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Abstract. This paper examines several simple algorithms for routing packets on butterfly
networks with bounded queues. We show that for any greedy queuing protocol, a routing problem
in which each of the N inputs sends a packet to a randomly chosen output requires O(logN) steps,
with high probability, provided that the queue size is a sufficiently large, but fixed, constant. We
also show that for any deterministic nonpredictive queuing protocol, there exists a permutation
that requires Ω(N/q logN) time to route, where q is the maximum queue size. We present a new
algorithm for routing logN packets from each input to randomly chosen outputs on a butterfly with
bounded-size queues in O(logN) steps, with high probability. The algorithm is simpler than the
previous algorithms of Ranade and Pippenger because it does not use ghost messages, it does not
compare the ranks or destinations of packets as they pass through switches, and it cannot deadlock.
Finally, using Valiant’s idea of random intermediate destinations, we generalize a result of Koch’s by
showing that if each wire can support q messages, then for any permutation, the expected number of
messages that succeed in locking down paths from their origins to their destinations in back-to-back
butterflies is Ω(N/(logN)1/q). The analysis also applies to store-and-forward algorithms that drop
packets if they attempt to enter full queues.
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1. Introduction. Many commercial and experimental parallel computers, in-
cluding the NYU Ultracomputer [9], the IBM RP3 [19], the BBN Butterfly [5], and
NEC’s Cenju [18], use butterfly networks to route packets between processors. Several
proposed designs for the switching fabric of scalable high-speed ATM networks use
butterfly and other closely related multistage interconnection networks [26]. Although
many routing algorithms with provably good performance have been devised for but-
terfly networks [2, 15, 20, 23, 24, 31, 32, 33, 34], simpler algorithms are often used in
practice. Typically, packets are sent along shortest paths through the network, and
simple queuing protocols such as first-in first-out (FIFO) are used to determine which
packets to transmit at each step. In addition, the queues at the switches can usually
hold only a small number of packets. The performance of these simple algorithms
has proven surprisingly difficult to analyze. For example, the only previously known
upper bound on the expected time required for each input of an N -input butterfly
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Fig. 1.1. An 8-input butterfly network.

network with constant-size FIFO queues to route a packet to a random destination
was O(N). In this paper, we show that the routing time is actually O(logN), with
high probability. We also analyze the performance of several other simple algorithms
for routing on butterflies with bounded queues.

1.1. Butterfly networks. An example of an N -input butterfly (N = 8) with
depth logN (logN = 3) is shown in Figure 1.1. All logarithms in this paper are base
2. The edges of the butterfly are directed from the node in the smaller numbered
level to the node in the larger numbered level. The nodes in this directed graph
represent switches, and the edges represent communication links. We use the terms
node and switch interchangeably in the rest of the paper. Each node in a butterfly
has a label 〈l, c0 · · · clogN−1〉, where the level, l, ranges from 0 to logN , and the row,
c0 · · · clogN−1, is a logN -bit binary string. The switches on level 0 are called inputs,
and those on level logN are called outputs. For l < logN , node 〈l, c0 · · · cl · · · clogN−1〉
is connected to node 〈l + 1, c0 · · · cl · · · clogN−1〉 by a straight edge, and to node 〈l +
1, c0 · · · cl · · · clogN−1〉 by a cross edge. (The notation cl denotes the complement of
bit cl.) At each time step, each switch is permitted to transmit one packet along each
of its outgoing edges.

In a butterfly network, packets are typically sent from the inputs on level 0 to the
outputs on level logN . One of the nice properties of the butterfly is that there is a
unique path of length logN between any input and any output, and there is a simple
rule for finding that path. In particular, when a packet with origin 〈0, a0 · · · alogN−1〉
and destination 〈logN, d0 · · · dlogN−1〉 reaches level l, it passes through the node
labeled 〈l, d0 · · · dl−1al · · · alogN−1〉. If dl = al, then it takes the straight edge to
〈l+ 1, d0 · · · dlal+1 · · · alogN−1〉. Otherwise, if dl 6= al, then the packet takes the cross
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edge from 〈l, d0 · · · dl−1al · · · alogN−1〉 to 〈l + 1, d0 · · · dl−1dl · · · alogN−1〉. This path
selection algorithm is called source oblivious [6] because, at each node, the next edge
taken by a packet depends only on its current location and its destination, and not
on its source, or on the locations or paths taken by any of the other packets. All of
the routing algorithms discussed in this paper are source oblivious.

1.2. Queuing protocols. This paper studies two broad classes of queuing pro-
tocols: greedy protocols and nonpredictive protocols. In a greedy queuing protocol, at
each step, each switch with one or more packets in its queue selects a packet and then
sends it to the next level, unless the queue that the packet wishes to enter is already
full. A switch is not prohibited from sending more than one packet at each step, pro-
vided that they use different edges. Nonpredictive protocols are a subclass of greedy
protocols. In a nonpredictive queuing protocol [13, section 3.4.4], [23], at each step,
each switch selects one packet from its queue without examining the destinations of
any of the packets in its queue, and sends the packet to the next level, unless the queue
that it wishes to enter is full. If the queue is full, then the switch must select the same
packet at the next step. The switch is not permitted to examine the destinations of
any other packets until the selected packet has been successfully transmitted. Many
easily implementable as well as conceptually simple queuing protocols like FIFO and
fixed-priority scheduling are nonpredictive.

1.3. Previous work. A number of different routing problems have been studied
on butterfly networks. If each input of an N -input butterfly sends a single packet, we
say that the network is lightly loaded. A specific type of routing problem of interest
is the permutation routing problem. In a permutation routing problem, each input
of the butterfly sends exactly one packet to some output of the butterfly and each
output receives exactly one packet from some input of the butterfly. If each input of
an N -input butterfly sends logN packets, we say that the network is fully loaded.

The first important butterfly routing algorithm is due to Batcher [4], who showed
that an N -input butterfly network can sort, and hence route, any permutation of
N -packets in O(log2N) steps.

The next breakthrough came more than a decade later when Valiant [32] and
Valiant and Brebner [34] observed that any permutation routing problem can be
transformed into two random problems by routing the packets first to random inter-
mediate destinations and then on to their true destinations. He also showed that an
N -node hypercube (or N -input butterfly) can route N packets to random destinations
(or from random origins) in O(logN) time using queues of size O(logN), with high
probability. As a consequence, the hypercube or butterfly can route any permutation
in O(logN) time, with high probability.

