
780 IEEE TRANSACTIONS O N COMPUTERS, VOL. 42, NO. 7, JULY 1993

Optimal Design of Checks for Error Detection and
Location in Fault-Tolerant Multiprocessor Systems

Ramesh K. Sitaraman and Niraj K. Jha, Senior Member, IEEE

Abstract-Designing checks to detect or locate errors in the
data plays an important role in the design of fault tolerant
systems. Recently, the problem of synthesizing the data-check
(DC) relationship has received a lot of attention in the context
of a natural paradigm for concurrent error detection/location
known as algorithm-based fault tolerance (ABET). Banerjee and
Abraham have shown that an ABET scheme can be modeled as
a tripartite graph consisting of processors (P), data (D), and
checks (C). Any technique for designing ABET systems requires
a procedure for synthesizing a DC relationship, which not only
has a low overhead but also has all the properties required by
the designer.

The main contribution of this work is to propose a simple and
novel algorithm called RANDGEN to generate DC graphs. This
synthesis approach itself is very fast and can be fully parallelized.
By simply varying its parameters, the same algorithm RANDGEN
can produce DC graphs with a wide spectrum of properties,
many of which have been considered very important in recent
ABET designs.

RANDGEN produces s-error-detectable DC graphs with
asymptotically the least number of checks for the first time.
RANDGEN can also produce s-error-locatable DC graphs using
only a small number of checks. This is the first general
procedure for producing error-locatable graphs for any value of
s. Another important outstanding problem in DC graph design
is providing fast and practical methods for actually locating
the errors in the data from the output pattern at the checks.
We show that RANDGEN can be used to design DC graphs,
which permit easy diagnosis, again with a small number of
checks. It has been pointed out previously that “uniform” checks
may simplify the design of the ABET system. We show how
RANDGEN can be modified very simply to produce uniform
s-error-detectable/locatable DC graphs. Finally, we show how
one can generalize these results to synthesize strictly s-error-
detectable/locatable DC graphs which can detect/locate up to
s data errors even when s or fewer check computations are
erroneous.

Index Terms- Algorithm-based fault tolerance, checksum en-
coding, concurrent error detection, concurrent error location,
majority diagnosis, randomized algorithms, uniform checks.

Manuscript received July 1, 1991; revised January 24, 1992, September
5, 1992. This work was based on “Optimal Design of Checks for Error
Detection and Location in Fault Tolerant Multiprocessor Systems” by R.
K. Sitaraman and N. K. Jha, which appeared in the Proceedings of the 5th
International Conference on Fault Tolerant Computing Systems, Nurenberg,
Germany, September 1991, pp. 39tiO6. 0 1991 Springer-Verlag. This work
was supported by DARPA/ONR under Contract NOO014-88-K-0459, the NSF
under Grant CCR-9057486, a grant from MITL, ONR under Contract N00014-
91-J-1199, and AFOSR under Contract AFOSR-90-0144.

R. Sitaraman is with the Department of Computer Science, Princeton
University, Princeton, NJ 08544.

N. K. Jha is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544.

IEEE Log Number 9208477.

I. INTR~DuCD~N

T HE QUESTION OF how to use a minimum number
of checks for data such that one can locate (or just

detect) any set of at most s errors is an important question in
fault tolerance. Much recent interest in designing data-check
relationships for error detection and location has been in the
area of algorithm-based fault tolerance (ABFI). ABFT was
introduced as a technique to detect and locate errors in matrix
computations [13]. There have been many applications of this
technique to a variety of problems, including fast Fourier trans-
forms [8], [15], [25], [30], sorting [9], and signal processing
applications such as matrix multiplication, matrix inversion,
LU decomposition, QR decomposition, FIR filtering, etc. [7],
[13], [14], [16], [18], [23], [27]. It has also been applied to
various architectures such as linear array [l], [14], mesh array
[13] and hypercube [3]. ABm is a very attractive method for
concurrent error detection and fault location due to its low
hardware and time overhead. Many methods for analyzing
ABlT systems also exist [4], [12], [17], [19], [24], [26].

In [4], a graph-theoretic model for studying AHFI schemes
was proposed. The scheme was represented as a tripartite graph
whose vertex set was PuDuC and its edge set was PDUDC,
where P, D, and C are the set of processors, data, and checks,
respectively, and PD and DC are the edges between P and
D and between D and C, respectively. An edge (u, v) E PD
implies that processor ‘1~ affects the value of data element v in
the computation; that is, if processor u fails, v could have an
error. An edge (v, Z) E DC implies that check z checks data
element V. The set of data elements affected by a processor
21 E P is said to be its data set. The set of data elements
checked by a check z E C is said to be its error set . In this
paper, the checks are assumed to be of the simplest type. A
check operates on any nonempty subset of the data and will
detect exactly one error in its error set. More formally, a check
z outputs a binary value of 0 or 1. It is 0 when all the data
elements in its error set are error-free. It is 1 when exactly
one of the data elements is in error. If there is more than one
error in its error set, its output value is arbitrary and, hence,
the check is undependable.

The graph model is independent of the exact implementation
of the check. However, one simple implementation of such
a check is to use a (unweighted) checksum of all the data
elements in the error set. The checks themselves are computed
by some dedicated processors. For example, if our checks
are simple checksums, each such processor will independently
compute the value of its assigned output checksum from the
system inputs and then compare it with the checksum obtained

OO18-9340/93$03.00 0 1993 IEEE

SITARAMAN AND JHA: OPTIMAL DESIGN OF CHECKS FOR ERROR DETECTION 781

f rom the data elements in its error set. It is important to
note that processors dedicated to comput ing checks are not
represented in the PDC graph in this approach. For the sake
of simplicity of presentation, first, we assume that either
the processors comput ing the checks are not faulty or they
are capable of exposing their own faults (by employing any
concurrent error detection technique). This assumption and
the preceding checking phi losophy are also inherently present
in all previous papers on PDC graphs-based ABET system
design [4], [12], [20], [21], [28]. However, in Section VII,
we show how we can easily extend the results obtained
in the previous sections of our paper to the more realistic
situation when these processors dedicated to checking can also
become faulty and have no alternate way of exposing their
own faults.

One of the main goals of research in ABET is to design
efficient systems that are t-fault locatable (or detectable), that
is, assuming that not more than t processors can fail in a
computat ion one would like to locate exactly which, if any,
of the processors failed (or simply detect that there has been
a failure). As is traditionally done, here we assume that a
faulty processor results in an error in at least one of its data
elements in the computation. The importance of the graph-
theoretic model is that the fault detectability and locatability
propert ies of the computat ion can be derived directly as a
property of the tripartite graph.

Designing t-fault-detectable or - locatable systems involves
many degrees of f reedom. One could assume that the ar-
chitecture is not chosen a priori. In this case one could
add checks to the algorithm to make it error tolerant and
then project its data dependence graph to obtain the best
fault tolerant architecture [27]. This could be said to be a
synthesis for fault tolerance approach. Or, alternately, one
could assume that the algorithm and architecture are already
given, that is, the PD graph is fixed, and that the checks
must be added for some desired fault tolerance [4], [12],
[20], [21], [28]. This could be called a design for fault
tolerance approach. Let the maximum number of data elements
affected by any t processors in the given PD graph be
MAX. One of the known approaches for designing t-fault-
detectable/locatable PDC graphs is to design a DC graph
that is s-error detectable/locatable such that s equals MAX
[4]. The unit system approach [20], [21], [28], on the other
hand, first generates a unit system in which each element of P
is connected to exactly one element of D. For this unit system,
a t-error-detectable/locatable DC graph is synthesized. The
PDC graph formed by either taking the product of the given
nonfault tolerant system with the unit system [20], [21] or by
taking the composite of various unit systems [28] gives us
a t-fault-detectable/locatable system. For the purpose of this
paper, it is important to note that in any of these methodologies
we require a systematic procedure to design DC relationships
that can detect or locate a specif ied number of errors. W e now
formally define what it means for a DC graph to detect/ locate
s errors.

Lemma 1.1: A DC graph is s-error detectable iff every
possible nonempty set of errors in the data of cardinality at
most s makes at least one of the checks output a 1.

Lemma 1.2: A DC graph is s-error locatable iff every
possible set of errors in the data of cardinality at most s gives
a different output pattern at the checks, that is, no two distinct
sets of errors of cardinalities at most s can give the same
output pattern at the checks.

In Section II, we descr ibe a versatile algorithm that can
be used to generate DC graphs with a variety of properties.
Section III deals with error-detectable DC graphs. In Section
IV, we consider error-locatable graphs. In Section V, we show
how to use this algorithm to design DC graphs for easy
diagnosis. Section VI deals with a generat ion of “uniform”
checks. Section VII considers the case when the processors
comput ing the checks can also fail. This section shows that
our results extend naturally to deal with er roneous check
computat ions as well. In the last section, we provide some
concluding remarks.

