how FL4NDGEN can be  modif ied to 
produce such uniform checks for s-error detection/location. 
Finally, we show how RANDGEN can produce DC graphs 
that can detect/ locate errors in data even when the checks 
themselves can fail. 

III. ERROR DETECTAEXLITY 

W e  start with the problem of error detection. The  condit ions 
of Lemma 1.1 imply a  minimum number  of checks that one  
necessari ly requires for a  DC graph to be  s-error detecting. 
The  following lower bound  from [12] is stated without proof. 

Theorem 3.1: The  number  of checks,  c, for s-error de-  
tectability is n(s log n).2 

The  main theorem of this section shows that RANDGEN 
produces (with high probability) an  s-error-detectable DC 
graph when parameter  c =  3.8s log n  and  parameter  p  =  
l/s are used.  From the previous lower bound  result, it can 
be  seen that this algorithm requires asymptotically the least 
number  of checks.  Before we prove the theorem, we illustrate 
the algorithm RANDGEN for a  typical problem. In [5], the 
problem of encoding a  matrix of dimension 1024  x 1024  
and  analyzing the reliability of various matrix multiplication 
algorithms is considered. W e  will use  the encoding of 1024  x 

‘The proof techniques used in this paper are reminiscent of the probabilistic 
method in combinatorics pioneered by Erdos and Spencer [lo]. Interested 
readers may also refer to books on  the theory of random graphs [2]. 

‘All logarithms in this paper are to base 2. 

1024  data values for s-error detection and  location as  a  running 
example to illustrate our  constructions. 

Example 3.1: Suppose we would like to construct a  DC 
graph that can detect up  to three (= s) errors for a  data 
set consisting of a  matrix of dimension 1024  x 1024,  that is, 
1048  576  data elements. W e  take 228  checks and  with each 
check we do  the following. W e  consider every data element 
and  include a  data element in the error set of this check with a  
probability of one-third (= l/s). W h e n  we are done  with this 
process, we are left with a  DC graph that is 3-error detecting 
with a  probability of at least 1  - (l/l 048  575),  very close to 
1. As a  basis for comparison, notice that the traditional matrix 
row and  column checksum method, which can detect up  to 
three errors, requires 2047  checks.  

It should be  pointed out that efficient methods have already 
been  given in [12] specifically for the particular cases of 
s  =  2,3, and  4. Then they give a  special method for detecting 
up  to seven errors. However,  as  a  comparison, for this example 
that method would require 570  checks for detecting five, six, 
or seven errors, whereas our  method would require 380,  456,  
and  532  checks,  respectively. For s >  7  they have given a  
general  construction method. For s ranging from 8  to 15  they 
would require 9120  checks,  whereas our  method would require 
only 608,  684,  760,  836,  912,  988,  1064,  and  1140  checks,  
respectively. As the value of s  and/or n  increases, our  method 
performs relatively even better than the method in [12]. One  
must note, however,  that their method is deterministic whereas 
ours is probabilistic. 

Before we prove the main theorem of this section, we state 
without proof this simple lemma, which we will use  repeatedly 
in this paper.  

Lemma 3.1: Given a  series of events El, Ez, . . . , Ek, 
Prob(u&) 5  ZiProb( 

Theorem 3.2: The  algorithm RANDGEN, using parameter  
c =  3.8s log n  and  p  = l/s, p roduces an  s-error-detectable 
DC graph with probability at least 1  - [l/(n - l)]. The  time 
complexity of constructing this graph is only O(sn log n). 

Proof: The  algorithm RANDGEN clearly works for s =  
1, since p  = 1  and  every check is connected to all data 
elements. Of course, one  such check would suffice. So we 
will assume that s >  1. W e  need  to show that the DC 
graph satisfies the condit ions of Lemma 1.1, that is, every 
nonempty  set S c D, ISI 5  s, has  a  check z such that it 
is connected to exactly one  element of S. Let Es represent 
the event  that there exists no  such check for some set S. 
The  probability that the DC graph is not s-error detectable is 
simply the probability of USES, where S takes on  the value 
of all nonempty  subsets of D with cardinality not more than 
s. W e  will split this union of events into smaller unions as  
follows and  bound  each separately. Throughout  this paper,  e  
represents the t ranscendental  number  2.718 2818.  . . . 

Let event  A;, 1  5  i 5  s, be  USES, where S takes all 
subsets of D of cardinality i. For any  single set S, IS] =  i, 
and  a  particular check Z, the probability that z is not connected 
to exactly one  element of S, that is, that this check is “bad,” 
is clearly 1  - ip(1 - P)~-‘. W e  now choose p  = l/s, which 
minimizes this expression for i =  s. Observe that, for this 
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value of p, 

1  - ip(1 - @ ’ 

<l-L 
se (1) 

From the independence in choosing the edges,  the probability 
that all checks are bad  is (1 - ip(1 - P)~-‘)“. W e  next bound  
the probability of event  Ai. 

Prob(A;) <  c Prob(Es) 
S,ISI=i 

< ni(l - ip(1 - p)i-1)” 
< nie--cip(l--p)t-’ 
- 

= ,i,-Ci(l/~)[l-(l/s)]‘-’ ) forp= f 
< nie-[(2e/ log e)s log n]i(l/se) 
- 
= nie-2(log n/log “)i 

= ni(e I/ log e -2i log n 
1 

= ni2- log TL*~ 
7 since el/ log ’ = 2 

ni 
=- 

n2i 

1  =- 
ni (2) 

using Lemma 3.1, then using the fact that 1  - z  2  e-” 
and  finally using (1) and  choosing c =  3.8s log n  > 
(2e/log e)s log 71. 

Now, using Lemma 3.1, the probability of the DC graph 
being bad,  that is, not satisfying the condit ions of Lemma 1.1, 
is simply 

Thus the probability of a  “good” DC graph, that is, one  
that does  satisfy the condit ions of Lemma 3.1, is at least 
1  - [l/(n - l)]. RANDGEN’s time complexity follows from 
Theorem 2.1. 0  

For some applications, one  may want to decrease even 
further the probability that the constructed DC graph is not 
s-error detectable at the cost of adding more checks.  One  can 
decrease this probability very quickly by  the addit ion of some 
extra checks.  In our  example, we can add  114  more checks to 
make the total number  of checks 342,  and  the probability of 
a  bad  DC graph goes  down rapidly to l/( 1048  5762  - 1) x  
l/10 . l2 W e  can decrease this again by  adding more checks 
if need  be. 

Corollary 3.1: The  algorithm RANDGEN, using c =  
(3&+1.9&) log n  checks and  p  = l/s, p roduces an  s-error- 
detectable DC graph with probability at least 1  - [l/(nk+’ - 
111.  

Proof: Follows from the proof of the previous theorem 
by substituting the new value for c at the appropriate step. Cl 

From the preceding discussions it is clear that there is a  close 
relationship between the probability of getting a  good  DC 
graph and  the number  of checks c. After fixing this probability 
to a  value that one  will be  satisfied with, one  can do  the 
computat ion backward and  find the corresponding value of c. 