Valiant’s result was improved in a succession of papers by Aleliunas [2], Upfal
[31], Pippenger [20], Ranade [24], and Leighton et al. [14]. All of these papers use
Valiant’s idea of first routing to random intermediate destinations. Aleliunas and
Upfal increased the number of packets that can be routed in O(logN) time. They
developed the notion of a delay path and showed how to route N packets in any permu-
tation on an N -node shuffle-exchange graph and N logN packets in any permutation
on an N -input butterfly network, respectively, in O(logN) steps, using queues of size
O(logN). Pippenger devised an ingenious algorithm for routing with bounded size
queues. He showed how to route N logN packets in any permutation on a variant
of the butterfly in O(logN) steps with queues of size O(1). Finally, Ranade devel-
oped a simpler algorithm for routing with bounded queues that could also efficiently
combine multiple packets with the same destination. As a consequence of Ranade’s al-
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gorithm, it is possible to simulate one step of an N logN -processor CRCW PRAM on
an N -input butterfly in O(logN) steps. Neither Pippenger’s algorithm nor Ranade’s
algorithm are greedy.

Stamoulis and Tsitsiklis [27] consider the problem of dynamic routing in but-
terflies and hypercubes with unbounded queues. Unlike the static routing problems
that we have seen so far, they assume that the packets with random destinations are
generated at each input according to a Poisson process. They show that if the load
factor on the network is less than one, then the network is stable in the steady state;
the average delay is O(logN), and the average queue size is O(1).

Recently, Broder, Frieze, and Upfal [7] have addressed the problem of dynamic
routing in butterfly and other networks with constant-size queues. They develop
a powerful method to reduce the steady state analysis of dynamic routing to the
better understood problem of static routing analysis. They extend the results of
section 2 to the dynamic setting, to provide a greedy algorithm that routes packets in
expected O(logN) time on an N -node butterfly with constant-size buffers, assuming
that packets with random destinations arrive at each input with expected interarrival
time Ω(logN). Further, they extend the results of section 4 to provide an algorithm
that routes packets in expected O(logN) time on an N -node butterfly with constant-
size buffers, assuming that packets with random destinations arrive at each input with
expected interarrival time greater than some absolute constant.

Although the performance of greedy algorithms in butterflies with bounded queues
has proven difficult to analyze, attempts have been made to approximately model
[29, 17] or empirically determine [30] their performance.

Finally, there have been several papers that analyze algorithms that drop packets
when there is contention. The BBN Butterfly algorithm has been studied by Kruskal
and Snir [12] and Koch [11]. Koch showed that for a random problem the number of
packets that succeed in locking down paths from their origins to their destinations in

an N -input butterfly is Θ(N/ log
1
q N), with high probability, where q is the maximum

number of packets that any wire can support.
The results presented for the BBN Butterfly algorithm also hold when packets

are routed in a store-and-forward fashion, with each switch having a buffer of size
q, and all packets attempting to enter a full buffer are dropped. Recently, there has
been progress in extending these results to the dynamic case, where packets arrive at
each input with a certain interarrival distribution. Rehrmann et al. [25] show that
if one packet arrives at each input of an N -input butterfly at every time step, and
each switch has a buffer of size 1 at each incoming edge, then the expected network
throughput is Θ(N/

√
logN) packets per time step.

1.4. Our results. In section 2 we show that for any greedy queuing protocol,
routing a random problem on a lightly loaded N -input butterfly requires O(logN)
steps, with high probability, provided that the queue size is a sufficiently large fixed
constant. Previously, only the trivial upper bound of O(N) was known. An intriguing
problem left open in this section is to bound the number of steps taken by a greedy
queuing protocol when the butterfly is fully loaded.

In section 3 we show that for any deterministic nonpredictive queuing protocol,
there exists a one-to-one routing problem (permutation) that requires Ω(N/q logN)
time to route, where q is the maximum queue size. Previously, no lower bound
greater than Ω(

√
N) was known. The Ω(

√
N) bound is based on the congestion and

is independent of the way the packets are scheduled. This section shows that greater
delays can occur due to the way packets interact in the network.
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Section 4 presents a simple, but nongreedy, algorithm for routing a random prob-
lem on a fully loaded N -input butterfly with bounded-size queues in O(logN) steps,
with high probability. The algorithm is simpler than the previous algorithms of Ra-
nade and Pippenger because it does not use ghost messages, it does not compare the
ranks or destinations of packets as they pass through switches, and it cannot deadlock.

Finally, in section 5 we analyze routing algorithms that drop packets when there
is contention. Examples of machines that drop packets are NEC’s ATOM switch [28]
and the BBN Butterfly [5]. The BBN Butterfly algorithm has been studied by Kruskal
and Snir [12] and Koch [11]. Koch showed that for a random problem the number of
packets that succeed in locking down paths from their origins to their destinations is

Θ(N/ log
1
q N), with high probability, where q is the maximum number of packets that

any wire can support. By routing the packets to randomly (but not independently)
chosen intermediate destinations, we show that for any fixed permutation the expected

number of packets that reach their destinations is Ω(N/ log
1
q N).

2. Greedy queuing protocols. In this section, we study the performance of
greedy queuing protocols. In section 2.1, we analyze the average case behavior of
any routing algorithm with a greedy queuing protocol. We show that if every input
sends a packet to a randomly chosen output, then the time required for all of the
packets to reach their destinations is O(logN), with high probability. In section 2.2,
we show how any specific permutation routing problem on the butterfly can be routed
in O(logN) steps using Valiant’s idea of splitting a routing problem into two random
routing problems.

2.1. Average case behavior. We first define a few terms. A delay tree is a
rooted tree that is a subgraph of the butterfly. Its root is a level 0 node and the
tree contains a (directed) path, which we call the spine, from the root to a node in
level logN of the butterfly. The tree “grows out” from the spine so that there is a
unique directed path in the tree from the root to each node in the tree. A full node
is defined to be a node through which the paths of at least q packets pass, where q is
the maximum size of the queue in each node. Note that in the course of the routing,
a full node may never have a full queue since the packets could arrive at different
times. However a nonfull node can never have a full queue. A full delay tree is a
delay tree for which every node of the tree that is not on the spine is a full node. A
maximal full delay tree is a full delay tree that is not properly contained in any other
full delay tree. The number of packets on a delay tree is defined to be the sum over
all nodes of the tree of the total number of packets passing through each node. Note
that this number is different from the number of distinct packets on a delay tree. In
the former, if a particular packet hits (i.e., passes through) many nodes of a tree it
is counted many times in the sum. The significance of the above definitions becomes
clear in Theorem 2.1 below.

Theorem 2.1. The maximum delay of any packet is less than or equal to the
maximum number of packets on a full delay tree.