II. ALGORITHM FOR GENERATING DC GRAPHS
In this section, we propose a simple, efficient, and versatile

algorithm called FLANDGEN (RANDom GENeration). By
just varying the input parameters of RANDGEN one can
synthesize, using only a small number of checks, DC graphs
with a wide range of propert ies that researchers in ABFT have
found to be useful and important in their designs.

Let D be the set of data elements and C be the set of
checks. Let the number of data elements (IDI) be n. The
number of checks (ICI) is denoted by c. The DC graph can be
obtained by constructing tuples (called edges) (u, ZJ), where u
is a data element and w is a check. The construction algorithm
RANDGEN is novel in that it is probabilistic, that is, it makes
random decisions during the course of the construction by
perhaps using a random number generator. To construct a DC
graph with n data elements, algorithm RANDGEN takes two
arguments: the number of checks, c, that can be used and a
probability p. The algorithm is as follows:
Algorithm RANDGEN(c, p)
Let D be the set of n data elements and C be the set of c
checks.
For every pair (u, v), where u E D and u E C do:
Add edge (u, w) to the DC graph with probability p.
End RANDGEN

It is easy to see that RANDGEN is very fast and simple
to implement. It can also be easily executed in parallel s ince
essentially the decision to include or not include an edge is
taken independent ly of other edges. W e state this formally as
a theorem.

Theorem 2.1: Algorithm RANDGEN runs in time O(c.n),
where c is the number of checks in the graph and n the number
of data elements. It can also be executed in a constant number
of steps with c.n processors.

Proof: It is easy to see that RANDGEN takes constant
time for each possible edge (u, u), where u is a data element
and 2) is a check. Hence the total time taken is O(c.n). That
each pair (u, TJ) can be considered in parallel is also clear. 0

It must be ment ioned that since RANDGEN is probabilistic,
our results will show that with an overwhelmingly large

782 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 7, JULY 1993

probability, the DC graphs produced will have the required
properties.’

The minimum number of checks required for a DC graph
with n data elements to be s-error-detectable has been shown
to be s2(s log n) [12]. W e show how to construct an asymptot-
ically optimal s-error-detectable DC graph, that is, using only
O(s log n) checks. Previously, there were no general methods
known for designing s-error-locatable graphs. A (loose?) lower
bound for minimum number of checks required for a DC
graph to be s-error locating is fl(s log n) [4]. RANDGEN
produces DC graphs with O(s2 log n) number of checks
which is very close to asymptotically optimal since typically
s << n.

It must be noted that s-error locatability only ensures that
no two distinct sets of error patterns of size s or less have
the same output pattern at the checks. It does not provide us
with an efficient algorithm to diagnose, that is, actually locate
the errors from the output pattern at the checks. No efficient
algorithm for diagnosis is currently known for a general s-
error-locatable DC graph. In fact, the known algorithm is
enumerat ive in its approach and tries to enumerate various
possible sets of errors and check if the output pattern at
the checks can be caused by them [26] and could be time-
consuming for even small values of s. As it is not clear
that this algorithm can be improved upon drastically, we
need to design DC graphs explicitly for easy diagnosis. W e
introduce a class of s-error-locatable DC graphs which allow
easy diagnosis and show how RANDGEN can generate them
with only a constant factor overhead in the number of checks.
“Uniform” checks [28], which are all identical and check the
same number of data elements, have been shown to simplify
ABFT design. W e show how FL4NDGEN can be modif ied to
produce such uniform checks for s-error detection/location.
Finally, we show how RANDGEN can produce DC graphs
that can detect/ locate errors in data even when the checks
themselves can fail.

III. ERROR DETECTAEXLITY

W e start with the problem of error detection. The condit ions
of Lemma 1.1 imply a minimum number of checks that one
necessari ly requires for a DC graph to be s-error detecting.
The following lower bound from [12] is stated without proof.

Theorem 3.1: The number of checks, c, for s-error de-
tectability is n(s log n).2

The main theorem of this section shows that RANDGEN
produces (with high probability) an s-error-detectable DC
graph when parameter c = 3.8s log n and parameter p =
l/s are used. From the previous lower bound result, it can
be seen that this algorithm requires asymptotically the least
number of checks. Before we prove the theorem, we illustrate
the algorithm RANDGEN for a typical problem. In [5], the
problem of encoding a matrix of dimension 1024 x 1024
and analyzing the reliability of various matrix multiplication
algorithms is considered. W e will use the encoding of 1024 x

‘The proof techniques used in this paper are reminiscent of the probabilistic
method in combinatorics pioneered by Erdos and Spencer [lo]. Interested
readers may also refer to books on the theory of random graphs [2].

‘All logarithms in this paper are to base 2.

1024 data values for s-error detection and location as a running
example to illustrate our constructions.

Example 3.1: Suppose we would like to construct a DC
graph that can detect up to three (= s) errors for a data
set consisting of a matrix of dimension 1024 x 1024, that is,
1048 576 data elements. W e take 228 checks and with each
check we do the following. W e consider every data element
and include a data element in the error set of this check with a
probability of one-third (= l/s). W h e n we are done with this
process, we are left with a DC graph that is 3-error detecting
with a probability of at least 1 - (l/l 048 575), very close to
1. As a basis for comparison, notice that the traditional matrix
row and column checksum method, which can detect up to
three errors, requires 2047 checks.

It should be pointed out that efficient methods have already
been given in [12] specifically for the particular cases of
s = 2,3, and 4. Then they give a special method for detecting
up to seven errors. However, as a comparison, for this example
that method would require 570 checks for detecting five, six,
or seven errors, whereas our method would require 380, 456,
and 532 checks, respectively. For s > 7 they have given a
general construction method. For s ranging from 8 to 15 they
would require 9120 checks, whereas our method would require
only 608, 684, 760, 836, 912, 988, 1064, and 1140 checks,
respectively. As the value of s and/or n increases, our method
performs relatively even better than the method in [12]. One
must note, however, that their method is deterministic whereas
ours is probabilistic.

Before we prove the main theorem of this section, we state
without proof this simple lemma, which we will use repeatedly
in this paper.

Lemma 3.1: Given a series of events El, Ez, . . . , Ek,
Prob(u&) 5 ZiProb(

Theorem 3.2: The algorithm RANDGEN, using parameter
c = 3.8s log n and p = l/s, p roduces an s-error-detectable
DC graph with probability at least 1 - [l/(n - l)]. The time
complexity of constructing this graph is only O(sn log n).

Proof: The algorithm RANDGEN clearly works for s =
1, since p = 1 and every check is connected to all data
elements. Of course, one such check would suffice. So we
will assume that s > 1. W e need to show that the DC
graph satisfies the condit ions of Lemma 1.1, that is, every
nonempty set S c D, ISI 5 s, has a check z such that it
is connected to exactly one element of S. Let Es represent
the event that there exists no such check for some set S.
The probability that the DC graph is not s-error detectable is
simply the probability of USES, where S takes on the value
of all nonempty subsets of D with cardinality not more than
s. W e will split this union of events into smaller unions as
follows and bound each separately. Throughout this paper, e
represents the t ranscendental number 2.718 2818. . . .

Let event A;, 1 5 i 5 s, be USES, where S takes all
subsets of D of cardinality i. For any single set S, IS] = i,
and a particular check Z, the probability that z is not connected
to exactly one element of S, that is, that this check is “bad,”
is clearly 1 - ip(1 - P)~-‘. W e now choose p = l/s, which
minimizes this expression for i = s. Observe that, for this

SITARAMAN AND JH.4 OPTIMAL DESIGN OF CHECKS FOR ERROR DETECTION 783

value of p,

1 - ip(1 - @ ’

<l-L
se (1)

From the independence in choosing the edges, the probability
that all checks are bad is (1 - ip(1 - P)~-‘)“. W e next bound
the probability of event Ai.

Prob(A;) < c Prob(Es)
S,ISI=i

< ni(l - ip(1 - p)i-1)”
< nie--cip(l--p)t-’
-

= ,i,-Ci(l/~)[l-(l/s)]‘-’) forp= f
< nie-[(2e/ log e)s log n]i(l/se)
-
= nie-2(log n/log “)i

= ni(e I/ log e -2i log n
1

= ni2- log TL*~
7 since el/ log ’ = 2

ni
=-

n2i

1 =-
ni (2)

using Lemma 3.1, then using the fact that 1 - z 2 e-”
and finally using (1) and choosing c = 3.8s log n >
(2e/log e)s log 71.

Now, using Lemma 3.1, the probability of the DC graph
being bad, that is, not satisfying the condit ions of Lemma 1.1,
is simply

Thus the probability of a “good” DC graph, that is, one
that does satisfy the condit ions of Lemma 3.1, is at least
1 - [l/(n - l)]. RANDGEN’s time complexity follows from
Theorem 2.1. 0

For some applications, one may want to decrease even
further the probability that the constructed DC graph is not
s-error detectable at the cost of adding more checks. One can
decrease this probability very quickly by the addit ion of some
extra checks. In our example, we can add 114 more checks to
make the total number of checks 342, and the probability of
a bad DC graph goes down rapidly to l/(1048 5762 - 1) x
l/10 . l2 W e can decrease this again by adding more checks
if need be.