One  possible criticism of the preceding approach is that 
the probability of getting a  good  DC graph cannot  be  made  
1, al though it can be  made  arbitrarily close to 1. However,  
one  should remember  that any  fault tolerant design has  an  
inherent chance of failure. A system that is assured to catch s 
faults/errors will fail in the unlikely (but still probable) event  
that more than s faults/errors occur. As long as  the probability 
of getting a  bad  DC graph is small compared with the other 
reasons for failure such as  presented earlier, there should be  no  
cause to worry. Even so, the degradat ion in this construction 
is “gradual.” Even a  bad  DC graph, improbable as  it may be, 
will still detect most sets of s  or fewer errors. 

If the designer still insists on  having a  guarantee that the 
DC graph obtained by  RANDGEN is, in fact, good,  then 
one  can use the analysis procedures from [19] which, when 
given a  DC graph, can determine if it is s-error detectable 
or not. In the extremely rare cases where the DC graph is 
found to be  bad,  one  can use RANDGEN once again. Similar 
arguments also hold for the subsequent  sections where one  
can check if the condit ions that need  to be  satisfied by  the 
DC graph are actually satisfied by  it. However,  this approach 
of verifying the “goodness” of a  DC graph may, in general,  
be  t ime-consuming. 

IV. ERROR LOCATABILITY 

In this section we consider the problem of error locatability. 
Let n  be  the total number  of data elements, that is, IDI, as  
before. The  necessary and  sufficient condit ions of Lemma 1.2 
give us  a  lower bound  on  the number  of checks required for 
s-error locatability [4]. 

Theorem 4.1: The  number  of checks,  c, for s-error locata- 
bility is n(s log n). 

Proof: Clearly, from Lemma 1.2, there must be  at least 
as  many  possible output patterns as  there are distinct sets of 
errors of cardinalities at most s. 

2” > C 3  =  fl(n”). 
-J >  o<j<s 

The theorem follows. cl 
W e  suspect  the preceding lower bound  to be  somewhat  loose 

and  think it can probably be  improved. 
Trivially, suppose s =  1. There is a  simple way of achieving 

the lower bound  of Theorem 4.1 of [log (n +  l)] checks.  W e  
observe that the total number  of distinct nonempty  subsets of 
[ log(n + l)] checks (= 2r’“a(“+l)l - 1) is at least n. W e  
simply connect  each  vertex of D, that is, each  data element, 
to a  distinct subset  of the checks.  One  way of doing this is 
as  follows. Let the data elements be  denoted by  dr , d2, . . * , d, 
and  let q = [log(n + l)]. For a  data element di consider 
the q-bit binary vector, which represents i. Then  di would 
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be  connected to all those checks that cor respond to the l’s 
in the binary vector. A similar scheme was used in [12] for 
2-error detection (not location). W h e n  that data element is in 
error, exactly the checks in the corresponding unique subset  
have  1’s. Hence it is l-error locatable. W e  should add  that in 
addit ion to l-error locatability such a  DC graph also allows 
for easy  diagnosis. The  reason is that just by  looking at the 
output pattern at the checks,  we can immediately point to the 
data element in error. Note that the fact that this construction 
achieves the lower bound  for s =  1  does  not mean  that this 
lower bound  is tight. The  greatest lower bound  could still be  
R(s2 log n) (say). H owever,  this construction does  not extend 
in a  natural way to s >  2. For example, if s  =  2, we need  to 
make sure that any  pair of errors has  distinct output patterns 
and  this condit ion can be  difficult to satisfy. 

The  main result of this section is that RANDGEN with 
parameters c’ = (7.6~~ + 3.8s) log n  and  p  = 1/2s almost 
always produces an  s-error-locatable DC graph. The  number  
of checks necessary for this algorithm is quite close to the 
known lower bound  since typically s <  n. As before, we 
first illustrate the construction procedure by  stepping through 
algorithm RANDGEN for our  running example. 

Example 4.1: Suppose that we would like to design checks 
such that one  can locate up  to three (= s) errors in the data set 
which consists of a  matrix of dimension 1024  x 1024.  First, 
take 1596  checks and  with each check we do  the following. 
W e  consider every data element, and  we include a  data element 
in the error set of this check with a  probability of one-sixth 
(= 1/2s). At the end  of this process we get a  DC graph that is 
3-error locating with a  probability of at least 1  -(l/l 048  576).  
It was not previously known how to design DC graphs for 
error location for any  general  value of s. However,  as  a  basis 
of comparison, it must be  noted that one  would require 2047  
checks to even locate only one  error using the traditional row 
and  column checksum method. W e  should note, however,  that 
this method is deterministic, whereas ours is probabilistic. Our  
general  method would require 760  checks to locate up  to two 
errors and  only 228  checks to locate one  error. Actually, to 
locate only one  error, we need  not use  this general  method. 
From the method presented at the beginning of this section for 
this particular case, we need  only [log(n + l)] =  21  checks.  

Before we prove our  main theorem we need  to state certain 
sufficient condit ions for a  DC graph to be  s-error locatable. 

Theorem 4.2: For every S c D, JSI =  2s  - 1, and  for every 
u  E D, u  #  S, let there exist a  check that is connected to u  
but not to any  member  of S. Then the DC graph is s-error 
locatable. 

Proof: The  condit ions in the theorem are pictorially 
depicted in Fig. 1. Consider any  two distinct subsets of D, 
namely R and  T, such that their cardinalities are not more 
than s. Take any  element v E R $  T, where e3  represents the 
symmetric difference. W ithout loss of generality, let v  E R. 
Now by the condit ions, there exists a  check that is connected 
to w but not to any  element of RUT - {v}, s ince the cardinality 
of this set is 5  2s  - 1. This directly implies that this check 
outputs 1  when R is the set of errors and  0  when T is the set 

PROHIBITED z 
\‘. CHECKS 

\ -. \ \ \ \ \ 

DATA ELEUENTS 
u 

SET s 

Fig. 1. Sufficient condit ions for s-error locatability: For every set 
S c D, ISI =  2s - 1  and u  E D, u  @  S, there exists a  check z connected 
to u  but not to any element in S. 

of errors; that is, these sets have  different output patterns at 
the checks.  0  

Theorem 4.3: The  algorithm RANDGEN, using c =  
(7.6~~ + 3.8s) 1 o  n checks and  p  = l/29, produces an  s- g 
error-locatable DC graph with probability at least 1  - (l/n). 
The  time complexity for constructing this graph is only 
O(s2n log n). 

Proof: W e  will attempt to show that the DC graph 
satisfies the sufficient condit ions of Theorem 4.2 with high 
probability. 