Proof. Let the path of some packet p, from its source to destination, be denoted
by P . Now consider the maximal full delay tree with the path P as its spine and the
source of the packet p as its root. We will refer to this maximal full delay tree as
the maximal full delay tree of packet p. We will bound the delay of p by the number
of packets on its maximal full delay tree. Since the tree is maximal, every nontree
node that is a neighbor of a tree node is not a full node. We will now show that at
each time step t until packet p reaches its destination, some packet in its maximal full
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delay tree moves. At every time step t there are three cases.
(a) The packet p moves.
(b) Some other packet queued at the same node as p moves.
(c) No packet queued at the same node as p moves.

In the first two cases, it is evident that some packet in the tree moves. Since the
queuing protocol is greedy, case (c) necessarily means that the packet selected to be
sent at time step t by the node that contains p could not move because the queue in
the node n at the next level that it wanted to enter was full. Note that node n belongs
to the maximal full delay tree since it has at least q packets passing through it. Now
if some packet in node n moved at time step t we are done. If not we look at the
packet selected by node n and repeat the argument again. Note that case (c) cannot
apply at the leaves of a tree since it does not have any neighbors with full queues. So
we must encounter either case (a) or (b) before we leave the tree. Therefore the delay
of packet p is at most the number of packets on its maximal full delay tree. Thus the
maximum delay of any packet is at most the maximum of the number of packets on
a full delay tree.

We will use the following property of the butterfly network in the proofs in this
section.

Observation 2.2. A packet can enter a delay tree contained in the butterfly at
exactly one point, and once the packet leaves the tree it can never return to it.

We state without proof a result due to Hoeffding [10] and a Chernoff-type bound
[3] and [21, p. 56].

Lemma 2.3 (Hoeffding). Let X be the number of successes in r independent
Bernoulli trials where the probability of success in the ith trial is pi. Let S be the
number of successes in r independent Bernoulli trials where the probability of success
in each trial is p = 1

r

∑
1≤i≤r pi. Then E(X) = E(S) = rp, and for α such that

αE(S) ≥ E(S) + 1,

Pr[X ≥ αE(X)] ≤ Pr[S ≥ αE(S)].

Lemma 2.4. Let S be the number of successes in r independent Bernoulli trials
where each trial has probability p. The E(S) = rp, and for α > 2e,

Pr[S ≥ αE(S)] ≤ 2−αE(S).

Theorem 2.5. Let constant q be the maximum queue size. Then the maximum
delay of any packet is at most γ logN with probability at least 1 − 1

N for sufficiently
large but constant γ and q.

Proof. We will show that if there is a packet with large delay, then there must be
a delay tree with a large number of packets on it, which in turn we will show to be an
unlikely event. Assume that some packet p has a delay of γ logN or more. Consider
the maximal full delay tree of this packet. Let D denote the number of packets on the
maximal full delay tree of p. By Theorem 2.1, we know that D ≥ γ logN . Also since
every nonspine node of this delay tree is necessarily a full node, the maximum number
of nodes of this maximal full delay tree is at most D

q + logN . Let n be a node on any
level l of the butterfly. The average number of packets passing through n is 1, because
there are 2l possible packets that can pass through n and each of these packets has a
probability of 2−l of passing through it. Therefore, the expected number of packets
on the delay tree of p is at most D

q + logN . The gist of the remainder of the proof is
to show that the number of packets on a delay tree is clustered around its expected
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value. Therefore, a delay tree is unlikely to have D packets on it for sufficiently large
constants q and γ.

The number of hits made by a packet on a delay tree is the number of nodes of
the tree through which the packet passes. Let us divide the hits on a delay tree into
two types: b-hits (for big hits), which are hits made by packets that make at least c
hits on the tree, and s-hits (for small hits), which are hits made by packets that make
fewer than c hits on the tree, where c is some constant. It must be the case that either
the total number of b-hits on some delay tree is greater than or equal to D

2 (call this
event Eb) or the total number of s-hits on some delay tree is greater than or equal to
D
2 . The latter possibility also implies that there are at least D

2(c−1) distinct packets

hitting some delay tree (call this event Es), since each packet making s-hits can make
at most c− 1 hits on the tree. Thus, the probability that some packet has delay d is
at most Pr(Eb) + Pr(Es).

The intuitive reason as to why b-hits are unlikely is as follows. If you imagine
packets running backward in time from destination to source, once a packet enters
the tree, it can remain in the tree at the next step only if it takes the unique edge
to its ancestor in the tree. So, at every step, it has approximately a probability of
1
2 of making another hit. This exponentially decreasing probability for making more
and more hits gives us the bound. Thus, this bound uses the tree structure in a
crucial way. The bound we will prove for Es, on the other hand, is valid for any set
of D

q + logN nodes.

Bounding the big hits. Let us suppose that event Eb occurs; i.e., there exists
a delay tree of size at most D

q + logN with a total of at least D
2 b-hits. To bound

the probability of this event we will enumerate all the possible ways it can happen.
The maximum value that D can take is N logN , since each packet can contribute at
most logN hits and there are a total of N packets. Therefore, the number of ways of
choosing D is at most N logN . The number of ways of choosing the root for the delay
tree is N . A binary tree of size at most D

q +logN can be represented by indicating the

number of children (no children, left son only, right son only, both sons) in breadth-
first-search order. Thus the total number of ways of choosing the delay tree is at most

N4
D
q +logN . The number of different packets causing these b-hits is at most D

c , since
each packet causes at least c hits and there are a total of at most D hits on the tree.
Let us assume that there is some arbitrary fixed ordering of the nodes in the tree,
e.g., the breadth-first-search ordering of the tree. We will now pick a nondecreasing
sequence (with respect to our ordering) of D

c nodes in the tree, n1, n2, . . . , nD
c

. Note

that each node of the tree can occur more than once in this sequence. Node ni is the
last node on the tree through which the ith packet passed. The number of ways of
choosing this sequence is at most( D

q + logN + D
c

D
c

)
=

(
D
q + logN + D

c
D
q + logN

)
.

