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AbstractÐModern hardware and software systems promote a view of parallel systems in which interprocessor communications are

uniform and rather expensive in cost. Such systems demand efficient clustering algorithms that aggregate atomic tasks in a way that

diminishes the impact of the high communication costs. We develop here a linear-time algorithm that optimally clusters computations

that comprise a sequence of disjoint complete up- and/or down-sweeps on a complete binary tree for such parallel environments. Such

computations include, for instance, those that implement broadcast, accumulation, and the parallel-prefix operator; such environments

include, for instance, networks of workstations or BSP-based programming systems. The schedules produced by our clustering are

optimal in the sense of having the exact minimum makespanÐnot just an approximation thereofÐaccounting for both computation and

communication time. We show by simulation that the makespans of the schedules produced by our algorithm are close to half of those

produced by the algorithm that yielded the best schedules previously known.

Index TermsÐScheduling, tree computations, clustering.
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1 INTRODUCTION

1.1 Background

MODERN hardware and software systems promote a
view of parallel systems in which interprocessor

communications are uniform and rather expensive in cost.
Networks of workstations foster such a view because of the
nature of the hardware implementing such systems [25],
programming systems based on abstractions such as BSP
[3], [20], [31], or LogP [2], [3], [8] foster such a view because
of their underlying programming models. The theoretical
ªarchitecture-independentº model in [24] is well-suited for
developing algorithms with such a view. Within such
uniform, high-communication-cost environments, the clus-
tering component of parallel schedulingÐwhich aggregates
atomic tasks for assignment to the same processor in a way
that diminishes the impact of the high communication costs
[12], [13], [28]Ðbecomes increasingly important for the
development of good schedules.

We focus throughout on computations that are ªfine-

grain,º in the sense that each interprocessor communication

costs more than the computation time for an atomic task.

The complementary ªcoarse-grainº situation is far less

challenging algorithmically.
Unfortunately, as we indicate in our survey of related

work (in Section 1.3), even in the presence of simplifying

assumptions, there is likely no efficient way to achieve

optimal clusterings of tasks, as most such problems are NP-
hard. The main result of the current paper is an efficient,
exactly optimal clustering algorithm for a class of computa-
tions whose scheduling problem is close to the border
between efficient and NP-hard problems. Specifically, we
develop a linear-time algorithm for optimally clustering
computations that comprise a sequence of disjoint complete
up- and/or down-sweeps1 on a complete binary tree.

As we discuss further in Section 1.2, the claimed
optimality is within the realm of fine-grain computations,
in multiport parallel environments having uniform inter-
processor communication costs.

Tree-sweep computations can be used to implement
operations and operators such as broadcast and reduction
(or accumulation) (via single sweeps) and scan (or parallel-
prefix) (via double sweeps).

The ªtree-sweepº schedules produced by our clustering
algorithm are exactly optimal in the sense of having exactly
minimum makespans, not just constant-factor approxima-
tions thereof. Indeed, one can achieve approximately optimal
clusteringsÐwhose schedules have makespans within a
factor of 2 of optimalÐvia algorithms that are significantly
simpler than ours. To wit, let T n denote the height-n
complete binary tree (which has 2n ÿ 1 nodes) and let �
denote the uniform cost of interprocessor communication.
The reader can verify easily that the following algorithm
achieves 2-approximate optimality. This algorithm is a
straightforward generalization of a scheduling algorithm
due to Papadimitriou and Yannakakis [24] in that this
algorithm works for all values of � , not just � of the form
2k ÿ 1.
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1. An ªup-sweepº proceeds from the leaves to the root of the tree; a
ªdown-sweepº proceeds from the root to the leaves.
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Algorithm P.Y�T n�
{Generate the P.Y schedule �P:Y for a complete binary tree
T n}
begin

Let S denote a set of b� � 1c nodes that are closest to
root�T n�. (If T n has fewer than b� � 1c nodes, S
contains all nodes in the tree.)
Schedule all nodes of S in processor 0.
Schedule each tree in the forest induced by the nodes of
T n ÿ S recursively, using a new set of processors for
each.

end

Our research was motivated both by a desire to
demarcate better the boundary between efficient schedul-
ing problems and NP-hard ones, and by the recognition
that even small factors (e.g., 2) can be critical in actual
applications. The latter recognition led us to verify, via
simulations we describe in Section 3.3, that the schedules
produced by our algorithm are, in fact as well as theory,
almost twice as fast as those produced by Algorithm P.Y,
which yielded the best schedules known prior to our
work.