Given a  particular u  E D and  S c D, u  $  S, ISI =  2s  - 1, 
let J%,S be  the event  that no  check in C satisfies the condit ions 
of Theorem 4.2. The  probability that a  particular check does  
not satisfy the condit ions is clearly 1  - p( 1  - ~)~‘-l. W e  now 
choose p  so as  to minimize this probability. It can be  easily 
checked that this is minimum for p  =  1/2s. For this value of p, 

1  - p(1 - py 

=l-; 1-i 
( >  

29-l 

<l-$&. (3) 

As the edges  for each  check are chosen independently,  the 
probability that no  check satisfies the condit ions of Theorem 
4.2, that is, Prob( E,,s), is clearly (1 -p( l-~)~‘-~)‘. Observe 
that the probability that the DC graph does  not satisfy the 
sufficient condit ions is simply the probability that at least 
one  of the events EzL,s occurs, for some 21  and  S, that is, 
it equals Prob(U,,s E,,s) where S takes all subsets of D of 
cardinality 2s  - 1  and  u  takes all values in D - S. W e  bound  
this probability as  follows: 

ProWJu,sEu,s) 

I c  Prob(Eu,s) 
%S 

5  ?P( 1  - p( 1  - p)2s-1)c 
< n2se--cp(l--p)zs-’ 
- 

= ,2s,-c(1/2~)[1-(1/2~)12s-’ 
> forp = $ 

< n2se-{[(4e/ log e)s2+(2e/ 1% e)sl log m)(l/2=) 
- 

= nye l/log e -(2s+l) log n  
>  

= n2s2- log n(**+l) 
, since el/ log ’ = 2 

29 1 
=?I 

n29+1 

I- 

n  
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by using (3) and  choosing c =  (7.6~~ + 3.8s) log n  > 
[(W log e>s2 + (2 /l g 1 11 g e  o  e  s o  n. Thus the probability that 
the DC graph is s-error locatable is at least 1  - (l/n). The  
time taken by  RANDGEN follows from Theorem 2.1. 0  

As before, the probability that we get a  bad  DC graph, 
that is, one  that is not s-error locatable, can be  reduced very 
rapidly by  adding some extra checks.  By adding 3.8sk log n  
extra checks we can decrease this probability to l/n”+‘. To  
illustrate this through the previous example, we can add  just 
228  more checks to make a  total of 1824  checks and  our  
chances of producing a  bad  DC graph, that is, a  graph that 
is not 3-error locating, falls very rapidly from l/l 048  576  to 
l/l 0485762  M l/10 l2 W e  can cont inue to do  this, and  our  . 
probability of producing a  bad  DC graph goes  down extremely 
rapidly. 

Corollary 4.1: The  RANDGEN algorithm, using c =  
(7.6~~ + 3.8slc +  3.8s) log n  checks and  p  = 1/2s, produces 
an  s-error-locatable DC graph with probability at least 1  - 
(l/n”+l). 

A. DC Graphs with a  Combinat ion of Properties 

Some researchers [20] have  used DC graphs with a  com- 
bination of detection and  location propert ies for their design, 
that is, DC graphs that are simultaneously s-error locatable 
and  t-error detectable. One  simple way to generate these 
graphs is, of course, to use RANDGEN twice: once  for s- 
error locatability as  shown in this section and  once for t-error 
detectability as  shown in the previous section. By putting 
together the checks we would have a  DC graph that is 
both s-error locatable and  t-error detectable with a  total of 
(7.6~~ + 3.8s + 3.8t) log n  checks.  However,  in many  cases, 
this may not be  necessary.  Given specific values of s  and  t, 
one  could choose p  appropriately and  calculate the minimum 
value of c  needed  to satisfy simultaneously the bounds  for 
locatability in this section and  the bounds  for detectability 
in the previous section. This value of c  may turn out to be  
smaller than what one  would get by  simply adding together 
the checks.  However,  it is difficult to give a  rule of thumb 
in general  terms. W e  consider next the case when t 5  2s  in 
which we get detectability for free. This was first observed by  
Russel and  Rime [29] in the different context of system-level 
diagnosis. 

Lemma 4.1: Any s-error-locatable DC graph is also 2s- 
error detectable. 

Consider any  nonempty  set of data elements S of cardinality 
at most 2s. W e  need  to show that some check is at 1  if 
S is the set of data in error. One  can always partition S 
into nonintersecting sets Si and  Sa such that the cardinalities 
of both the sets is less than or equal  to s. W ithout loss of 
generality, let Si be  nonempty.  From the condit ions of s-error 
locatability there must be  a  check,  .z say, that must be  1  when 
Si is the set of errors and  must be  0  when Sa is the set of 
errors. This means  that check z is connected to exactly one  
element in Si and  no  element in SZ. Clearly, z  must be  1  
when S is the set of errors since it is connected to exactly 
one  data element in S. Thus any  set of at most 2s  errors is 
detectable. 0  

From Lemma 4.1, we know that if t 5  2s, it is sufficient to 
just design an  s-error locatable graph using RANDGEN. 

V. DESIGNING DC- GRAPHS FOR EASY DIAGNOSIS 

W e  have so far concerned ourselves with the quest ion of 
how to design DC graphs for s-error detectability and  s-error 
locatability. Given that some data elements are in error, the 
checks take on  binary values 0  or 1. Following convention, 
from now on  we will refer to this binary vector of check 
outputs as  the syndrome. An s-error-locatable DC graph 
assures us  that no  two distinct sets of errors in the data of 
cardinality less than or equal  to s can give rise to the same 
syndrome. The  problem of actually f inding the set of data in 
error (or the set of processors that are faulty), given a  particular 
syndrome, is called diagnosis. Note that an  s-error-locatable 
DC graph does  not necessari ly imply a  simple and  efficient 
method for diagnosis. It simply assures us  that given enough  
time and/or hardware one  can eventually d iagnose (locate) the 
errors or faults. 

A straightforward, but brute-force approach,  for diagnosing 
any  syndrome in any  s-error-locatable DC graph is to try all 
possible sets of errors of cardinality 5  s and  see which one  
is consistent with the given syndrome. Consistency of a  set of 
errors with a  syndrome is determined by  checking that every 
check with a  0  has  either no  error or more than one  error in its 
error set and  every check with a  1  has  one  or more errors in its 

error set. This, of course, requires us  to try Ci<i<s n  
-4 >  

= i 

O(n”) different sets. For each  set, checking the consistency of 
this set with the syndrome can be  done  in time proport ional 
to the number  of edges  in the DC graph. This enumerat ive 
approach of trying all possible sets is too t ime-consuming and  
can be  impractical even for moderate values of s. Al though 
better results than this one  are known [26], it seems quite 
likely that no  efficient nonenumerat ive algorithm to d iagnose 
an  arbitrary s-error-locatable DC graph exists. This is our  
main motivation for designing DC graphs that are not only 
s-error locatable but also allow easy diagnosis. In the next 
subsection, we will p ropose a  simple diagnosis algorithm and  
show how we can use RANDGEN to generate DC graphs that 
are not only s-error locatable but will also have the additional 
property that this simple diagnosis algorithm can be  used to 
correctly locate errors in this graph. 