Let node ni of the sequence be at level li of the butterfly. For every ni, we now
associate a nonnegative integer hi denoting the number of hits made by a packet pi
before leaving node ni. The number of ways of distributing at most D hits over D

c
elements of the sequence is at most(

D + D
c

D
c

)
.
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We can ignore any ni with hi = 0 in this. Since the packet pi must have made
exactly hi hits before leaving the tree at ni, the number of choices for pi is 2li−hi .
Here we have used Observation 2.2. The total number of ways of choosing packets
for all elements in the sequence is at most

∏
i 2li−hi . (We are overcounting a little

since packets have to be distinct.) Now, we have chosen a particular tree, a sequence
of nodes ni, and the associated packets pi. The probability that all the packets pi
pass through their corresponding nodes ni is simply the product of the probabilities
that each individual packet pi passes through node ni which equals

∏
i 2−li . (We can

multiply probabilities because each packet chooses its path independently.) Putting
it all together, we have

Pr(Eb) ≤ N logN ·N4
D
q +logN ·

(
D
q + logN + D

c
D
q + logN

)

·
(
D + D

c
D
c

)
·
∏
i

2li−hi ·
∏
i

2−li

≤ N522Dq ·
(

(Dq + logN + D
c )e

D
q + logN

)D
q +logN

·
(

(D + D
c )e

D
c

)D
c

· 2−
∑

i
hi

≤ 25Dγ · 22Dq ·
((

1 +
q

c

)
e
)D
q +D

γ · 2log((c+1)e)Dc · 2−D2(2.1)

using the inequality
(
x
y

) ≤ xy/y! to bound the combinatorial coefficients and using the

fact that D ≥ γ logN and
∑
i hi ≥ D

2 . Note that the multiple of D in the exponent
of the first four factors decreases with an increase in the values of c, q, and γ. So for
some suitably large values for the constants c, q, and γ the expression in (2.1) is at
most 2−kD for some constant k > 0. We can use the fact that D ≥ γ logN to bound
the value of this expression (and hence Pr(Eb)) to be at most

2−kD ≤ 2−kγ logN =
1

Nkγ
≤ 1

2N

as long as the value of γ is chosen to be at least 2/k.

Bounding the small hits. Let us suppose event Es occurs; i.e., there is a tree
of size at most D

q + logN with at least D
2(c−1) different packets hitting the tree for

some value of D ≥ γ logN . The number of ways of choosing a value for D is at most

N logN . The number of ways of choosing such a tree is at most N4
D
q +logN . Let X

denote the total number of distinct packets hitting a tree of size at most D
q + logN .

X is a sum of N Boolean random variables, Xi, 1 ≤ i ≤ N . Each Xi is 1 if the packet
originating at input i hits the tree and 0 otherwise. The expected number of distinct
packets on the tree is at most the expected number of packets on the tree. Therefore,
E(X) ≤ D

q + logN . Using Lemmas 2.3 and 2.4 to derive the second inequality, we
have

Pr(Es) ≤ N logN ·N4
D
q +logN · Pr

(
X ≥ D

2(c− 1)

)
≤ N logN ·N4

D
q +logN · 2− D

2(c−1)(2.2)
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as long as α =
D

2(c−1)

E(X) > 2e. Using the fact that D ≥ γ logN , we have

α ≥
D

2(c−1)

D
q + logN

≥ qγ

2(c− 1)(q + γ)
.(2.3)

Let c0, q0, and γ0 be values of c, q, and γ, respectively, for which Pr(Eb) was
shown to be at most 1

2N . We choose the values of c, q, and γ such that both Pr(Eb)
and Pr(Es) are at most 1

2N as follows. First we choose c = c0. Next we choose
constants q and γ such that q = γ. Let τ denote the value of q and γ. We choose τ
such that τ ≥ max(q0, γ0). We make α > 2e by choosing τ large enough such that
the right-hand side of (2.3) which equals τ/4(c− 1) is greater than 2e. Furthermore,
τ is chosen large enough such that

4
D
q · 2− D

2(c−1) = 4
D
τ · 2− D

2(c−1) ≤ 2−j
D
c−1

for some constant j > 0. Since D ≥ γ logN ,

2−j
D
c−1 ≤ 2−j

γ logN
c−1 = 2−j

τ logN
c−1 .

Finally, the value of τ is made large enough such that

Pr(Es) ≤ N logN ·N4logN · 2−j τ logN
c−1 ≤ 1

2N
.

Note that since c = c0 and q = γ = τ ≥ max(q0, γ0), Pr(Eb) is at most 1
2N for the

chosen values of c, q, and γ. It now follows that the probability that a packet has
delay greater than γ logN is at most 1

2N + 1
2N , which equals 1

N .

2.2. Routing a fixed permutation. The results of section 2.1 deal with the
routing delay of an average routing problem. What can we say about routing a fixed
permutation? We can show that we can route any fixed permutation in O(logN)
steps with high probability using Valiant’s idea of routing in two phases. In Phase A,
each packet is routed from its source in level 0 to a random intermediate destination
in level logN . For simplicity, we will assume that the butterfly network has wrap-
around; i.e., each node in level logN is identified with the node in level 0 in its row.
The packets are queued up at the end of Phase A, and in Phase B each packet is
routed to its actual destination.

Theorem 2.6. Any fixed permutation can be routed such that the delay is
O(logN) with probability ≥ 1− 2

N .
Proof. Phase A is precisely the same problem as that studied in section 2.1. In

Phase B, each packet is routed from its intermediate destination to its final destina-
tion. For convenience, we will denote the level of its final destination as 0 and that of
the intermediate destination as level logN . This phase is different from the one we
studied in section 2.1 in that the starting points are random while the destinations
are fixed. But the same proofs for the delay will work with small modifications. It is
perhaps best to imagine the packets running backward from level 0 (final destinations)
to random nodes in level logN (intermediate destinations). In the proof for bounding
the b-hits, the sequence ni will now represent switches through which packets that
hit the tree entered the tree (running backward in time). The number of ways of
associating a packet with ni in level li is 2li . The probability that the packet makes
hi hits is now 2−(li+hi), since it must leave the tree at the unique ancestor of ni in
level li − hi + 1. The rest of the calculation is the same as before. The proof for
bounding the s-hits is identical.
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3. Difficult permutations. In this section, we prove that for any deterministic
nonpredictive queuing protocol, there exists a permutation that requires Ω(N/q logN)
time to route on a butterfly network. Previously, the best lower bound for routing
on a butterfly with queues of any size was Ω(

√
N). The Ω(

√
N) bound is proved

by observing that certain permutations, such as the bit-reversal permutation, force
Ω(
√
N) packets to pass through a single switch [13, section 3.4.2]. (It is also not

very difficult to prove that if the queue size is not bounded, then O(
√
N) is an upper

bound on the time to route any permutation using any greedy protocol.) Because the
Ω(
√
N) bound is based on congestion only, it applies to any queuing protocol. The

results in this section indicate that the manner in which packets are scheduled can
potentially cause much greater delays. The proof involves a careful examination of
the interaction of the packets as they route through the network.