Corollary 3.1: The algorithm RANDGEN, using c =
(3&+1.9&) log n checks and p = l/s, p roduces an s-error-
detectable DC graph with probability at least 1 - [l/(nk+’ -
111.

Proof: Follows from the proof of the previous theorem
by substituting the new value for c at the appropriate step. Cl

From the preceding discussions it is clear that there is a close
relationship between the probability of getting a good DC
graph and the number of checks c. After fixing this probability
to a value that one will be satisfied with, one can do the
computat ion backward and find the corresponding value of c.

One possible criticism of the preceding approach is that
the probability of getting a good DC graph cannot be made
1, al though it can be made arbitrarily close to 1. However,
one should remember that any fault tolerant design has an
inherent chance of failure. A system that is assured to catch s
faults/errors will fail in the unlikely (but still probable) event
that more than s faults/errors occur. As long as the probability
of getting a bad DC graph is small compared with the other
reasons for failure such as presented earlier, there should be no
cause to worry. Even so, the degradat ion in this construction
is “gradual.” Even a bad DC graph, improbable as it may be,
will still detect most sets of s or fewer errors.

If the designer still insists on having a guarantee that the
DC graph obtained by RANDGEN is, in fact, good, then
one can use the analysis procedures from [19] which, when
given a DC graph, can determine if it is s-error detectable
or not. In the extremely rare cases where the DC graph is
found to be bad, one can use RANDGEN once again. Similar
arguments also hold for the subsequent sections where one
can check if the condit ions that need to be satisfied by the
DC graph are actually satisfied by it. However, this approach
of verifying the “goodness” of a DC graph may, in general,
be t ime-consuming.

IV. ERROR LOCATABILITY

In this section we consider the problem of error locatability.
Let n be the total number of data elements, that is, IDI, as
before. The necessary and sufficient condit ions of Lemma 1.2
give us a lower bound on the number of checks required for
s-error locatability [4].

Theorem 4.1: The number of checks, c, for s-error locata-
bility is n(s log n).

Proof: Clearly, from Lemma 1.2, there must be at least
as many possible output patterns as there are distinct sets of
errors of cardinalities at most s.

2” > C 3 = fl(n”).
-J > o<j<s

The theorem follows. cl
W e suspect the preceding lower bound to be somewhat loose

and think it can probably be improved.
Trivially, suppose s = 1. There is a simple way of achieving

the lower bound of Theorem 4.1 of [log (n + l)] checks. W e
observe that the total number of distinct nonempty subsets of
[log(n + l)] checks (= 2r’“a(“+l)l - 1) is at least n. W e
simply connect each vertex of D, that is, each data element,
to a distinct subset of the checks. One way of doing this is
as follows. Let the data elements be denoted by dr , d2, . . * , d,
and let q = [log(n + l)]. For a data element di consider
the q-bit binary vector, which represents i. Then di would

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 7, JULY 1993

be connected to all those checks that cor respond to the l’s
in the binary vector. A similar scheme was used in [12] for
2-error detection (not location). W h e n that data element is in
error, exactly the checks in the corresponding unique subset
have 1’s. Hence it is l-error locatable. W e should add that in
addit ion to l-error locatability such a DC graph also allows
for easy diagnosis. The reason is that just by looking at the
output pattern at the checks, we can immediately point to the
data element in error. Note that the fact that this construction
achieves the lower bound for s = 1 does not mean that this
lower bound is tight. The greatest lower bound could still be
R(s2 log n) (say). H owever, this construction does not extend
in a natural way to s > 2. For example, if s = 2, we need to
make sure that any pair of errors has distinct output patterns
and this condit ion can be difficult to satisfy.

The main result of this section is that RANDGEN with
parameters c’ = (7.6~~ + 3.8s) log n and p = 1/2s almost
always produces an s-error-locatable DC graph. The number
of checks necessary for this algorithm is quite close to the
known lower bound since typically s < n. As before, we
first illustrate the construction procedure by stepping through
algorithm RANDGEN for our running example.

Example 4.1: Suppose that we would like to design checks
such that one can locate up to three (= s) errors in the data set
which consists of a matrix of dimension 1024 x 1024. First,
take 1596 checks and with each check we do the following.
W e consider every data element, and we include a data element
in the error set of this check with a probability of one-sixth
(= 1/2s). At the end of this process we get a DC graph that is
3-error locating with a probability of at least 1 -(l/l 048 576).
It was not previously known how to design DC graphs for
error location for any general value of s. However, as a basis
of comparison, it must be noted that one would require 2047
checks to even locate only one error using the traditional row
and column checksum method. W e should note, however, that
this method is deterministic, whereas ours is probabilistic. Our
general method would require 760 checks to locate up to two
errors and only 228 checks to locate one error. Actually, to
locate only one error, we need not use this general method.
From the method presented at the beginning of this section for
this particular case, we need only [log(n + l)] = 21 checks.

Before we prove our main theorem we need to state certain
sufficient condit ions for a DC graph to be s-error locatable.

Theorem 4.2: For every S c D, JSI = 2s - 1, and for every
u E D, u # S, let there exist a check that is connected to u
but not to any member of S. Then the DC graph is s-error
locatable.

Proof: The condit ions in the theorem are pictorially
depicted in Fig. 1. Consider any two distinct subsets of D,
namely R and T, such that their cardinalities are not more
than s. Take any element v E R $ T, where e3 represents the
symmetric difference. W ithout loss of generality, let v E R.
Now by the condit ions, there exists a check that is connected
to w but not to any element of RUT - {v}, s ince the cardinality
of this set is 5 2s - 1. This directly implies that this check
outputs 1 when R is the set of errors and 0 when T is the set

PROHIBITED z
\‘. CHECKS

\ -. \ \ \ \ \

DATA ELEUENTS
u

SET s

Fig. 1. Sufficient condit ions for s-error locatability: For every set
S c D, ISI = 2s - 1 and u E D, u @ S, there exists a check z connected
to u but not to any element in S.

of errors; that is, these sets have different output patterns at
the checks. 0

Theorem 4.3: The algorithm RANDGEN, using c =
(7.6~~ + 3.8s) 1 o n checks and p = l/29, produces an s- g
error-locatable DC graph with probability at least 1 - (l/n).
The time complexity for constructing this graph is only
O(s2n log n).

Proof: W e will attempt to show that the DC graph
satisfies the sufficient condit ions of Theorem 4.2 with high
probability.

Given a particular u E D and S c D, u $ S, ISI = 2s - 1,
let J%,S be the event that no check in C satisfies the condit ions
of Theorem 4.2. The probability that a particular check does
not satisfy the condit ions is clearly 1 - p(1 - ~)~‘-l. W e now
choose p so as to minimize this probability. It can be easily
checked that this is minimum for p = 1/2s. For this value of p,

1 - p(1 - py

=l-; 1-i
(>

29-l

<l-$&. (3)

As the edges for each check are chosen independently, the
probability that no check satisfies the condit ions of Theorem
4.2, that is, Prob(E,,s), is clearly (1 -p(l-~)~‘-~)‘. Observe
that the probability that the DC graph does not satisfy the
sufficient condit ions is simply the probability that at least
one of the events EzL,s occurs, for some 21 and S, that is,
it equals Prob(U,,s E,,s) where S takes all subsets of D of
cardinality 2s - 1 and u takes all values in D - S. W e bound
this probability as follows:

ProWJu,sEu,s)

I c Prob(Eu,s)
%S

5 ?P(1 - p(1 - p)2s-1)c
< n2se--cp(l--p)zs-’
-

= ,2s,-c(1/2~)[1-(1/2~)12s-’
> forp = $

< n2se-{[(4e/ log e)s2+(2e/ 1% e)sl log m)(l/2=)
-

= nye l/log e -(2s+l) log n
>

= n2s2- log n(**+l)
, since el/ log ’ = 2

29 1
=?I

n29+1

I-

n

SITARAhMN AND JHA: OFT’IMAL DESIGN OF CHECKS FOR ERROR DETECI- ION 785

by using (3) and choosing c = (7.6~~ + 3.8s) log n >
[(W log e>s2 + (2 /l g 1 11 g e o e s o n. Thus the probability that
the DC graph is s-error locatable is at least 1 - (l/n). The
time taken by RANDGEN follows from Theorem 2.1. 0

As before, the probability that we get a bad DC graph,
that is, one that is not s-error locatable, can be reduced very
rapidly by adding some extra checks. By adding 3.8sk log n
extra checks we can decrease this probability to l/n”+‘. To
illustrate this through the previous example, we can add just
228 more checks to make a total of 1824 checks and our
chances of producing a bad DC graph, that is, a graph that
is not 3-error locating, falls very rapidly from l/l 048 576 to
l/l 0485762 M l/10 l2 W e can cont inue to do this, and our .
probability of producing a bad DC graph goes down extremely
rapidly.