In common with scheduling approaches, such as [33],
we make no attempt to minimize the number of virtual
processors our algorithm uses to achieve an optimal
makespan. In consonance with the cluster-then-map
scheduling strategy advocated in, e.g., [12], [13], [21],
[28], we envision following our clustering algorithm with
a virtual-to-physical processor mapping in order to
complete the implementation of our algorithm on an
actual parallel machine. We do not presently know how
such mapping will affect the ªvirtualº optimality of our
schedules, Importantly, though, one can employ an
algorithmic device from [24] to convert our algorithm,
at the cost of a factor of 2 in makespan, into one that
employs precisely

tree-size

optimal makespan

processors. Also in common with the just-cited studies of
the cluster-then-map strategy, we assume that our parallel
computing platforms enjoy a multiport communication
capability for both sending and receiving messages.

1.2 The Formal Framework

1.2.1 The Computational Load

Our work resides in the arena of scheduling algorithms for
directed acyclic graphs (dags, for short) whose nodes represent
uniform-size atomic tasks and whose arcs represent
precedence constraints due to intertask dependencies. We
focus in particular on complete binary2 tree-dags, with arcs
uniformly oriented either from the root to the leaves (an out-
tree or down-tree) or from the leaves to the root (an in-tree or
up-tree). The computations of interest comprise sequences of
time-disjoint total sweeps up and/or down complete tree-
dags; the orientations of a tree's arcs reflecting the direction
of the current sweep. (We allow consecutive sweeps to be in

opposing directions.) We focus on scheduling a single up-

sweep, simply running the schedule ªbackwardsº to obtain

a schedule for a down-sweep. We lose some generality by

using this approach since, while recomputation of nodes/

tasks can never help on an up-sweepÐhence will never

appear in our optimal up-sweep schedulesÐthey can help

on down-sweeps. Therefore, whereas the up-sweep sche-

dules produced by our algorithm are optimal (within the

assumed computing environment) whether recomputation

is allowed or not, the down-sweep schedules produced by

our algorithm are optimal only among schedules that do not

allow recomputation.
Notation and terminology. For any up-tree T : SIZE�T � is

the number of nodes in T , root�T � is its root, and T �u� is

the (complete) subtree rooted at node u. Every nonroot

node u of T has an edge to its unique successor, ��u�; every

nonleaf node u of T has two edges entering it, one from its

left predecessor, �`�u�, and one from its right predecessor, �r�u�.
See Fig. 1. The height of a node u of T , denoted HGT�u�, is

defined recursively as follows: A leaf has height 1 and,

inductively, HGT���u�� � 1� HGT�u�. All nodes of T that

share the same height form a level of T . The height of T is

HGT�root�T ��.

1.2.2 The Computational Model

Our time unit throughout is the (common) execution time of

each atomic task (= tree-node). In ªwall-clockº terms, the

(common) interprocessor communication delay � is, thus,

the ratio of communication-delay to computation-delay,

hence, implicitly specifies the granularity of the computa-

tion. We focus only on fine-grain computations, for which

� > 1.
Since we do not allow recomputation of tasks, every task

is executed by precisely one processor at precisely one time;

hence, specifying these processors and times completely

characterizes a schedule � for a tree T . Formally, then, a

schedule � is an assignment of a unique processor

PROC�u; �� and a unique actual execution time AET�u; �� to

each node u of T .
Clearly, a valid schedule must observe the constraints

that are implicit in the dependencies of the tree and in the

semantics of the architectural model. These two constraints

take the following forms:
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THE PROCESSOR LOAD CONSTRAINT. A processor can
execute at most one task at a time: for distinct nodes u
and v of T , if PROC�u; �� � PROC�v; ��, then

jAET�u; �� ÿ AET�v; ��j � 1:

THE PRECEDENCE CONSTRAINT. A node of T cannot be
executed before both of its predecessors have been executed and
have had time to arrive at PROC�u; ��. Implicit in this
constraint is that a leaf-node can be executed at any time.