To simplify the presentation in this section, we will assume that each switch has
a single queue, and that at each step, its two neighbors at the previous level may each
send a packet into the queue provided that, at the beginning of the step, the queue
held at most q packets. We call q the queue threshold of the switch. Since a queue
can receive 2 packets when it already has q, it may contain as many as q + 2 packets
but no more.

Theorem 3.1. For any deterministic nonpredictive queuing protocol, there exists
a permutation π that requires Ω(N/q logN) steps to route on a butterfly with queue
threshold q.

Proof. The proof is by induction. We will assume that there are two edges leading
into each butterfly input, and we begin by computing the time, td(r), required for
a depth d butterfly to accept r/2 packets on each of the 2d+1 edges into its inputs.
(For simplicity, we assume without loss of generality that r and q are even.) We will
assume that at time step 1 and at each time step thereafter, 1 packet is available
for transmission along each of these edges until r/2 packets have crossed the edge.
Furthermore, we will assume that each output switch can transmit one packet at each
step.

We begin by examining a 1-input butterfly, which consists of a single switch, s.
Suppose that at the beginning of time step 1, the queue at switch s is empty. We
would like to know how long it takes for s to receive r/2 packets from each of its
incoming edges, where r > q. On time steps 1 through q, s receives one packet along
each of its two incoming edges. During steps 2 through q, s transmits one packet
at each step. Thus, after q steps, 2q packets have been received, q − 1 have been
transmitted, and the queue contains q+ 1 packets. Since the queue is full, s does not
receive any packets on step q + 1, but it does transmit one. Thereafter, s receives
two packets on every other step and transmits one packet on every step, until a total
of r packets have been received, which occurs on step q + (r − 2q) = r − q. Thus,
t0(r) = r − q.

Next, let us compute the time required for each input of a depth-d butterfly to
receive r/2 packets along each of its incoming edges. In order for an input to receive
r packets, it must transmit at least r− (q+2) packets. Using the assumption that the
queuing protocol is nonpredictive, we will choose the paths of these r− (q+2) packets
so as to maximize the delay. Since a switch cannot look at a packet’s destination until
it has been selected for transmission, we can wait until a packet has been selected and
then decide if it should take a cross edge or a straight edge to the next level. The first
(r − (q + 2))/2 packets selected by each input switch 〈0, c0c1 · · · cd−1〉 will be sent to
the switches labeled 〈1, 0c1 · · · cd−1〉. These switches are the inputs of a depth-(d− 1)
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subbutterfly. The second (r − (q + 2))/2 packets will be sent to the depth-(d − 1)
subbutterfly whose inputs are labeled 〈1, 1c1 · · · cd−1〉.

The inputs of the first subbutterfly start accepting packets at step 2. By induction,
the time required for each input to receive r−(q+2) packets is td−1(r−(q+2)). Thus,
the first subbutterfly receives packets during steps 2 through td−1(r− (q+ 2)) + 1. In
the meantime, no packets are sent to the inputs of the second subbutterfly. The first
packets arrive there on step td−1(r − (q + 2)) + 2 and continue to arrive until step
2td−1(r − (q + 2)) + 1, at which point each input has received r − (q + 2) packets.
Thus, td(r) = 2td−1(r − (q + 2)) + 1. Solving this recurrence yields

td(r) ≥ 2dt0(r − (q + 2)d)

≥ 2d(r − (q + 2)(d+ 1)).

The lower bound on td(r) that we have just derived requires r > (q + 2)(d + 1)
packets to pass through each butterfly input. In a permutation routing problem,
however, only one packet originates at each input. In order to use the bound, we will
force r packets through each input of an N/r2-input subbutterfly that spans levels
log r through logN − log r. We call this subbutterfly the busy subbutterfly. It has
depth d = logN − 2 log r. Each input of this subbutterfly is the root of a depth-log r
complete binary tree whose leaves are butterfly inputs on level 0. Call these trees the
input trees. Each output is the root of a log r-depth complete binary tree whose leaves
lie on level logN . Call these trees the output trees. All of these trees are completely
disjoint. The r packets that originate at the leaves of an input tree will all be sent
through the root of that tree. Each output of the busy subbutterfly receives exactly
r packets. These packets are distributed among the r leaves of the corresponding
output tree so that they each receive exactly one packet. Note that between levels
log r and logN − log r, the only switches and edges used for routing are those in the
busy subbutterfly.

All that remains is to choose appropriate values of r and d. From the construction
of the busy subbutterfly, we know that d = logN − 2 log r. In order for our lower
bound on td to be greater than zero, we need r > (q + 2)(d + 1). Choosing r =
2(q + 2)(logN + 1) yields td(r) ≥ 2d(q + 2)(logN + 1) = (N/r2)(q + 2)(logN + 1) =
N/(4(q + 2)(logN + 1)). Thus the delay is Ω(N/q logN).

Note that the maximum number of packets passing through any node (the con-
gestion) for the worst-case permutation constructed in this section is only O(q logN).
This implies that there are other more complex routing algorithms such as that of
Ranade [24] which can route this permutation in O(q logN) steps!

4. A simple routing algorithm. In this section we present a simple, but non-
greedy, algorithm for routing on butterfly networks. With high probability, the algo-
rithm requires O(k+ logN) time to route packets with random destinations, where k
is the number of packets that originates at each input. The algorithm is simpler than
the algorithms of Pippenger [20] and Ranade [24] because it does not use ghost mes-
sages, it does not compare the ranks or destinations of packets as they pass through
a switch, and it cannot deadlock. Unlike the algorithm of Ranade, however, it does
not combine packets with the same destination.

The routing algorithm begins by breaking the packets into waves. Each input
contributes one packet to each wave. The waves of packets are separated by waves of
tokens. Unlike the ghost messages in Ranade’s algorithm, a token carries no informa-
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tion other than its type, which requires O(1) bits to represent.1 Initially, there are k
packets at each input and a token is placed between each pair of successive packets
and after the last packet. For 0 ≤ i ≤ k − 1, the ith packet at each input is assigned
to wave 2i, and the ith token is assigned to wave 2i + 1. Thus, the packets belong
to the even waves, and the tokens belong to the odd waves. Throughout the course
of the routing, the algorithm maintains the following important invariant. For i < j,
no packet or token in the jth wave leaves a switch before any packet or token in the
ith wave. Furthermore, packets within the same wave pass through a switch in the
increasing order of their row numbers of origin. (A row c0 · · · clogN−1 is viewed as a
binary number where c0 is the lower order bit.)