Corollary 4.1: The RANDGEN algorithm, using c =
(7.6~~ + 3.8slc + 3.8s) log n checks and p = 1/2s, produces
an s-error-locatable DC graph with probability at least 1 -
(l/n”+l).

A. DC Graphs with a Combinat ion of Properties

Some researchers [20] have used DC graphs with a com-
bination of detection and location propert ies for their design,
that is, DC graphs that are simultaneously s-error locatable
and t-error detectable. One simple way to generate these
graphs is, of course, to use RANDGEN twice: once for s-
error locatability as shown in this section and once for t-error
detectability as shown in the previous section. By putting
together the checks we would have a DC graph that is
both s-error locatable and t-error detectable with a total of
(7.6~~ + 3.8s + 3.8t) log n checks. However, in many cases,
this may not be necessary. Given specific values of s and t,
one could choose p appropriately and calculate the minimum
value of c needed to satisfy simultaneously the bounds for
locatability in this section and the bounds for detectability
in the previous section. This value of c may turn out to be
smaller than what one would get by simply adding together
the checks. However, it is difficult to give a rule of thumb
in general terms. W e consider next the case when t 5 2s in
which we get detectability for free. This was first observed by
Russel and Rime [29] in the different context of system-level
diagnosis.

Lemma 4.1: Any s-error-locatable DC graph is also 2s-
error detectable.

Consider any nonempty set of data elements S of cardinality
at most 2s. W e need to show that some check is at 1 if
S is the set of data in error. One can always partition S
into nonintersecting sets Si and Sa such that the cardinalities
of both the sets is less than or equal to s. W ithout loss of
generality, let Si be nonempty. From the condit ions of s-error
locatability there must be a check, .z say, that must be 1 when
Si is the set of errors and must be 0 when Sa is the set of
errors. This means that check z is connected to exactly one
element in Si and no element in SZ. Clearly, z must be 1
when S is the set of errors since it is connected to exactly
one data element in S. Thus any set of at most 2s errors is
detectable. 0

From Lemma 4.1, we know that if t 5 2s, it is sufficient to
just design an s-error locatable graph using RANDGEN.

V. DESIGNING DC- GRAPHS FOR EASY DIAGNOSIS

W e have so far concerned ourselves with the quest ion of
how to design DC graphs for s-error detectability and s-error
locatability. Given that some data elements are in error, the
checks take on binary values 0 or 1. Following convention,
from now on we will refer to this binary vector of check
outputs as the syndrome. An s-error-locatable DC graph
assures us that no two distinct sets of errors in the data of
cardinality less than or equal to s can give rise to the same
syndrome. The problem of actually f inding the set of data in
error (or the set of processors that are faulty), given a particular
syndrome, is called diagnosis. Note that an s-error-locatable
DC graph does not necessari ly imply a simple and efficient
method for diagnosis. It simply assures us that given enough
time and/or hardware one can eventually d iagnose (locate) the
errors or faults.

A straightforward, but brute-force approach, for diagnosing
any syndrome in any s-error-locatable DC graph is to try all
possible sets of errors of cardinality 5 s and see which one
is consistent with the given syndrome. Consistency of a set of
errors with a syndrome is determined by checking that every
check with a 0 has either no error or more than one error in its
error set and every check with a 1 has one or more errors in its

error set. This, of course, requires us to try Ci<i<s n
-4 >

= i

O(n”) different sets. For each set, checking the consistency of
this set with the syndrome can be done in time proport ional
to the number of edges in the DC graph. This enumerat ive
approach of trying all possible sets is too t ime-consuming and
can be impractical even for moderate values of s. Al though
better results than this one are known [26], it seems quite
likely that no efficient nonenumerat ive algorithm to d iagnose
an arbitrary s-error-locatable DC graph exists. This is our
main motivation for designing DC graphs that are not only
s-error locatable but also allow easy diagnosis. In the next
subsection, we will p ropose a simple diagnosis algorithm and
show how we can use RANDGEN to generate DC graphs that
are not only s-error locatable but will also have the additional
property that this simple diagnosis algorithm can be used to
correctly locate errors in this graph.

A. Majority Diagnosis Algorithm

The majority diagnosis algorithm is a simple and intuitive
algorithm, as shown below.
Majority Diagnosis Algorithm
Given a syndrome, for every data element u E D do the
following.
Consider the set of all checks that are connected to data
element 71.
If the majority (greater than half) of these checks have a 1
then declare the data item to be erroneous.
If the majority of the checks have a 0 declare it to be error-free.

786 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 7, JULY 1993

f I CHECKS

CHECKS

DATA ELMENTS

Fig. 2. Necessary and sufficient conditions for s-majority diagnosability: For
every u E D and subset of the data elements S, ISI = s, I > 2J.

If the number of O’s equal the number of l’s, halt without
giving a diagnosis.4
End Algorithm

This algorithm is very fast and runs in time linear to its
input size, that is, in time proportional to the number of
vertices and edges in the DC graph. Note that no diagnosis
algorithm that has to look at the DC graph at least once before
making a diagnosis can be faster than the Majority Diagnosis
algorithm. In addition, each data element is decided-to be
erroneous or not independently of the others and, therefore, the
Majority Diagnosis algorithm can also be executed extremely
efficiently in parallel. However, this algorithm will not, of
course, diagnose correctly for any general s-error-locating
DC graph. The challenge would be to synthesize s-error-
locating DC graphs with the added property that this majority
algorithm can be used to diagnose correctly the errors. In
addition, could we do it without sacrificing the results of
Section IV, which are nearly asymptotically optimal? We
answer this question in the affirmative in Theorem 5.1 by
showing that only a constant factor overhead is needed to
accomplish this. We first define some concepts.

Definition 5.1: A DC graph is said to be s-majority di-
agnosable iff the Majority Diagnosis algorithm can correctly
locate any set of s or fewer errors from the syndrome.

Lemma 5.1: A DC graph is s-majority diagnosable iff for
ever u E D and S C D, ISI = s, the following is true: The
cardinality of the set of checks connected to u but not to any
data element in S - {u} is greater than the cardinality of the
set of checks which are simultaneously connected to u and
some nonempty subset of S - {u}.

Proof: Let I be the number of checks connected to the
data element u and J be the number of checks simultaneously
connected to u and some nonempty subset of S - {u}. The
pictorial representation of the conditions is shown in Fig. 2
when u $Z S. Note that the conditions imply that I - J > J,
that is, I > 2J. We first prove the necessity of the conditions.

Only if: Assume that we have an s-majority-
diagnosable graph. For contradiction, assume that there is a
set S c D of cardinality s and a data element u such that
the condition is not satisfied. In the proof below, we will
not consider the case when some data element has the same
number of checks with 0 as the number of checks with 1, since
in this case the diagnosis algorithm will fail anyway.

4This step is just a technical detail to keep the proofs simple. Our DC
graph construction method given later avoids this situation.

There are two possibilities. If u E S, then consider the
error pattern in which all data elements of 5’ are in error and
the remaining elements are error-free. Every check connected
to only u and no other element of S necessarily outputs 1.
The other checks connected to u could all output 0 since they
are connected to at least two erroneous data elements. If the
condition is not satisfied, the number of 0 checks connected
to u exceeds the 1 checks connected to u. Thus the majority
algorithm will falsely diagnose data element u as error-free
for this syndrome. This is a contradiction.

Now suppose u 6 S. Again consider the situation when
all the data elements in S are erroneous and the remaining
elements error-free. The checks connected only to u and
not to any element in S are necessarily 0. But the checks
simultaneously connected to u and to some nonempty subset
of S could all be 1 since they are connected to at least one data
element with error. If the condition is not satisfied, the number
of checks with output 1 connected to u exceeds the number
of checks with output 0 connected to u. Thus the majority
algorithm will wrongly diagnose u to be erroneous with this
syndrome. This is a contradiction.

If: Now we prove that if the conditions are met then
the DC graph is s-majority diagnosable. Suppose we are given
a set of errors T. Without loss of generality, we can assume
(TI = s. From the conditions, we know that the number of
checks connected to a data element u and not to any element
of T - {u} is greater than the number of checks simultaneously
connected to u and some nonempty subset of T - {u}. The
former set of checks always takes 1 or 0, depending on whether
u is in the set of errors T. Thus the majority of the checks
connected to ‘u, necessarily have values 1 or 0, respective1y.O

Example 5.1: To illustrate the concepts we give an example
of a l-majority diagnosable DC graph. Consider a set of 64
data elements arranged in a 4 x 4 x 4 cube. We associate a
check with the data elements in the same row either in the
x, y, or z coordinate axis. So there are a total of 48 checks,
and each data element is connected to three checks in each of
the three coordinate axes. Given any data element u and any
other data element ‘u, the number of checks connected to both
u and v is at most 1, that is, when ‘u, and v are in the same
row along either the x, y or the z axis. Since this is always
less than the number of checks connected just to u and not to
v, this arrangement is l-majority diagnosable.