A. Majority Diagnosis Algorithm 

The majority diagnosis algorithm is a  simple and  intuitive 
algorithm, as  shown below. 
Majority Diagnosis Algorithm 
Given a  syndrome, for every data element u  E D do  the 
following. 
Consider the set of all checks that are connected to data 
element 71. 
If the majority (greater than half) of these checks have a  1  
then declare the data item to be  erroneous.  
If the majority of the checks have a  0  declare it to be  error-free. 
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f I CHECKS 

CHECKS 

DATA ELMENTS 

Fig. 2. Necessary and sufficient conditions for s-majority diagnosability: For 
every u E D and subset of the data elements S, ISI = s, I > 2J. 

If the number of O’s equal the number of l’s, halt without 
giving a diagnosis.4 
End Algorithm 

This algorithm is very fast and runs in time linear to its 
input size, that is, in time proportional to the number of 
vertices and edges in the DC graph. Note that no diagnosis 
algorithm that has to look at the DC graph at least once before 
making a diagnosis can be faster than the Majority Diagnosis 
algorithm. In addition, each data element is decided-to be 
erroneous or not independently of the others and, therefore, the 
Majority Diagnosis algorithm can also be executed extremely 
efficiently in parallel. However, this algorithm will not, of 
course, diagnose correctly for any general s-error-locating 
DC graph. The challenge would be to synthesize s-error- 
locating DC graphs with the added property that this majority 
algorithm can be used to diagnose correctly the errors. In 
addition, could we do it without sacrificing the results of 
Section IV, which are nearly asymptotically optimal? We 
answer this question in the affirmative in Theorem 5.1 by 
showing that only a constant factor overhead is needed to 
accomplish this. We first define some concepts. 

Definition 5.1: A DC graph is said to be s-majority di- 
agnosable iff the Majority Diagnosis algorithm can correctly 
locate any set of s or fewer errors from the syndrome. 

Lemma 5.1: A DC graph is s-majority diagnosable iff for 
ever u E D and S C D, ISI = s, the following is true: The 
cardinality of the set of checks connected to u but not to any 
data element in S - {u} is greater than the cardinality of the 
set of checks which are simultaneously connected to u and 
some nonempty subset of S - {u}. 

Proof: Let I be the number of checks connected to the 
data element u and J be the number of checks simultaneously 
connected to u and some nonempty subset of S - {u}. The 
pictorial representation of the conditions is shown in Fig. 2 
when u $Z S. Note that the conditions imply that I - J > J, 
that is, I > 2J. We first prove the necessity of the conditions. 

Only if: Assume that we have an s-majority- 
diagnosable graph. For contradiction, assume that there is a 
set S c D of cardinality s and a data element u such that 
the condition is not satisfied. In the proof below, we will 
not consider the case when some data element has the same 
number of checks with 0 as the number of checks with 1, since 
in this case the diagnosis algorithm will fail anyway. 

4This step is just a technical detail to keep the proofs simple. Our DC 
graph construction method given later avoids this situation. 

There are two possibilities. If u E S, then consider the 
error pattern in which all data elements of 5’ are in error and 
the remaining elements are error-free. Every check connected 
to only u and no other element of S necessarily outputs 1. 
The other checks connected to u could all output 0 since they 
are connected to at least two erroneous data elements. If the 
condition is not satisfied, the number of 0 checks connected 
to u exceeds the 1 checks connected to u. Thus the majority 
algorithm will falsely diagnose data element u as error-free 
for this syndrome. This is a contradiction. 

Now suppose u 6 S. Again consider the situation when 
all the data elements in S are erroneous and the remaining 
elements error-free. The checks connected only to u and 
not to any element in S are necessarily 0. But the checks 
simultaneously connected to u and to some nonempty subset 
of S could all be 1 since they are connected to at least one data 
element with error. If the condition is not satisfied, the number 
of checks with output 1 connected to u exceeds the number 
of checks with output 0 connected to u. Thus the majority 
algorithm will wrongly diagnose u to be erroneous with this 
syndrome. This is a contradiction. 

If: Now we prove that if the conditions are met then 
the DC graph is s-majority diagnosable. Suppose we are given 
a set of errors T. Without loss of generality, we can assume 
(TI = s. From the conditions, we know that the number of 
checks connected to a data element u and not to any element 
of T - {u} is greater than the number of checks simultaneously 
connected to u and some nonempty subset of T - {u}. The 
former set of checks always takes 1 or 0, depending on whether 
u is in the set of errors T. Thus the majority of the checks 
connected to ‘u, necessarily have values 1 or 0, respective1y.O 

Example 5.1: To illustrate the concepts we give an example 
of a l-majority diagnosable DC graph. Consider a set of 64 
data elements arranged in a 4 x 4 x 4 cube. We associate a 
check with the data elements in the same row either in the 
x, y, or z coordinate axis. So there are a total of 48 checks, 
and each data element is connected to three checks in each of 
the three coordinate axes. Given any data element u and any 
other data element ‘u, the number of checks connected to both 
u and v is at most 1, that is, when ‘u, and v are in the same 
row along either the x, y or the z axis. Since this is always 
less than the number of checks connected just to u and not to 
v, this arrangement is l-majority diagnosable. 

We now show the distinction between majority diagnos- 
ability and just error locatability. It can be seen that the 
DC graph in this example is 2-error locatable. A quick way 
to see this is to note that the following funny algorithm 
always diagnoses up to two errors uniquely and correctly. For 
each data element, compute the number of checks connected 
to it that output a 1. Declare the data elements with the 
maximum such nonzero number as erroneous and the rest 
as error-free! However, the above example is not 2-majority 
diagnosable. To see this, assume that the data elements in 
positions (x, ~/,.a + 1) and (x, y + 1,~) are in error and 
the others are error-free. Data element (x, y, z) will now be 
connected to two checks at 1 and only one check at 0. The 
majority diagnosis algorithm will incorrectly declare (x, y, Z) 
to be in error! 
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Note that an  s-majori ty-diagnosable DC graph is automat- 
ically s-error locatable since by  Definition 5.1 the Majority 
Diagnosis algorithm correctly and  uniquely d iagnoses any  set 
of errors of cardinality s or less from the syndrome. Another 
way to see this is to observe that the condit ions in Lemma 
5.1 imply the sufficient condit ions for s-error locatability in 
Theorem 4.2. 

Before we prove the main theorem of this section, we need  
a  few lemmas from probability theory. Bounds of this nature 
were first reported in [6]. The  following General ized Chernoff  
bounds  are from [22]. Intuitively, these lemmas state that a  
sum of independent  Boolean random variables is very unlikely 
to take values “far” from its mean.  A special case of this result 
we can all readily associate with is that the number  of heads  
in m independent  coin tosses of a  far coin tends to be  close 
to m/2. 

Lemma 5.2: Let X1, X2, ’ . +  , X, be  independent  Boolean 
random variables with Prob(Xi =  1) =  p  and  Prob(Xi =  
O)=l-p.LetX=C r<;lrn Xi and  S > 0. Then 

Prob(X > (1+ b)P(X)) F  ((1;;)1+6) p(x) 

where p(X), the expected (or average)  value of X, equals mp. 
Lemma 5.3: Let X1, X2, . . ,X, be  independent  Boolean 

random variables with Prob(Xi =  1) =  p  and  Prob(X, =  
O)=l-p.LetX=C ~<i<~Xi and  6  > 0. Then 

Prob(X 5  (I- S)p(X)) <  ((1 :;g’-“) cL(x) 

where p(X), the expected (or average)  value of X, equals mp. 
Theorem 5.1: The  algorithm RANDGEN, using c =  

60.5(s2 + 2s) log n  checks,  s >  1, and  p  = 1/8s, produces 
a  DC graph that is s-majority d iagnosable with probability at 
least 1  - (l/n). 