A switch labeled 〈l, c0 · · · clogN−1〉 has two edges into it, one from the switch
labeled 〈l − 1, c0 · · · cl−20cl · · · clogN−1〉, and the other from the switch labeled 〈l −
1, c0 · · · cl−21cl · · · clogN−1〉. We call the first edge the 0-edge, and the other the 1-edge.
At the end of each of these edges is a FIFO queue that can hold q packets or tokens.
We call these queues the 0-queue and the 1-queue, respectively.

The behavior of each switch is governed by a simple set of rules. By “forward” a
packet or token we mean send it to the appropriate queue in the next level. If that
queue is full, the switch tries again in successive time steps until it succeeds. A switch
can either be in 0-mode or in 1-mode and is initialized to be in 0-mode. In 0-mode, a
switch forwards packets in the 0-queue in FIFO fashion, until a token is at the head
of the 0-queue. It then changes to 1-mode. In 1-mode, a switch forwards packets in
the 1-queue in FIFO fashion, until a token is at the head of the 1-queue as well. Now
the switch waits until both the queues at its outgoing edges have room to receive a
token and then simultaneously sends one token to each of them. After doing this, the
switch changes back to 0-mode.

Note that at each step a switch is required to perform only O(1) bit operations
in order to determine which packet, if any, to send out. In the algorithms of Pip-
penger and Ranade, the switches must perform more complicated operations, such
as comparing the destinations of two packets as they pass through a switch. In the
succeeding sections, we show that our algorithm requires O(k + logN) steps, which
is asymptotically optimal.

4.1. Delay sequences. The proof that the algorithm requires O(k + logN)
time uses a delay sequence argument similar to those in [1, 14, 24]. A (w, f)-delay
sequence consists of four components: a path P from an output to an input; a sequence
s1, . . . , sw of w, not necessarily distinct switches which appear in order on the path;
a sequence h1, . . . , hw of w distinct packets and tokens; and a nonincreasing sequence
of wave numbers r1, . . . , rw. The path P may trace any edge of the network in either
direction. When the path traces an edge from some level l to level l + 1, we call
the edge a forward edge. The number of forward edges in the path is denoted by f .
The length, L, of P is equal to the distance from an output to an input (logN) plus
two times the number of forward edges on P , L = logN + 2f . We say that a delay
sequence occurs if, for 1 ≤ i ≤ w, packet or token hi belongs to wave ri and passes
through switch si. The following lemma shows that if some packet is delayed, then a
delay sequence must have occurred.

Lemma 4.1. If some packet arrives at its destination at step logN + d or later,
then a (d+ (q − 2)f, f)-delay sequence must have occurred for some f ≥ 0. Further-

1Tokens are used in a similar fashion in a bit-serial algorithm for routing on the hypercube in
[1]. It turns out, however, that tokens are not really needed in that algorithm. Ranade’s proof of the
equivalence of different queuing disciplines [23] implies that a FIFO queuing protocol will suffice.
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more, no two tokens in the sequence belong to the same wave.
Proof. Before we begin the proof, we need some definitions. Let the lag of a switch

s at time t on level l be t− l. Also, let the rank of a packet h be a 2-tuple consisting of
h’s wave number and the row number of the input in which it originated. Ranks are
examined by first comparing wave numbers, and then, if there is a tie, comparing row
numbers. A row c0 . . . clogN−1 is viewed as a binary number where c0 is the low-order
bit. Note that each packet has a distinct rank. Every token belonging to the same
wave has the same rank. This rank is strictly less than all the packets in the wave
above it but strictly greater than the packets in the wave below it. Note that ranks
are used only as a tool for the analysis and not by the algorithm itself.

The algorithm maintains several important invariants. As mentioned before, the
packets and tokens leave each switch in order of nondecreasing wave number. Fur-
thermore, each edge transmits exactly one token from each odd wave. Finally, within
an even wave, the packets that arrive at a switch via its 0-edge have smaller ranks
than the packets that arrive via its 1-edge. As a consequence, each switch sends out
packets and tokens in order of strictly increasing rank.

The delay sequence begins with the last packet to arrive at its destination. Sup-
pose that some packet h1 arrives at its destination, s1, at step τ1, where τ1 ≥ logN+d.
Then s1 has lag at least d at step τ1. We will construct the delay sequence by spending
lag points. We begin the sequence with h1, s1, and r1, where r1 is the wave number
of h1. Next, we follow h1 back in time until the step at which it was last delayed.

In general, suppose that we have followed some packet or token hi back in time
from some switch si at time step τi until it was last delayed, at some switch s′i+1 at
time step τi+1. As we follow hi back in time, the nodes that hi passes through are
added to path P . Because hi is delayed at s′i+1 at step τi+1, the lag at s′i+1 at step
τi+1 is one less than the lag of si at step τi. There are three possible reasons for the
delay of hi at switch s′i+1.

First, if si+1 selects another packet or token, hi+1, to send instead of hi, then
hi+1 must have a strictly smaller rank than hi. In this case, hi+1, si+1 = s′i+1, and
ri+1 are inserted into the sequence, where ri+1 is the wave number of hi+1. We then
follow hi+1 back in time until it was last delayed. We have spent one lag point and
inserted one packet or token into the sequence.

Second, if s′i+1 doesn’t send hi because the queue at the end of one of its outgoing
edges is full, then we extend the path, P , forward along that edge to the switch at
its head, s′′i+1. The lag of switch s′′i+1 at time τi+1 is two less than the lag of si at
step τi. However, the queue must contain a total of q packets and tokens, all of which
have smaller rank than hi. We insert these packets and tokens into the sequence. We
then follow the packet or token at the head of the queue back in time until it was last
delayed.

If neither of these cases is true, it must be the case that in switch s′i+1 at time
τi+1 either of the following occurs.

(a) hi is a packet, it is at the head of the 1-queue, and the 0-queue is empty, or
(b) hi is a token, it is at the head of one of the queues, and the other queue is

empty.
In either case, we go back to the switch at the tail of the empty queue at the previous
time step. Note that we do not lose any lag by this process. We continue to do this
as long as we can find an empty queue at the current switch. Suppose we do it m
times and we are at a switch s′′i+1 at time τi+1−m. Switch s′′i+1 has packets or tokens
at the heads of both of its queues but did not send anything through one of its edges
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at time τi+1 −m. If one of the heads of its queues is a packet, we add it and switch
s′′i+1 to the delay sequence and continue to follow this packet back in time. Note that
in case (a), this packet belongs to the same wave as hi but has rank strictly less than
hi since the first edge we followed back from s′i+1 is a 0-edge. In case (b), the packet
belongs to a wave earlier than that of token hi and hence has a strictly smaller rank.
In either case, we have added a packet of strictly smaller rank for the cost of one lag
point. Now suppose that both the heads of queues are tokens. The only reason the
tokens were not sent at time τi+1 −m is that one of the outgoing edges of s′′i+1 had
a full queue. In this case we extend the path P forward to the switch at the head of
the queue, insert all of the packets and tokens in that queue into the delay sequence,
and follow the packet or token at the head of the queue back in time. Now we have
added q packets and tokens for the cost of two lag points.