We now show the distinction between majority diagnos-
ability and just error locatability. It can be seen that the
DC graph in this example is 2-error locatable. A quick way
to see this is to note that the following funny algorithm
always diagnoses up to two errors uniquely and correctly. For
each data element, compute the number of checks connected
to it that output a 1. Declare the data elements with the
maximum such nonzero number as erroneous and the rest
as error-free! However, the above example is not 2-majority
diagnosable. To see this, assume that the data elements in
positions (x, ~/,.a + 1) and (x, y + 1,~) are in error and
the others are error-free. Data element (x, y, z) will now be
connected to two checks at 1 and only one check at 0. The
majority diagnosis algorithm will incorrectly declare (x, y, Z)
to be in error!

SITARAMAN AND JHA: OPTIMAL DESIGN OF CHECKS FOR ERROR DETECI- ION 787

Note that an s-majori ty-diagnosable DC graph is automat-
ically s-error locatable since by Definition 5.1 the Majority
Diagnosis algorithm correctly and uniquely d iagnoses any set
of errors of cardinality s or less from the syndrome. Another
way to see this is to observe that the condit ions in Lemma
5.1 imply the sufficient condit ions for s-error locatability in
Theorem 4.2.

Before we prove the main theorem of this section, we need
a few lemmas from probability theory. Bounds of this nature
were first reported in [6]. The following General ized Chernoff
bounds are from [22]. Intuitively, these lemmas state that a
sum of independent Boolean random variables is very unlikely
to take values “far” from its mean. A special case of this result
we can all readily associate with is that the number of heads
in m independent coin tosses of a far coin tends to be close
to m/2.

Lemma 5.2: Let X1, X2, ’ . + , X, be independent Boolean
random variables with Prob(Xi = 1) = p and Prob(Xi =
O)=l-p.LetX=C r<;lrn Xi and S > 0. Then

Prob(X > (1+ b)P(X)) F ((1;;)1+6) p(x)

where p(X), the expected (or average) value of X, equals mp.
Lemma 5.3: Let X1, X2, . . ,X, be independent Boolean

random variables with Prob(Xi = 1) = p and Prob(X, =
O)=l-p.LetX=C ~<i<~Xi and 6 > 0. Then

Prob(X 5 (I- S)p(X)) < ((1 :;g’-“) cL(x)

where p(X), the expected (or average) value of X, equals mp.
Theorem 5.1: The algorithm RANDGEN, using c =

60.5(s2 + 2s) log n checks, s > 1, and p = 1/8s, produces
a DC graph that is s-majority d iagnosable with probability at
least 1 - (l/n).

Proof: W e need to show that all the condit ions of Lemma
5.1 are met with a high probability. As before, we try to show
that the probability that one of these condit ions is not met is
extremely small. Let the event Eu,s represent the event that
the condit ions are not met for u E D and S c D, JSI = s,
that is, that the cardinality of the set of checks connected to
u is less than or equal to twice the cardinality of the set of
checks connected simultaneously to u and some nonempty
subset of S - {u}. The probability that we get a bad DC
graph, that is, one that is not s-majority diagnosable, simply
equals Prob(U,,sE,,s), where u takes on all values in D and
S takes on all subsets of D of cardinality s.

Given a data element u E D and S c D, ISI = s, we bound
Prob(E,,s) as follows. W e will assume that u $ 5’. The case
when u E S is similar. Let I be the cardinality of the set of
checks connected to data element u. Let J be the cardinality
of the set of checks connected to data element u as well as
some nonempty subset of S - {u} (= S for this case). Note
that both I and J can be expressed as the sum of independent
binary random variables. I = Ci X;, where Xi is 1 if check
i is connected to u and 0 otherwise,

p(I) = P xxi = c PL(Xi) = PC. () i lsi<c

Similarly, J = C; Yi, where Yi is 1 if check i is simultaneously
connected to u and some nonempty subset of S and 0
otherwise. It can be seen that p(Yi) = p(1 - (1 - p)“). Thus

=p(l - (1 -P>“)c.

Now clearly5

Prob(E,,s = Prob(2J 2 I)
5 Prob(I 5 (1 - (Y)p(1))

+ Prob(2J 2 III > (1 - (Y)P(~))
5 Prob(1 5 (1 - o)p(I))

+ Prob(2J > (1 - a)~(l)) (4)

where QC is chosen to be 0.3968.’ Now we use Lemma 5.3 to
bound the first term in (4),

Prob(l < (1 - cr)p(I))

5 ((1 :;l-a)p(‘)

=e -{a+(l-a)[log(l-a)/ log e)]}pc

< e-o.09187pc
-

< e-0.01148(c/s)
7 forp = k

1 <- - nsf2 (5)

using c = 60.5(s2 + 2s) log n. Observe that for s > 1,

AI) -
@J) ,(,- (l1-;)s)

> 4.129. (6)
Now we use Lemma 5.2 to bound the second term in (4),

where

Prob(2J > (1 - (Y)~(I))

= Prob 2J > (’ i$f’) 2p(J))
(

2 Prob(J > (1 + 1.49)p(J))
p(J)

< e-0.7815(0.1175~c)

< e-o.01147(c/s) - , forp = &

&-
++2

using (6), the fact that p(J) > (1 - e--(1/8))pc and finally
substituting c = 60.5(s2 + 2s) log n.

5 In what follows, P~ob(EJF) denotes the condit ional probability of event
E given event F [ll].

6This number was chosen to optimize the bounds that follow.

788 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 7, JULY 1993

The proof of these bounds for Prob(E,,s) when u E S
is similar. Each event E,,s gives rise to two terms and there

n are n
0 S

events in all. Thus the probability of a bad DC

graph is

Prob(UE,,s) 5 2n 9 --& I 2n$--&
0

0

In the preceding theorem, we considered s-majority-
d iagnosable DC graphs for s > 1. A similar result can be
obtained easily for the case when s = 1. However, it should
be pointed out that we have already given a trivial and efficient
method at the beginning of Section IV for obtaining a l-error
locatable DC graph which also allows easy diagnosis to be
done.

W e can reduce the probability even further, as before, of
getting a bad DC graph to l/n” by using c = 60.5(s2 + ks +
s) log n checks.

VI. UNIFORM CHECKS

It has been noted in [28] that if all the checks have the same
error-detection capability and check the same number of data
elements then their design is simplified. Another advantage of
such uniform checks is that their hardware and time overheads
can also be uniform. Note that in DC graphs produced by
RANDGEN, two checks could possibly have different error
set cardinalities and hence not be uniformly identical. One
can easily modify RANDGEN to make it p roduce uniform
checks. In RANDGEN we randomly included a data element
in the error set of a check with some probability p. Instead,
for every check we now simply pick as its error set a random
subset of the data of a fixed cardinality leading to an algorithm
called UNIFGEN (UNIForm GENeration). This algorithm has
two parameters: c, the number of checks, and g, the cardinality
of the error set of the uniform checks. Similar to RANDGEN,
by simply varying its two parameters, UNIFGEN can generate
DC graphs with uniform checks having a variety of useful
properties. As we shall soon see, this fixed cardinality g must
be of the order of the mean cardinality of the error set of
the checks in the corresponding DC graphs produced by
RANDGEN.
UNIFGEN(c, g)
Let D be the set of data elements and C be the set of checks
such that]C] = c.
For every check, pick uniformly and at random a subset of the
data of cardinality g. This will be the error set of this check.
Do this for every check.
End UNIFGEN

W e first consider the problem of generat ing uniform checks
for s-error detection. W e will see that requiring “uniform”
checks costs us nothing; that is, UNIFGEN uses the same
number of checks as RANDGEN for generat ing s-error-
detectable DC graphs.

Theorem 6.1: The algorithm UNIFGEN, using c =
3.8s log n checks and g = n/s, produces an s-error-detectable
DC graph with probability at least 1 - [l/(n - l)].

Proof: The proof is similar to that of Theorem 3.2, and
notations from the proof of that theorem will be used here.
As before we need to show that the DC graph satisfies the
condit ions of Lemma 1.1, that is, every set S c D, JSJ 5 s,
has a check .z such that it is connected to exactly one element
of S. For any single set S, IS] = i < s, and a particular check
Z, we first evaluate the probability that z is not connected
to exactly one element of S. The total number of ways of

choosing the error set of check z is clearly

the number of subsets that contain exactly \
S is clearly Hence the probability that the check

is not connected to exactly one element of S is7

f n-i \

1 _ i \ (n/s) - 1)
n

(> n/s
=,-;(n-i)*

s (n - l)(+)-’

11-2 l- I
i-l

)
(n/s)--1

S n - (n/s) + 1

5 1 - 5 (1 - y-l

51-i.