Proof: W e  need  to show that all the condit ions of Lemma 
5.1 are met with a  high probability. As before, we try to show 
that the probability that one  of these condit ions is not met is 
extremely small. Let the event  Eu,s represent the event  that 
the condit ions are not met for u  E D and  S c D, JSI =  s, 
that is, that the cardinality of the set of checks connected to 
u  is less than or equal  to twice the cardinality of the set of 
checks connected simultaneously to u  and  some nonempty  
subset  of S - {u}. The  probability that we get a  bad  DC 
graph, that is, one  that is not s-majority diagnosable,  simply 
equals Prob(U,,sE,,s), where u  takes on  all values in D and  
S takes on  all subsets of D of cardinality s. 

Given a  data element u  E D and  S c D, ISI =  s, we bound  
Prob(E,,s) as  follows. W e  will assume that u  $  5’. The  case 
when u  E S is similar. Let I be  the cardinality of the set of 
checks connected to data element u. Let J be  the cardinality 
of the set of checks connected to data element u  as  well as  
some nonempty  subset  of S - {u} (= S for this case). Note 
that both I and  J can be  expressed as  the sum of independent  
binary random variables. I =  Ci X;, where Xi is 1  if check 
i is connected to u  and  0  otherwise, 

p(I) = P xxi = c PL(Xi) = PC. ( ) i lsi<c 

Similarly, J  =  C; Yi, where Yi is 1  if check i is simultaneously 
connected to u  and  some nonempty  subset  of S and  0  
otherwise. It can be  seen that p(Yi) =  p( 1  - (1 - p)“). Thus  

=p(l - (1 -P>“)c. 

Now clearly5 

Prob(E,,s =  Prob(2J 2  I) 
5  Prob(I 5  (1 - (Y)p(1)) 

+  Prob(2J 2  III >  (1 - (Y)P(~)) 
5  Prob(1 5  (1 - o)p(I)) 

+  Prob(2J > (1 - a)~(l)) (4) 

where QC is chosen to be  0.3968.’ Now we use Lemma 5.3 to 
bound  the first term in (4), 

Prob(l <  (1 - cr)p(I)) 

5  ((1 :;l-a)p(‘) 

=e  -{a+(l-a)[log(l-a)/ log e)]}pc 

< e-o.09187pc 
- 

< e-0.01148(c/s) 
7 forp =  k 

1  <- - nsf2 (5) 

using c =  60.5(s2 + 2s) log n. Observe that for s  >  1, 

AI) - 
@J) ,(,- (l1-;)s) 

> 4.129. (6) 
Now we use Lemma 5.2 to bound  the second term in (4), 

where 

Prob(2J > (1 - (Y)~(I)) 

=  Prob 2J  > (’ i$f’) 2p(J)) 
( 

2  Prob( J >  (1 +  1.49)p( J)) 
p(J) 

< e-0.7815(0.1175~c) 

< e-o.01147(c/s) - , forp =  & 

&- 
++2 

using (6), the fact that p(J) >  (1 - e--(1/8))pc and  finally 
substituting c =  60.5(s2 + 2s) log n. 

5 In what follows, P~ob( EJF) denotes the condit ional probability of event 
E given event F  [ll]. 

6This number  was chosen to optimize the bounds that follow. 
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The proof of these bounds  for Prob(E,,s) when u  E S 
is similar. Each event  E,,s gives rise to two terms and  there 

n are n  
0  S 

events in all. Thus  the probability of a  bad  DC 

graph is 

Prob(UE,,s) 5  2n  9  --& I 2n$--& 
0  

0  

In the preceding theorem, we considered s-majority- 
d iagnosable DC graphs for s >  1. A similar result can be  
obtained easily for the case when s =  1. However,  it should 
be  pointed out that we have already given a  trivial and  efficient 
method at the beginning of Section IV for obtaining a  l-error 
locatable DC graph which also allows easy diagnosis to be  
done.  

W e  can reduce the probability even further, as  before, of 
getting a  bad  DC graph to l/n” by using c =  60.5(s2 + ks +  
s) log n  checks.  

VI. UNIFORM CHECKS 

It has  been  noted in [28] that if all the checks have the same 
error-detection capability and  check the same number  of data 
elements then their design is simplified. Another advantage of 
such uniform checks is that their hardware and  time overheads 
can also be  uniform. Note that in DC graphs produced by  
RANDGEN, two checks could possibly have  different error 
set cardinalities and  hence  not be  uniformly identical. One  
can easily modify RANDGEN to make it p roduce uniform 
checks.  In RANDGEN we randomly included a  data element 
in the error set of a  check with some probability p. Instead, 
for every check we now simply pick as  its error set a  random 
subset  of the data of a  fixed cardinality leading to an  algorithm 
called UNIFGEN (UNIForm GENeration). This algorithm has  
two parameters:  c, the number  of checks,  and  g, the cardinality 
of the error set of the uniform checks.  Similar to RANDGEN, 
by  simply varying its two parameters,  UNIFGEN can generate 
DC graphs with uniform checks having a  variety of useful 
properties. As we shall soon see, this fixed cardinality g  must 
be  of the order of the mean  cardinality of the error set of 
the checks in the corresponding DC graphs produced by  
RANDGEN. 
UNIFGEN(c, g) 
Let D be  the set of data elements and  C be  the set of checks 
such that ]C] =  c. 
For every check,  pick uniformly and  at random a  subset  of the 
data of cardinality g. This will be  the error set of this check.  
Do this for every check.  
End UNIFGEN 

W e  first consider the problem of generat ing uniform checks 
for s-error detection. W e  will see that requiring “uniform” 
checks costs us  nothing; that is, UNIFGEN uses the same 
number  of checks as  RANDGEN for generat ing s-error- 
detectable DC graphs.  

Theorem 6.1: The  algorithm UNIFGEN, using c =  
3.8s log n  checks and  g  = n/s, produces an  s-error-detectable 
DC graph with probability at least 1  - [l/(n - l)]. 

Proof: The  proof is similar to that of Theorem 3.2, and  
notations from the proof of that theorem will be  used here. 
As before we need  to show that the DC graph satisfies the 
condit ions of Lemma 1.1, that is, every set S c D, JSJ 5  s, 
has  a  check .z such that it is connected to exactly one  element 
of S. For any  single set S, IS] =  i <  s, and  a  particular check 
Z, we first evaluate the probability that z is not connected 
to exactly one  element of S. The  total number  of ways of 

choosing the error set of check z is clearly 

the number  of subsets that contain exactly \ 
S is clearly Hence the probability that the check 

is not connected to exactly one  element of S is7 

f n-i \ 

1 _ i \ (n/s) - 1) 
n  

( > n/s 
=,-;(n-i)* 

s  (n - l)(+)-’ 

11-2 l- I 
i-l 

) 
(n/s)--1 

S n - (n/s) +  1  

5  1  - 5  (1 - y-l 

51-i. 