For each lag point spent, at least one new packet or token is inserted into the
delay sequence. Furthermore, for each forward edge on the path P , an additional
q − 2 packets and tokens are inserted. Let f be the number of forward edges on P .
Since we had d lag points to spend, we must insert at least d+ (q − 2)f packets and
tokens. Since we are inserting packets or tokens in strictly decreasing order of rank,
at most k of these can be tokens. The length of P is logN + 2f .

4.2. Bunched delay sequences. We have now established that if some packet
is delayed, then a delay sequence occurs. To simplify the rest of the argument, we
will restrict our attention to delay sequences in which the packets can be partitioned
into bunches of size b such that all of the packets in each bunch pass through the
same switch on the sequence and have the same wave number. We call such a delay
sequence a bunched delay sequence. Note that a bunched delay sequence cannot
contain tokens. The following lemma shows that if a delay sequence occurs, then a
bunched subsequence also occurs.

Lemma 4.2. If a (d + (q − 2)f, f) delay sequence occurs, then a (bg, f) bunched
delay sequence occurs, where

g =

⌈
d+ (q − 2b)f − bk − (b− 1) logN

b

⌉
.

Proof. Suppose that a (d + (q − 2)f, f) delay sequence occurs. We will describe
an algorithm for finding a bunched subsequence.

Starting at the first switch on the sequence, s1, form a bunch of size b of packets
with wave number 2(k − 1). If successful, then form another bunch of packets with
wave number 2(k − 1). Otherwise, if there are fewer than b remaining packets with
wave number 2(k − 1), then there are two cases to consider. First, if there are other
packets on the sequence that pass through s1, then discard the remaining packets
with wave number 2(k − 1) and begin forming bunches out of packets with the next
smaller even wave number. Since the wave number can decrease at most k times, this
case can happen only k times. Each time, we may discard as many as b − 1 packets
from the original delay sequence. Second, if no other packets on the sequence pass
through s1, then move on to the second switch, s2. This case can happen at most
logN + 2f times, since the path has length L = logN + 2f . As in the first case, we
may discard b− 1 packets from the original sequence.

Since the original sequence contains at least d + (q − 2)f − k packets, and we
discard a total of at most k(b − 1) + (logN + 2f)(b − 1) packets, at least d + (q −
2b)f − bk − (b − 1) logN packets are placed in bunches. Thus, there are at least

g = dd+(q−2b)f−bk−(b−1) logN
b e bunches.
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4.3. The counting argument. We are now in a position to prove that, with
high probability, every packet reaches its destination within O(k + logN) steps.

Theorem 4.3. For any c2, there exist constants c1 and q > 0 such that the
probability that any packet is delayed for more than d = c1(k+ logN) steps is at most
1/N c2 , where k is the number of packets per input of the butterfly.

Proof. Note that, by Lemma 4.1, if some packet suffers delay d, then a (d+ (q −
2)f, f)-delay sequence must occur for some f ≥ 0. Therefore, using Lemma 4.2, a
(bg, f) bunched delay sequence must occur, where

g =

⌈
d+ (q − 2b)f − bk − (b− 1) logN

b

⌉
.

To prove this theorem we will enumerate all possible bunched delay sequences and
show that it is unlikely that any of them occurs.

The number of different bunched delay sequences is at most

N · 4L ·
(
L+ g

g

)
·
(
g + k

g

)
·
g∏
i=1

(
2di

b

)
,(4.1)

where di is the level of the switch through which the ith bunch passes. The factors
in this product are explained as follows. There are N choices for the output switch
at which the path P in the delay sequence originates. At each of the L switches on
the path, there are at most four choices for the next switch on the path. There are
at most

(
L+g
g

)
ways of choosing the g (not necessarily distinct switches) on the path

that the g bunches pass through, and at most
(
g+k
g

)
ways of choosing (not necessarily

distinct) wave numbers for the g bunches. Finally, given a switch with level di and

wave number w, there are
(

2di

b

)
ways of choosing b packets with wave number w that

can pass through the switch.
Whether or not a particular delay sequence occurs depends entirely on the random

destinations chosen by the packets in the delay sequence. It is important to note that
every packet on the delay sequence is distinct. Therefore, the events regarding any
two packets on the delay sequence are independent. Thus, the probability that all of
the packets pass through their corresponding switches is

∏g
i=1

1
2bdi

, since each of the

b packets in the ith bunch has probability 1/2di of passing through any particular
switch on level di.

We can bound the probability that any delay sequence occurs by summing the
probabilities of each individual delay sequence occurring, which is equivalent to mul-
tiplying (4.1) by

∏g
i=1

1
2bdi

. Using the inequality
(
x
y

) ≤ (ex/y)y to bound
(
L+g
g

)
and(

g+k
g

)
, and using

(
x
y

) ≤ xy/y! to bound
(

2di

b

)
, the product is at most

23 logN+4f · (e(L+ g)/g)g · (e(g + k)/g)g · (1/b!)g,

where g = dd+(q−2b)f−(b−1)k−(b−1) logN
b e. First, we choose b such that b! ≥ 16e2.

We can make g larger than L = logN + 2f , k, and 3 logN + 4f , by making q large
compared with b (but still constant), and d large compared with b(k + logN) (but
still c1(k + logN), where c1 is a constant).

In this case, the product is at most (8e2/b!)g ≤ 2−g. By making g large enough,
we can make this product less than 1/N c2 for any constant c2.
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5. Algorithms that drop packets. In this section, we consider queuing pro-
tocols that resolve contention by dropping packets. Two examples of machines that
use this kind of protocol are the BBN Butterfly [5] and the NEC ATOM switch [28].

The ATOM switch routes packets in a store-and-forward manner. At every time
step, each switch examines the head of its input queue and forwards a packet to the
appropriate output queue. If a queue receiving packets is already full, then it discards
packets in excess of its maximum queue size. In the BBN Butterfly, each packet tries
to lock down a path between its source and destination. We will assume that each
edge of the butterfly can sustain up to q such paths. Therefore, if more than q packets
want to use the same edge only q succeed, and the rest fail to lock down their paths.
Packets that succeed in locking down paths are transmitted along these paths to their
respective destinations. This method of routing is known as circuit-switching.