This is the same as what we had earlier in (1). The rest of the
proof is similar to that of Theorem 3.2. 0

W e can, of course, reduce the probability of getting a
bad DC graph, that is, one that is not s-error detectable,
rapidly to less than or equal to l/(n”+’ - 1) by using
(3.8s + 1.9sk) log n checks, as before.

W e now turn to the problem of generat ing an s-error-
locatable DC graph with uniform checks. Unlike the case of
error detection, UNIFGEN does have an overhead of a small
constant factor in terms of the required number of checks when
compared with RANDGEN for this problem.

Theorem 6.2: The algorithm ~ UNIFGEN, using c =
(10.6~~ + 5.3s) log n checks and g = n/2s, produces an s-
error-locatable DC graph with probability at least 1 - (l/n),
when n _> 2.8s.

Proof: The proof is similar to that of Theorem 4.3 and
notations from the proof of that theorem will be used here.
W e need to show that the DC graph satisfies the condit ions
of Theorem 4.2. W e evaluate the probability that a particular
check does not satisfy the condit ions as follows. The total
number of ways of choosing a subset of size n/2s is clearly

The number of subsets that contain an element 21 but

no element from set S, IS] = 2s - 1, is clearly (:-“;)*
Thus the probability that a particular check does ‘n % satis/fy

‘zi denotes the ith falling power of 2, that is, z(z - 1). (z - i -I- 1).

SITARAMAN AND JHA: OPTIMAL DESIGN OF CHECKS FOR ERROR DETECTION 789

the condit ions of Theorem 4.2 is

1- (&&)
I \

n

() n/2s

= 1 _ + (n - 2s)o-1
2s (n - p/2+1

51-k l- (2s - 1 (n/2s)-1

n - (n/2s) + 1)

51-d 1-g
()

(n/29)-1

1
<l--

2se413 (9)
when n > 2.89. Compare this with what we had ear-
lier in (3). Now we cont inue in a manner similar to the
proof of Theorem 4.3. W e need to select c = (10.6~~ +
5.3s) log n > [4e4i3/log e)s2 + (2e4i3/log e)s] log n to
complete the proof. 0

As before, we can drastically reduce the probability of
getting a bad DC graph, that is, one that is not s-error
locatable, to less than or equal to l/n”+’ by using (10.6~~ +
5.3slc + 5.3s) log n checks.

VII. CHECK COMPUTATION FAILURES

In this section, we consider the more realistic case when
the dedicated processors comput ing the checks can themselves
fail. Note that only the processors doing data computat ions
are represented in P and the check-comput ing processors
are not represented in the PDC graph. In this section, we
will distinguish between the (actual) output value of a check
and the correct output value of a check. The correct output
value of a check is simply the output of the check, had the
check computat ion been error-free. The output of a check
could be different from its correct output due to faults in
the processors that compute it. One now needs to modify
the standard definition of a t-fault-detectable/locatable PDC
graph to incorporate this possibility.

Definition 7.1: A PDC graph is said to be strictly t-fault
detectable/locatable iff any set of at most t faults in the
processors in P can be detected/located in spite of at most
t faults in the check-comput ing processors.

How can we modify the various procedures for synthesizing
PDC graphs ment ioned in Section I under these stricter
assumpt ions? It is customary to add more processors when one
tries to make a nonfault tolerant computat ion fault tolerant.
For example, if our chosen architecture is a 2-D mesh of
processors, a natural approach would be to implement the fault
tolerant computat ion on a mesh that has one more row and
column than that required by the non-fault tolerant version.
That is, we would add 2m + 1 extra processors, where
IPI is the number of processors in the original non-fault
tolerant mesh computation. Note that the number of checks
necessary in our DC graph designs in Sections III-VI is small,
that is, it grows only as a logarithm of the number of data
elements. Therefore, in the case that we have a sufficiently

large number of extra processors, one could assign different
sets of 2t+ 1 processors to compute independent ly the different
checks and take the majority value as the output of any given
check. Clearly this (2t + l)-modular redundancy in the check
computat ions makes sure that check computat ions are always
correct as long as not more than t of the check-comput ing
processors fail. Since now the check computat ions are always
correct, we could use the old synthesis techniques outl ined in
Section I with the result that the synthesized system is strictly
t-fault detectable/locatable as specif ied in Definition 7.1.

In the event that we do not have as many as 2t + 1
extra processors for each check computation, we would have
to assume that each check is computed by a single unique
dedicated processor. Therefore, in our definitions for s-error
detectability or locatability of DC graphs we would have
to consider the possibility of the checks themselves being
erroneous. In this stricter sense, one could define a DC graph
to be strictly s-error detectablel locatable iff it can detect/ locate
any set of at most s errors in the data even if any set of
at most s check computat ions are erroneous. It is clear that
now if one is to use strictly s-error detectable/locatable graphs
in the PDC graph design procedures in place of simple s-
error detectable/locatable DC graphs, we would obtain PDC
graphs with the same amount of fault tolerance but in the
stricter sense of Definition 7.1.

In the rest of this section, we show how our results can
be extended easily by using RANDGEN to produce strictly
s-error-detectable, strictly s-error-locatable, as well as strictly
s-majori ty-diagnosable DC graphs.

A. Strict Error Detectability
In this subsection, we show how to construct strictly

s-error-detectable graphs.
Lemma 7.1: A DC graph is strictly s-error detectable iff

every possible nonempty set of errors in the data of cardinality
at most s makes at least 2s + 1 of the checks have their correct
outputs as 1.

Proof: If there is no error in the data then there can be
at most s checks that output 1, since at most s checks could
be erroneous. Therefore, if there are some, not more than s,
errors in the data, then at least 2s + 1 of the checks must have
their correct outputs as 1. Of these at most s checks can output
a 0 due to er roneous check computat ions. Therefore, there are
at least s + 1 checks that output a 1. Thus if there are < s
checks outputt ing a 1, then we can conclude that there is no
error in the data. Else there is some error in the data. cl

W e now show that RANDGEN can also produce strictly
s-error-detectable DC graphs.

Theorem 7.1: The algorithm RANDGEN, using parameter
c = 11.31s log n and p = l/s, p roduces a strictly s-error-
detectable DC graph with probability at least 1 - [l/(n - 1)],
for sufficiently large n.

Proof: The proof is similar to that of Theorem 3.2. W e
need to show that the DC graph satisfies the condit ions of
Lemma 7.1. As der ived in (l), for any single set S, ISI = i,
and a particular check z, the probability that z is not connected
to exactly one element of S is 5 1 - i(l/se). Let Es be the

790 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 7, JULY 1993

event that less than 2s + 1 checks are connected to exactly one
element in S, where S is any nonempty set of cardinality i.

Prob(Es)I c (c~j)(l-i~)c-i
l<j<2s

=l~2s(;)(1-i:)c-i
--

< c ~,41/4(4

l<j<2s --

< e-w4
c

(-+ee(w4
-

l<j52s

< e-(d4
c eiej

15j52s

< 2C2se2se-(ic/se)
-

(10)

using the fact that (cej) = (i) 5 cj bounding a

geometr ic series by twice the last term since ce > 2, choosing
c = 11.32s log n and assuming that log n 2 3s + s[(log s +
log log n)/2]. The calculations for the last condit ion are
tedious but straightforward and are given in the appendix. The
rest of the proof is the same as in Theorem 3.2. 0

It should also be noted that the condit ion in the preceding
proof that requires that n to be greater than some value can be
relaxed easily. The specific value of c and the corresponding
condit ion on n in the theorem are only meant to be typical
illustrations. One could always make the algorithm work for
smaller ranges of n by sufficiently increasing the constant
factor involved in c. Let c = Es log n and let the smallest
value in our range of interest for n be no. It is sufficient that
constant 2 be large enough such that the last inequality of (10)
holds true for every value of n in the range of interest. This
implies the following sufficient condit ion for the constant 2.
The calculations required to derive this equat ion are shown in
the appendix.

2 log e 2s log E ~-~
e log n0

2 2+
1+2slogs+2sloglognu+2sloge

log no
. (11)

It is possible to generate strictly s-error-detectable DC
graphs with uniform checks using UNIFGEN. A theorem
similar to Theorem 7.1 for UNIFGEN is stated next.

Theorem 7.2: The algorithm UNIFGEN, using parameter
c = 11.31s logn and g = n/s, produces a strictly s-error-
detectable DC graph with probability at least 1 - [l/(n - l)],
for sufficiently large n.

Proof: As der ived in (8), for any single set S, (S(= i,
and a particular check z, the probability that z is not connected
to exactly one element of S is 2 1 - i(l/se). The rest of the
proof is the same as that of Theorem 7.1. 0

B. Strict Error Locatability

W e now show how to construct strictly s-error-locatable
DC graphs.

Lemma 7.2: A DC graph is strictly s-error locatable iff
the following is true. Consider any pair of sets of errors of
cardinality at most s. There must be at least 2s + 1 checks
whose correct output values are necessari ly different for these
two sets of errors.