This is the same as what we had  earlier in (1). The  rest of the 
proof is similar to that of Theorem 3.2. 0  

W e  can, of course, reduce the probability of getting a  
bad  DC graph, that is, one  that is not s-error detectable, 
rapidly to less than or equal  to l/(n”+’ - 1) by  using 
(3.8s + 1.9sk) log n checks,  as  before. 

W e  now turn to the problem of generat ing an  s-error- 
locatable DC graph with uniform checks.  Unlike the case of 
error detection, UNIFGEN does  have an  overhead of a  small 
constant factor in terms of the required number  of checks when 
compared with RANDGEN for this problem. 

Theorem 6.2: The  algorithm ~ UNIFGEN, using c =  
(10.6~~ + 5.3s) log n  checks and  g  = n/2s, produces an  s- 
error-locatable DC graph with probability at least 1  - (l/n), 
when n  _> 2.8s. 

Proof: The  proof is similar to that of Theorem 4.3 and  
notations from the proof of that theorem will be  used here. 
W e  need  to show that the DC graph satisfies the condit ions 
of Theorem 4.2. W e  evaluate the probability that a  particular 
check does  not satisfy the condit ions as  follows. The  total 
number  of ways of choosing a  subset  of size n/2s is clearly 

The  number  of subsets that contain an  element 21  but 

no  element from set S, IS] =  2s  - 1, is clearly (:-“;)* 
Thus the probability that a  particular check does  ‘n %  satis/fy 

‘zi denotes the ith falling power of 2, that is, z(z - 1). (z - i -I- 1). 
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the condit ions of Theorem 4.2 is 

1- (&&) 
I \ 

n 

( ) n/2s 

= 1  _  + (n - 2s)o-1 
2s  (n - p/2+1 

51-k l- ( 2s - 1  (n/2s)-1 

n  - (n/2s) +  1  ) 

51-d 1-g 
( ) 

(n/29)-1 

1  
<l-- 

2se413 (9) 
when n  > 2.89. Compare this with what we had  ear- 
lier in (3). Now we cont inue in a  manner  similar to the 
proof of Theorem 4.3. W e  need  to select c  =  (10.6~~ + 
5.3s) log n > [4e4i3/log e)s2 + (2e4i3/log e)s] log n  to 
complete the proof. 0  

As before, we can drastically reduce the probability of 
getting a  bad  DC graph, that is, one  that is not s-error 
locatable, to less than or equal  to l/n”+’ by using (10.6~~ + 
5.3slc +  5.3s) log n  checks.  

VII. CHECK COMPUTATION FAILURES 

In this section, we consider the more realistic case when 
the dedicated processors comput ing the checks can themselves 
fail. Note that only the processors doing data computat ions 
are represented in P and  the check-comput ing processors 
are not represented in the PDC graph. In this section, we 
will distinguish between the (actual) output value of a  check 
and  the correct output value of a  check.  The  correct output 
value of a  check is simply the output of the check,  had  the 
check computat ion been  error-free. The  output of a  check 
could be  different from its correct output due  to faults in 
the processors that compute it. One  now needs  to modify 
the standard definition of a  t-fault-detectable/locatable PDC 
graph to incorporate this possibility. 

Definition 7.1: A PDC graph is said to be  strictly t-fault 
detectable/locatable iff any  set of at most t faults in the 
processors in P can be  detected/located in spite of at most 
t faults in the check-comput ing processors.  

How can we modify the various procedures for synthesizing 
PDC graphs ment ioned in Section I under  these stricter 
assumpt ions? It is customary to add  more processors when one  
tries to make a  nonfault tolerant computat ion fault tolerant. 
For example, if our  chosen architecture is a  2-D mesh of 
processors,  a  natural approach would be  to implement the fault 
tolerant computat ion on  a  mesh that has  one  more row and  
column than that required by  the non-fault tolerant version. 
That is, we would add  2m + 1  extra processors,  where 
IPI is the number  of processors in the original non-fault 
tolerant mesh computation. Note that the number  of checks 
necessary in our  DC graph designs in Sections III-VI is small, 
that is, it grows only as  a  logarithm of the number  of data 
elements. Therefore, in the case that we have a  sufficiently 

large number  of extra processors,  one  could assign different 
sets of 2t+ 1  processors to compute independent ly the different 
checks and  take the majority value as  the output of any  given 
check.  Clearly this (2t +  l)-modular redundancy in the check 
computat ions makes sure that check computat ions are always 
correct as  long as  not more than t of the check-comput ing 
processors fail. Since now the check computat ions are always 
correct, we could use the old synthesis techniques outl ined in 
Section I with the result that the synthesized system is strictly 
t-fault detectable/locatable as  specif ied in Definition 7.1. 

In the event  that we do  not have  as  many  as  2t +  1  
extra processors for each  check computation, we would have 
to assume that each  check is computed by  a  single unique 
dedicated processor.  Therefore, in our  definitions for s-error 
detectability or locatability of DC graphs we would have 
to consider the possibility of the checks themselves being 
erroneous.  In this stricter sense,  one  could define a  DC graph 
to be  strictly s-error detectablel locatable iff it can detect/ locate 
any  set of at most s errors in the data even if any  set of 
at most s check computat ions are erroneous.  It is clear that 
now if one  is to use strictly s-error detectable/locatable graphs 
in the PDC graph design procedures in place of simple s- 
error detectable/locatable DC graphs,  we would obtain PDC 
graphs with the same amount  of fault tolerance but in the 
stricter sense of Definition 7.1. 

In the rest of this section, we show how our  results can 
be  extended easily by  using RANDGEN to produce strictly 
s-error-detectable, strictly s-error-locatable, as  well as  strictly 
s-majori ty-diagnosable DC graphs.  

A. Strict Error Detectability 
In this subsection, we show how to construct strictly 

s-error-detectable graphs.  
Lemma 7.1: A DC graph is strictly s-error detectable iff 

every possible nonempty  set of errors in the data of cardinality 
at most s makes at least 2s  +  1  of the checks have their correct 
outputs as  1. 

Proof: If there is no  error in the data then there can be  
at most s checks that output 1, since at most s checks could 
be  erroneous.  Therefore, if there are some, not more than s, 
errors in the data, then at least 2s  +  1  of the checks must have  
their correct outputs as  1. Of these at most s checks can output 
a  0  due  to er roneous check computat ions. Therefore, there are 
at least s +  1  checks that output a  1. Thus if there are < s 
checks outputt ing a  1, then we can conclude that there is no  
error in the data. Else there is some error in the data. cl 

W e  now show that RANDGEN can also produce strictly 
s-error-detectable DC graphs.  