In both of these queuing protocols, a natural question to ask is how many of
the packets reach their destinations. The ATOM switch has not been studied in
this context before. Kruskal and Snir [12] and Koch [11] studied the average case
performance of the BBN Butterfly algorithm. Koch showed that if each packet inde-
pendently chooses a random destination, then the expected number of packets that

get through is Θ(N/ log
1
q N). However, there are permutations that arise from natural

problems in which only O(
√
N) packets get through. To combat this we show how to

route any fixed permutation in either of the above-mentioned queuing protocols such

that the expected number of packets that reach their destinations is Ω(N/ log
1
q N). As

an aside, this section also provides an elementary proof of the fact that the expected
number of packets that get through for a random routing problem on the butterfly is

Ω(N/ log
1
q N). As mentioned earlier, this was first proved by Koch [11].

The idea for routing any fixed permutation is based on Valiant’s idea of routing
to random intermediate destinations. Consider two back-to-back butterflies, i.e., two
butterflies whose level logN nodes are identified. The source of the packets is level
0 of one of the butterflies, and each packet has a destination in level 0 of the other
butterfly. In the first stage, the packets route from level 0 to level logN of the first
butterfly. In the second stage, the packets route from level logN to level 0 of the
second butterfly. In the first stage we use a scheme for sending packets to random
but not independent destinations. Ranade [22] was the first to use this scheme in
order to reduce the amount of the randomness needed to send packets to intermediate
destinations in a packet switching algorithm. The scheme is as follows. At time step
i every level i switch receives two packets, one from each of its incoming butterfly
edges. The switch selects a random outgoing edge for one of the packets and routes
the other packet through the remaining outgoing edge. Therefore, in the first stage no
packets are dropped. In the second stage, every packet is routed from this intermediate
destination to its actual destination in level 0 of the second butterfly. In this stage,
packets are dropped according to the rules of BBN Butterfly routing or that of the
ATOM switch. We will assume that each packet picks a random rank from 1 to

r = log
1
q N . When packets must be dropped, packets with the least rank are dropped

in favor of those with a higher rank. We will now show that the expected number of

packets that reach their destinations is Ω(N/ log
1
q N).

Let n be a node at level l of the second butterfly. Consider any k packets whose
final destinations are reachable from this node. We bound the probability that all k
packets pass through this node.

Lemma 5.1. The probability that any k packets all pass through a node n in level
l of the second butterfly is at most 1

2lk
.
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Fig. 5.1. Subbutterfly B.

Proof. Let the node in the first butterfly that corresponds to node n be n′. Let
the subbutterfly from level l to logN of the first butterfly that contains n′ be B (see
Figure 5.1). Note that the k packets pass through the given node n if and only if
all of these packets pass through some node of subbutterfly B. Consider the sources
of the k packets in level 0 of the first butterfly and the unique shortest paths from
each of the sources to subbutterfly B. If any two of them intersect before reaching
the subbutterfly, these two packets cannot both hit subbutterfly B, since at the node
of intersection only one packet can take the path to the subbutterfly. If no two paths
intersect, then the probability of each packet hitting B is independent of the others
and equals 1

2l
. Thus in this case the probability of all of them hitting the subbutterfly

is exactly 1
2lk

. Therefore, given any k packets the probability of all k of them passing

through the given node or equivalently hitting the subbutterfly is at most 1
2lk

.
Theorem 5.2. The expected number of packets that reach their destinations is

Ω(N/ log
1
q N).

Proof. Consider the path of a particular packet p in the second butterfly. We will
now evaluate the probability that packet p reaches its destination. Note that with
probability 1

r packet p will have the highest rank r. In this case, packet p can be
dropped only if there is a node on its path with at least q packets going through it,
all with rank r. We will now show a lower bound on the probability that there exist
no such q packets. First let’s bound Eq, the expected number of q-tuples of packets
incident on a node at level l of the second butterfly,

Eq ≤
(

2l

q

)
1

2ql
≤ 1

q!
,
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since there are
(

2l

q

)
ways of choosing q packets that can pass through a node on level

l, and by Lemma 5.1, the probability that these packets actually pass through the
node is at most 1/2ql.

The expected total number of q-tuples incident on some node on the path of
packet p is at most logN/q!, since the path has length logN . The expected number
of such q-tuples with all packets having rank r is at most logN/(q!rq) which equals

1/q!, since r = log
1
q N . Since 1/q! ≤ 1, the probability that no such q-tuple exists

anywhere on the path of packet p is at least 1 − 1/q!. (A slightly larger choice for r
would make the arguments work for q = 1.) This implies that packet p reaches its
destination with a probability of at least (1 − 1/q!)(1/r), since the probability that
packet p gets rank r is 1/r. Therefore, the expected number of packets to reach their

destinations is at least (1− 1/q!)(N/r) which is Ω(N/ log
1
q N).

The proof that the expected number of packets that reach their destinations is

Ω(N/ log
1
q N) also holds for a random routing problem in which each packet chooses

independently a random destination. Lemma 5.1 is true because the probability that
a packet passes through a node n in level l is 1/2l. Every packet chooses its path
independently and hence the probability that all of them pass through the node
exactly equals 1/2lk. The rest of the proof is the same as before. Koch [11] has
observed that the expected number of packets that get through is not affected by the
rule that is used to decide which messages to keep and which messages to drop, as
long as the destinations of the packets are not used to make this decision. Therefore,
for this problem, random ranks are necessary only as a tool for analysis and any other
nonpredictive rule would exhibit the same average case behavior.

6. Open questions. The most vexing problem left open by this paper is to
determine the average number of time steps required to route a random problem on a
fully loaded N -input butterfly with constant-size FIFO queues. If fewer than Ω(logN)
packets may be queued at a node, then the only known upper bound on the time to
route is O(N logN). This trivial upper bound is proven by showing that after logN
steps, at least one packet arrives at the outputs at every time step until the routing
is completed. Simulations show that the true time is closer to O(logN).

Another open question concerns the algorithm of section 4 for routing on a fully
loaded butterfly with constant-size queues. We know from section 2 that a single wave
of packets with random destinations can be routed using a greedy queuing protocol
in O(logN) time, but when the waves are pipelined, as in section 4, the analysis
requires us to use a simple, but not greedy, protocol to route each wave. It would
be interesting to show that even if each individual wave was routed with a greedy
protocol, the total time to route logN waves was O(logN).
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