Proof: The condit ions imply that no two sets of errors of
cardinality at most s can produce the same output pattern at
the checks. This is so because at most s of the check values
for either set of errors could be erroneous. Therefore, at most
2s check outputs could be made to agree with one another due
to check computat ion errors. 0

As before, we next state sufficient condit ions for strict s-
error locatability, which will form the basis of a later theorem.

Theorem 7.3: For every S c D, I S(= 2s - 1, and for every
u E D,u # S, let there exist 2s + 1 checks, each of which
is connected to u but not to any member of S. Then the DC
graph is strictly s-error locatable.

Proof: The proof is similar to Theorem 4.2. Consider
any two distinct subsets of D, namely R and T, such that their
cardinalities are not more than s. Take any element u E R@T.
W ithout loss of generality, let v E R. Now by the condit ions,
there exist 2s + 1 checks, each of which is connected to v but
not to any element of R U T - {v}.This directly implies that
these checks have their correct outputs to be 1 when R is the
set of errors and 0 when T is the set of errors, that is, there
are 2s + 1 checks whose correct output values differ for R and
T. From Lemma 7.2, this implies that the DC graph is strictly
s-error locatable. cl

W e now show that RANDGEN can produce strictly s-error
locatable DC graphs.

Theorem 7.4: The algorithm RANDGEN, using c =
(15.2~~ + 3.8s) log n checks and p = 1/2s, produces a strictly
s-error-locatable DC graph with probability at least 1 - (l/n),
for sufficiently large n.

Proof: W e will attempt to show that the DC graph
satisfies the sufficient condit ions of Theorem 7.3 with high
probability. The proof is very similar to the proof of Theorem
4.3. Given a particular 21 E D and S C D, u $z’ S, (5’1 = 2s- 1,
let Eu,s be the event that no set of 2s + 1 checks satisfies
the condit ions of Theorem 7.3. As der ived earlier in (3),
the probability that a particular check does not satisfy the
condit ions is at most 1 - (1/2se). Note that if event E,,s
is true, then there must exist some set of c - 2s checks which
does not satisfy the sufficient condit ions of Theorem 7.3. This
gives us our first inequality below.

f’rob(&,s) 5 (c22s) (I- &)ce2s

=(;s)(1-&)c-2r

< C2se-(1/2se)(c-2s)

= c2sellee-w.9~)
1 <- - n2s+l (12)

SITARAMAN AND JHA: OPTIMAL DESIGN OF CHECKS FOR ERROR DETECTION 791

choosing c = (15.2~~ + 3.8s) log n and assuming that log n 2
4.6 + 2 log s + log log n. The calculations for the last condit ion
are similar to the calculations presented in the appendix for
Theorem 7.1. The rest of the proof is the same as in Theorem
4.3. q

As before, we can use the algorithm for smaller ranges
of n by increasing the constant involved in the value of
c such that the last inequality of (12) is satisfied. Let no
be the smallest value of n in our range of interest and let
c = (2s2 + 3.8s) logn. For our construction to work for all
values of n in our range of interest, it is sufficient to choose
constant t such that the following inequality is satisfied. The
calculations are similar in spirit to those presented in the
appendix for the previous subsection.

e 2 log(t + 3.8) --
3.8 log n0

>a+ 4 logs + 2 log log no + 0.54/s
log n0

(13)

It is possible to generate strictly s-error-locatable DC
graphs with uniform checks using UNIFGEN. A theorem
similar to Theorem 7.4 for UNIFGEN is stated next.

Theorem 7.5: The algorithm UNIFGEN, using c =
(21.3s2+5.31s) log n checks and p = 1/2s, produces a strictly
s-error-locatable DC graph with probability at least 1 - (l/n),
for sufficiently large 72.

Proof: Given a particular u E D and S c D, u $
S, ISI = 2s - 1, let Eu,s be the event that no set of 2s + 1
checks satisfies the condit ions of Theorem 7.3. As der ived
earlier in (9), the probability that a particular check does not
satisfy the condit ions is at most 1 - (1/2se413). The rest of the
proof is similar to the proof of Theorem 7.4. The condit ion on
n for the value of c chosen in the theorem is slightly different.
It is log n > 4.92 + 2 log s + log log 72. 0

C. Strict Majority Diagnosabil i ty

W e can also extend the notion of majority diagnosabil i ty
to the case when check computat ions themselves can become
erroneous. Intuitively, a DC graph is strictly s-majority di-
agnosable if one can apply the majority diagnosis algorithm
correctly to d iagnose s or fewer data errors even when s or
fewer check computat ions are erroneous.

Lemma 7.3: A DC graph is strictly s-majority d iagnosable
iff for every u E D and S c D, 15’1 = s, the following is
true: The cardinality of the set of checks connected to u but
not to any data element in S - {u} exceeds the cardinality of
the set of checks that are simultaneously connected to u and
some nonempty subset of S - {u} by at least 2s + 1.

Proof: The proof is similar to that of Lemma 5.1. The
margin of 2s + 1 makes sure that the correct majority decision
cannot be swayed by er roneous check computat ions. cl

Theorem 7.6: The algorithm RANDGEN, using c =
95(s2+2s) logn checks, s > 1, and p = 1/8s, produces a DC
graph that is strictly s-majority d iagnosable with probability
at least 1 - (l/n), for large enough values of n.

Proof: The proof is similar to that of Theorem 5.1.
As before, let the event Eu,s represent the event that the

condit ions of Lemma 7.3 are not met for u E D and
S c D, 15’1 = s. Given a data element u E D and an
S c D, IS/ = s, we bound Prob(E,,s) as follows. W e will
assume that u # S. The case when u E S is similar. Sets 1
and J are def ined as earlier.

Prob(E,,s) = Prob(2J + 2s + 1 > I)
5 Prob(1 2 (1 - cr)/L(I))

+ Prob(2J + 2s > I(1 > (1 - a)p(l))
< Prob(1 < (1 - a)/L(I))

+ Prob(2J + 2s > (1 - (Y)/&(I))
< Prob(1 5 (1 - 0)/L(I))

+ Prob(2J > (1 - Q)&I) - 2s) (14)

where Q is chosen as before to be 0.3968. The first term in
(14) can be bound as before to be at most l/nsf2. Noting that
~(1) = pc = c/8s and for s > 1

p(I) - (1 - a)-12s

GJ)

1 1.1532

z 2(1e (4) -log
2 4.0137 (15)

assuming that logn > 10.
As previously, we use Lemma 5.2 to bound the second term

in (14).

Prob(2J > (l- a)p(I) - 2s)

= Prob 2J > (1 - o)

p(I) - (1 - a)-12s
d2J) 24 J> >

5 Prob(J > (i+ 1.421)~(~))

(

e1.421

>

P(J)

’ (1 + 1.421)1+1.421
< e-o.7196(o.1175pc)
-

< e-0.010569(c/s) - > forp = &

From this it follows that the probability of getting a bad DC
graph, that is, one that is not s-majority diagnosable, is

fors > 1.

792

VIII. CONCLUSIONS

In this paper, we proposed a simple and efficient general-
purpose algorithm for generating arbitrary data-check (DC)
graphs with a small number of checks, which satisfy a variety
of properties that have been found to be useful in algorithm-
based fault tolerance (ABFT) designs. Although we have stated
the results in the context of ABFT, we feel that the techniques
and ideas used here will also be useful in the context of
other fault tolerance problems. We introduced the concept
of majority diagnosability in an attempt toward explicitly
designing DC graphs for easy diagnosis. We believe this to
be a good example of how one can simplify many issues by
simply restricting the space of possible designs. Of course, we
need to be sure that this does not increase the overhead of the
design too drastically and also that we have a good procedure
to construct such designs. We showed that RANDGEN served
our purpose on these counts. We also examined UNIFGEN,
a variation of RANDGEN, that produced DC graphs with
uniform checks.

Finally, our constructions were probabilistic and necessarily
have a small probability of not producing a DC graph with
the required properties. As noted earlier, one can decrease this
probability very rapidly by adding some extra checks. In fact,
in general, fixing the probability of getting a “bad” DC graph
that one is willing to tolerate, one can calculate what value
of c we need to use. It should be pointed out that even in
the extremely rare cases where one gets a bad DC graph, the
construct will still detect/locate most sets of s or fewer errors.

APPENDIX A
CALCULATION FOR CONDITIONS IN THEOREM 7.1

We need to show that the last inequality in (10) is true if
log n 2 3s + s[(log s + log log n)/2]. The last inequality is

2(3se2se-(iclse) 5 l/&

Taking logarithms on both sides and substituting for c, we have

1 + 2s log 11.31 + 2s log s + 2s log log n

+ 2sloge 5 i (11.3lslognloge
-210gn .

se >

Now since 1 5 i < s the preceding condition will be true for
all i if it is true for i = 1. Substituting i = 1 we have

1+ 2slog11.31+ 2slogs + 2sloglogn
+ 2sloge I (610gn - 2logn).