Theorem 7.1: The  algorithm RANDGEN, using parameter  
c =  11.31s log n  and  p  = l/s, p roduces a  strictly s-error- 
detectable DC graph with probability at least 1  - [l/(n - 1)], 
for sufficiently large n. 

Proof: The  proof is similar to that of Theorem 3.2. W e  
need  to show that the DC graph satisfies the condit ions of 
Lemma 7.1. As der ived in (l), for any  single set S, ISI =  i, 
and  a  particular check z, the probability that z is not connected 
to exactly one  element of S is 5  1  - i(l/se). Let Es be  the 
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event  that less than 2s  + 1  checks are connected to exactly one  
element in S, where S is any  nonempty  set of cardinality i. 

Prob(Es)I c  (c~j)(l-i~)c-i 
l<j<2s 

=l~2s(;)(1-i:)c-i 
-- 

< c ~,41/4(4 

l<j<2s -- 

< e-w4 
c 

(-+ee(w4 
- 

l<j52s 

< e-(d4 
c eiej 

15j52s 

< 2C2se2se-(ic/se) 
- 

(10) 

using the fact that (cej) =  (i) 5  cj bounding a  

geometr ic series by  twice the last term since ce > 2, choosing 
c =  11.32s log n  and  assuming that log n  2  3s  + s[(log s +  
log log n)/2]. The  calculations for the last condit ion are 
tedious but straightforward and  are given in the appendix.  The  
rest of the proof is the same as in Theorem 3.2. 0  

It should also be  noted that the condit ion in the preceding 
proof that requires that n  to be  greater than some value can be  
relaxed easily. The  specific value of c  and  the corresponding 
condit ion on  n  in the theorem are only meant  to be  typical 
illustrations. One  could always make the algorithm work for 
smaller ranges of n by sufficiently increasing the constant 
factor involved in c. Let c =  Es log n  and  let the smallest 
value in our  range of interest for n  be  no. It is sufficient that 
constant 2  be  large enough  such that the last inequality of (10) 
holds true for every value of n in the range of interest. This 
implies the following sufficient condit ion for the constant 2. 
The  calculations required to derive this equat ion are shown in 
the appendix.  

2  log e  2s  log E ~-~ 
e  log n0 

2  2+ 
1+2slogs+2sloglognu+2sloge 

log no 
. (11) 

It is possible to generate strictly s-error-detectable DC 
graphs with uniform checks using UNIFGEN. A theorem 
similar to Theorem 7.1 for UNIFGEN is stated next. 

Theorem 7.2: The  algorithm UNIFGEN, using parameter  
c =  11.31s logn and  g  = n/s, produces a  strictly s-error- 
detectable DC graph with probability at least 1  - [l/(n - l)], 
for sufficiently large n. 

Proof: As der ived in (8), for any  single set S, (S( =  i, 
and  a  particular check z, the probability that z is not connected 
to exactly one  element of S is 2  1  - i( l/se). The  rest of the 
proof is the same as that of Theorem 7.1. 0  

B. Strict Error Locatability 

W e  now show how to construct strictly s-error-locatable 
DC graphs.  

Lemma 7.2: A DC graph is strictly s-error locatable iff 
the following is true. Consider any  pair of sets of errors of 
cardinality at most s. There must be  at least 2s  +  1  checks 
whose correct output values are necessari ly different for these 
two sets of errors. 

Proof: The  condit ions imply that no  two sets of errors of 
cardinality at most s can produce the same output pattern at 
the checks.  This is so  because at most s of the check values 
for either set of errors could be  erroneous.  Therefore, at most 
2s  check outputs could be  made  to agree with one  another  due  
to check computat ion errors. 0  

As before, we next state sufficient condit ions for strict s- 
error locatability, which will form the basis of a  later theorem. 

Theorem 7.3: For every S c D, I S( =  2s  - 1, and  for every 
u  E D,u #  S, let there exist 2s  +  1  checks,  each  of which 
is connected to u  but not to any  member  of S. Then the DC 
graph is strictly s-error locatable. 

Proof: The  proof is similar to Theorem 4.2. Consider 
any  two distinct subsets of D, namely R and  T, such that their 
cardinalities are not more than s. Take any  element u  E R@T. 
W ithout loss of generality, let v  E R. Now by the condit ions, 
there exist 2s  +  1  checks,  each  of which is connected to v but 
not to any  element of R U T - {v}.This directly implies that 
these checks have their correct outputs to be  1  when R is the 
set of errors and  0  when T is the set of errors, that is, there 
are 2s  + 1  checks whose correct output values differ for R and  
T. From Lemma 7.2, this implies that the DC graph is strictly 
s-error locatable. cl 

W e  now show that RANDGEN can produce strictly s-error 
locatable DC graphs.  

Theorem 7.4: The  algorithm RANDGEN, using c =  
(15.2~~ + 3.8s) log n  checks and  p = 1/2s, produces a  strictly 
s-error-locatable DC graph with probability at least 1  - (l/n), 
for sufficiently large n. 

Proof: W e  will attempt to show that the DC graph 
satisfies the sufficient condit ions of Theorem 7.3 with high 
probability. The  proof is very similar to the proof of Theorem 
4.3. Given a  particular 21  E D and  S C D, u  $z’ S, (5’1  = 2s- 1, 
let Eu,s be  the event  that no  set of 2s  +  1  checks satisfies 
the condit ions of Theorem 7.3. As der ived earlier in (3), 
the probability that a  particular check does  not satisfy the 
condit ions is at most 1  - (1/2se). Note that if event  E,,s 
is true, then there must exist some set of c  - 2s  checks which 
does  not satisfy the sufficient condit ions of Theorem 7.3. This 
gives us  our  first inequality below. 

f’rob(&,s) 5 ( c22s) (I- &)ce2s 

=(;s)(1-&)c-2r 

< C2se-(1/2se)(c-2s) 

= c2sellee-w.9~) 
1  <- - n2s+l (12) 
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choosing c =  (15.2~~ + 3.8s) log n and  assuming that log n  2  
4.6 +  2  log s +  log log n. The  calculations for the last condit ion 
are similar to the calculations presented in the appendix  for 
Theorem 7.1. The  rest of the proof is the same as in Theorem 
4.3. q  

As before, we can use the algorithm for smaller ranges 
of n  by  increasing the constant involved in the value of 
c  such that the last inequality of (12) is satisfied. Let no 
be  the smallest value of n in our  range of interest and  let 
c  =  (2s2 + 3.8s) logn. For our  construction to work for all 
values of n  in our  range of interest, it is sufficient to choose 
constant t such that the following inequality is satisfied. The  
calculations are similar in spirit to those presented in the 
appendix  for the previous subsection. 

e 2  log(t +  3.8) -- 
3.8 log n0 

>a+ 4  logs + 2  log log no  + 0.54/s 
log n0  

(13) 

It is possible to generate strictly s-error-locatable DC 
graphs with uniform checks using UNIFGEN. A theorem 
similar to Theorem 7.4 for UNIFGEN is stated next. 