Now simplifying further, the preceding inequality is satisfied if

4 log n > 1 + 9.885s + 2s logs + 2s log log n.

Now 1 $- 9.885s 5 129, since s 2 1. Using this we know that
the preceding condition is satisfied if

logn > 3s+s(lw+ww) - 2 ’

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 7, JULY 1993

APPENDIX B
CALCULATION FOR DERIVING THE CONDITION

ON CONSTANT E IN SECTION VII-A

For the procedure to work for all n > no we need to show
that the last inequality in (10) is true if

?loge 2s log i: --~
e log no

12+
1+ 2slogs + 2sloglogno + 2sloge

log n0

where c = 2s log n. As before, taking logarithms on both sides
of the last inequality in (lo), substituting for c and setting i = 1
and n = no we get the following sufficient condition:

+ 2sloge 5
(

?loge
-1ogno - 2logno . e)

Dividing both sides by log no and rearranging the terms such
that all terms having i: appear in the left-hand side, we have
the required condition 2.

REFERENCES

[41

[61

t71

1131

1141

[151

PI

[171

J. A. Abraham er al., “Fault tolerance techniques for systolic arrays,”
IEEE Cornpurer, pp. 65-74, July 1987.
B. Bollobas, Random Graphs. New York: Academic Press, 1985.
P. Banerjee et al., “An evaluation of system-level fault tolerance on
the Intel hypercube multiprocessor, ” in Proc. Int. Symp. Fault Tolerant
Cornput., Tokyo, June 1988, pp. 362-367.
P. Banejee and J. A. Abraham, “Bounds on algorithm-based fault
tolerance in multiple processor systems,” IEEE Trans. Comput., vol.

C-35, pp. 296-306, Apr. 1986.
P. Banejee and J. A. Abraham, “A probabilistic model of algorithm-
based fault tolerance in array processors for real-time systems,” in Proc.
Real-Time Systems Symp., 1986, pp. 72-78.
H. Chemoff, “A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations,” Annals of Math. Stat., vol. 23,
pp. 493-509, 1952.
C-Y. Chen and J. A. Abraham, “Fault-tolerant systems for the computa-
tion of eieenvalues and sinnular values,” in Proc. SPIE Adv. Ala. Arch.
Signal P&c., vol. 696, pp.-228-237, Aug. 1986.
Y-H. Choi and M. Malek, “A fault tolerant FFT processor,” IEEE Trans.
Comput., vol. C-37, pp. 617-621, May 1988.
Y-H. Choi and M. Malek, “A fault tolerant systolic sorter,” IEEE Trans.
Comput., vol. C-37, pp. 621-624, May 1988.
P. Erdos and J. Snencer, The Probabilistic Method in Combinatorics.
New York: Acadehic Press, 1974.
W. Feller, An Introduction to Probability Theory and its Applications,
vol. I. New York: John Wiley, 1968.
D. Gu, D. J. Rose&ran&, and S. S. Ravi, “Design and analysis of test
schemes for algorithm-based fault tolerance,” in Proc. Int. Symp. Fault
Tolerant Comput., Newcastle-upon-Tyne, U.K., June 1990, pp. 106-113.
K-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Cornput., vol. C-33, pp. 518-528, June
1984.
J-Y. Jou and J. A. Abraham, “Fault tolerant matrix arithmetic and signal
orocessine. on highly concurrent computing structures,” Proc. IEEE, vol.
?4, pp. 732-74; May 1986. . -
J-Y. Jou and J. A. Abraham, “Fault tolerant FFT networks,” IEEE Trans.
Comput., vol. C-37, pp. 548-561, May 1988.
F. T. Luk. “Algorithm-based fault tolerance for parallel matrix equations
solvers,” in Proc. SPIE Real Time Signal Proc:, vol. 564, Aug. 1985,
pp. 49-53.
F. T. Luk and H. Park, “An analysis of algorithm-based fault tolerance
techniques,” in Proc. SPIE Adv. Alg. Arch. Signal Proc., vol. 696, pp.
222-228, Aug. 1986.

SITARAMAN AND JHA: OPTIMAL DESIGN OF CHECKS FOR ERROR DETECTION JO3

IIS1

[I91

[201

12’1

PI

[231

~241

WI

PI

[271

WI

1291

[301

F. T. Luk and H. Park, “Fault tolerant matrix triangularizations on
systolic arrays,” IEEE Trans. Comput., vol. C-37, pp. 1434-1438, Nov.
1988.
V. S. S. Nair and .I. A. Abraham, “A model for the analysis of fault
tolerant signal processing architectures,” m Proc. 32nd Int. Tech. Symp.
SPIE, San Diego, Aug. 1988, pp. 246-257.
V. S. S. Nair and .I. A. Abraham, “A model for the analysis, design and
comparison of fault-tolerant WSl architectures,” in Proc. Workshop on
Wafer SC& Integration, Como, Italy, June 1989.
V. S. S. Nair and J. A. Abraham, “Hierarchical design and analysis of
fault-tolerant multiprocessor systems using concurrent error detection,”
in Proc. Ittt. Symp. Fault Tolerant Comput., Newcastle-upon-Tyne, U.K.,
June 1990, pp. 13@137.
P. Raghavan, Lecture notes on randomized algorithms, IBM Tech. Rep.
RC15340. T. J. Watson Research Center, Yorktown Heights, NY, Jan.
1990, pp. 51-55.
A. L. N. Keddy and P. Banerjee, “Algori thm-based fault detection for
signal processing applications,” IEEE Trans. Comput., vol. C-39, pp.
1304-1308, Oct. 1990.
D. J. Rosenkrantz and S. S. Ravi, “Improved upper bounds for algorithm-
based fault tolerance,” in Proc. 26th Allerton Conf: Comm. Cont. Com-
put., Allerton, IL, Sept. 1988, pp. 3888397.
D. L. Tao, C. R. P. Hartmann, and Y. S. Chen, “A novel concurrent error
detection scheme for FFT networks,” in Proc. Int. Symp. Fault Tolerant
Cornput., Newcastle-upon-Tyne, U.K., June 1990, pp. 114-121.
B. Vinnakota and N. K. Jha, “Diagnosabil i ty and diagnosis of algorithm-
based fault tolerant systems,” accepted for publication in IEEE Trans.
Comput.
B. Vinnakota and N. K. Jha, “A dependence graph-based approach to
the design of algori thm-based fault tolerant systems,” in Proc. Int. Symp.
Fault Tolerant Cornput., Newcastle-upon-Tyne, U.K., June 1990, pp.
122-129.
B. Vinnakota and N. K. Jha, “Design of multiprocessor systems for
concurrent error detection and fault diagnosis,” in Proc. Int. Symp. Fault
Tolerant Cornput., Montreal, June 1991.
J. D. Russel and C. R. Kime, “System fault diagnosis: Closure and
diagnosabil i ty with repair,” IEEE Trans. Cornput., vol. C-24, pp.
1078-1089, Nov. lY75.
S-J. W a n g and N. K. Jha, “Algori thm-based fault tolerance for FFT
networks,” in Proc. Int. Symp. CircuitsSy.stemr, San Diego, May 1992.

. etectrtcat engmeermg and computer science at the Universtty ot Mtchtgan,
Ann Arbor. He has served as the Program Chairman of the 1992 Workshop
on Fault-Tolerant Parallel and Distributed Systems. He has also scrvcd on
the program committees of the IEEE International Conference on Computer
Design, the IEEE International Symposium on Fault-Tolerant Computing, the
IEEE International Symposium on Circuits and Systems, and the International
Conference on VLSI Design. He has coauthored a book titled Testing and
Reliable Design of CMOS Circuits (Kluwer Academic Publishers). He has
authored or coauthored more than 80 technical papers. His research interests
include digital system testing, fault-tolerant computing, computer-aided design
of integrated circuits and parallel processing.

Ramesh K. Sitaraman received the B.Tech. degree
in electrical engineering from the Indian Institute of
Technologv. Madras. India. in 1985, and the M.S.
degree in-computer science from the University of
Maryland, Col lege Park. Since 1988 he has been
working on his Ph.D. thesis in the Computer Science
Department at Princeton University.

His research interests include fault tolerance in
multiprocessor systems, performance analysis of
packet routing algorithms, theoretical computer sci-
ence, and pattern recognition.

Niraj K. Jha (S’85-M’86-SM’Y3) received the
B.Tech. degree in electronics and electrical com-
municat ion engineering from the Indian Institute of
Technology, Kharagpur, India, in 198 I, the MS.
degree in electrical engineering from S.U.N.Y. at
Stony Brook, NY, in 1982, and the Ph.D. degree
in electrical engineering from the University of
Illinois, Urbana, in 1985.

He is currently an Associate Professor of elec-
trical engineering at Princeton University. From
1985 to 1987 he was an Assistant Professor of

He is the recipient of the AT&T special-purpose grant award and the NEC
Preceptorship award.