Theorem 7.5: The  algorithm UNIFGEN, using c =  
(21.3s2+5.31s) log n  checks and  p  = 1/2s, produces a  strictly 
s-error-locatable DC graph with probability at least 1  - (l/n), 
for sufficiently large 72. 

Proof: Given a  particular u  E D and  S c D, u  $  
S, ISI =  2s  - 1, let Eu,s be  the event  that no  set of 2s  +  1  
checks satisfies the condit ions of Theorem 7.3. As der ived 
earlier in (9), the probability that a  particular check does  not 
satisfy the condit ions is at most 1  - ( 1/2se413).  The  rest of the 
proof is similar to the proof of Theorem 7.4. The  condit ion on  
n  for the value of c  chosen in the theorem is slightly different. 
It is log n  > 4.92 + 2  log s +  log log 72. 0  

C. Strict Majority Diagnosabil i ty 

W e  can also extend the notion of majority diagnosabil i ty 
to the case when check computat ions themselves can become 
erroneous.  Intuitively, a  DC graph is strictly s-majority di- 
agnosable if one  can apply the majority diagnosis algorithm 
correctly to d iagnose s or fewer data errors even when s or 
fewer check computat ions are erroneous.  

Lemma 7.3: A DC graph is strictly s-majority d iagnosable 
iff for every u  E D and  S c D, 15’1  = s, the following is 
true: The  cardinality of the set of checks connected to u  but 
not to any  data element in S - {u} exceeds the cardinality of 
the set of checks that are simultaneously connected to u  and  
some nonempty  subset  of S - {u} by  at least 2s  +  1. 

Proof: The  proof is similar to that of Lemma 5.1. The  
margin of 2s  +  1  makes sure that the correct majority decision 
cannot  be  swayed by  er roneous check computat ions. cl 

Theorem 7.6: The  algorithm RANDGEN, using c =  
95(s2+2s)  logn checks,  s >  1, and  p  = 1/8s, produces a  DC 
graph that is strictly s-majority d iagnosable with probability 
at least 1  - (l/n), for large enough  values of n. 

Proof: The  proof is similar to that of Theorem 5.1. 
As before, let the event  Eu,s represent the event  that the 

condit ions of Lemma 7.3 are not met for u  E D and  
S c D, 15’1  = s. Given a  data element u  E D and  an  
S c D, IS/ =  s, we bound  Prob(E,,s) as  follows. W e  will 
assume that u  #  S. The  case when u  E S is similar. Sets 1  
and  J are def ined as  earlier. 

Prob(E,,s) =  Prob(2J + 2s  + 1  > I) 
5  Prob(1 2  (1 - cr)/L(I)) 

+  Prob(2J + 2s  > I(1 >  (1 - a)p(l)) 
<  Prob(1 < (1 - a)/L(I)) 

+  Prob(2J + 2s  > (1 - (Y)/&(I)) 
<  Prob(1 5  (1 - 0)/L(I)) 

+  Prob(2J > (1 - Q)&I) - 2s) (14) 

where Q  is chosen as  before to be  0.3968. The  first term in 
(14) can be  bound  as  before to be  at most l/nsf2. Noting that 
~(1) =  pc  = c/8s and  for s >  1  

p(I) - (1 - a)-12s 

GJ) 

1  1.1532 

z 2(1e (4) -log  
2  4.0137 (15) 

assuming that logn > 10. 
As previously, we use Lemma 5.2 to bound  the second term 

in (14). 

Prob(2J > (l- a)p(I) - 2s) 

=  Prob 2J  > (1 - o) 

p(I) - (1 - a)-12s 
d2J) 24 J> > 

5  Prob(J >  (i+ 1.421)~(~)) 

( 

e1.421 

> 

P(J) 

’ (1 + 1.421)1+1.421 
< e-o.7196(o.1175pc) 
- 

< e-0.010569(c/s) - > forp =  & 

From this it follows that the probability of getting a  bad  DC 
graph, that is, one  that is not s-majority diagnosable,  is 

fors >  1. 
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VIII. CONCLUSIONS 

In this paper, we proposed a simple and efficient general- 
purpose algorithm for generating arbitrary data-check (DC) 
graphs with a small number of checks, which satisfy a variety 
of properties that have been found to be useful in algorithm- 
based fault tolerance (ABFT) designs. Although we have stated 
the results in the context of ABFT, we feel that the techniques 
and ideas used here will also be useful in the context of 
other fault tolerance problems. We introduced the concept 
of majority diagnosability in an attempt toward explicitly 
designing DC graphs for easy diagnosis. We believe this to 
be a good example of how one can simplify many issues by 
simply restricting the space of possible designs. Of course, we 
need to be sure that this does not increase the overhead of the 
design too drastically and also that we have a good procedure 
to construct such designs. We showed that RANDGEN served 
our purpose on these counts. We also examined UNIFGEN, 
a variation of RANDGEN, that produced DC graphs with 
uniform checks. 

Finally, our constructions were probabilistic and necessarily 
have a small probability of not producing a DC graph with 
the required properties. As noted earlier, one can decrease this 
probability very rapidly by adding some extra checks. In fact, 
in general, fixing the probability of getting a “bad” DC graph 
that one is willing to tolerate, one can calculate what value 
of c  we need to use. It should be pointed out that even in 
the extremely rare cases where one gets a bad DC graph, the 
construct will still detect/locate most sets of s  or fewer errors. 

APPENDIX A 
CALCULATION FOR CONDITIONS IN THEOREM 7.1 

We need to show that the last inequality in (10) is true if 
log n 2 3s + s[(log s + log log n)/2]. The last inequality is 

2(3se2se-(iclse) 5 l/& 

Taking logarithms on both sides and substituting for c, we have 

1 + 2s log 11.31 + 2s log s + 2s log log n 

+ 2sloge 5 i ( 11.3lslognloge 
-210gn . 

se > 

Now since 1 5 i < s  the preceding condition will be true for 
all i if it is true for i = 1. Substituting i = 1 we have 

1+ 2slog11.31+ 2slogs + 2sloglogn 
+ 2sloge I (610gn - 2logn). 

Now simplifying further, the preceding inequality is satisfied if 

4 log n > 1 + 9.885s + 2s logs + 2s log log n. 

Now 1 $- 9.885s 5 129, since s 2 1. Using this we know that 
the preceding condition is satisfied if 

logn > 3s+s(lw+ww) - 2 ’ 
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APPENDIX B 
CALCULATION FOR DERIVING THE CONDITION 

ON CONSTANT E IN SECTION VII-A 

For the procedure to work for all n > no we need to show 
that the last inequality in (10) is true if 

?loge 2s log i: --~ 
e log no 

12+ 
1+ 2slogs + 2sloglogno + 2sloge 

log n0 

where c = 2s log n. As before, taking logarithms on both sides 
of the last inequality in (lo), substituting for c  and setting i = 1 
and n = no we get the following sufficient condition: 

+ 2sloge 5 
( 

?loge 
-1ogno - 2logno . e ) 

Dividing both sides by log no and rearranging the terms such 
that all terms having i: appear in the left-hand side, we have 
the required condition 2. 
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