A more complicated approach to the Precedence Con-
straint is useful as we develop and verify our algorithm.
Central to this approach is the eligible-for-execution timeÐ
often called the ªready timeºÐof task u under schedule �,
denoted EET�u; ��.

. If u is a leaf, then EET�u; �� � 0.

. If u is not a leaf, then EET�u; �� is computed as
follows. First, add the three quantities:

1. Quantity: AET��`�u�; ��, which is the time when
�`�u� is computed

2. Quantity: 1, which is the time to compute �`�u�
3. Quantity: If PROC��`�u�; �� 6� PROC�u; ��, then �

else 0, which is the time to transmit the result
from �`�u�

Then, compute the corresponding sum for �`�u�.
EET�u; �� is the larger of these two sums.3

The PRECEDENCE CONSTRAINT now takes the following
form: For every node u of T , AET�u; �� � EET�u; ��.

We assume henceforth, without explicit mention, that all
given schedules are valid. (Of course, we prove explicitly
that any schedules we produce are valid.)

The goal of our scheduling algorithms is to minimize
the makespan of a computation, namely, the time for
computing the entire tree. Since root�T � is always the
last-executed node in a valid schedule, the makespan of
T under schedule �, denoted MKSPN�T ; ��, is precisely
AET�root�T �; �� � 1. Our target is to achieve makespan
T?�T �, which is the minimum makespan of any compu-
tation of tree T :

T?�T ��def
min

valid �
MKSPN�T ; ��:

In Sections 2 and 3 we develop, for any given up-tree T ,
a schedule �? that is exactly optimal, in the sense that
MKSPN�T ; �?� � T?�T �.
1.3 Relevant Prior Work

We briefly survey a number of sources in the literature that
are directly relevant to our study. We refer the reader to [7],
[22] for more complete surveys.

1.3.1 NP-Hard Scheduling Problems

It has been known for decades that the problem of
constructing optimal schedules for dags is extremely hard,
with even specialized cases falling within the class of NP-
hard problems. The most general problem, optimally
scheduling unrelated tasks that take arbitrary computation

times on a given number of processors, is shown in [11,
p. 238] to be NP-hard. Even when interprocessor commu-
nication time is negligible (� � 0) or commensurate with
per-task computation time (� � 1), the problem of optimally
scheduling a dag on a given number of processors is shown
in [30] and [23], [27], respectively, to be NP-hard. Even
when the number of processors is restricted to 2 and the
dags are restricted to be binary trees, the problem of
optimally scheduling for any given � is NP-hard [1]. The
difficulty of scheduling persists in many virtual-processor
situations. If the dag to be scheduled is a tree of height � 2,
but each interprocessor communication is allowed to
involve an arbitrary amount of data, then the problem of
optimally scheduling the dag is NP-hard [6]. Even in the
single-parameter ªarchitecture-independentº model of [24],
when one may use unboundedly many processors, the
problem of optimally scheduling arbitrary dags is NP-hard
[24]; in fact, even the problem of optimally scheduling
binary trees is still NP-hard in this model [15].

1.3.2 Efficient Optimal Scheduling Algorithms

Prior to the algorithm we develop in the current paper,
there have existed only the following few specialized
scheduling algorithms that efficiently (i.e., in polynomial
time) construct exactly optimal schedules. One finds in
[16] an algorithm that produces optimal architecture-
independent schedules for an arbitrary N-node dag
within time O�N��; whenever � is an absolute constant,
this algorithm operates in polynomial time. In environ-
ments having only two processors, one can schedule any
dag in linear time when � � 0 [9] and any forest in linear
time when � � 1 [23]. Turning to tree-dags, linear-time
algorithms suffice to produce optimal architecture-inde-
pendent schedules for coarse-grain computations [5] and
for complete trees within two-processor environments [1].
Finally, moving from the realm of scheduling algorithms
to that of scheduling strategies, it is proven in [12] that
coarse-grain dags can always be scheduled optimally via
linear clusteringÐa technique that assigns all nodes on a
dag's critical path to the same processor. (Linear
clustering algorithms diverge on how to proceed after
this first processor assignment [28].)

1.3.3 Approximately Optimal Scheduling Algorithms

The literature contains several polynomial-time algorithms
that, at least in special cases, produce schedules that are
provably within a constant factor of optimal. Among these,
the most comprehensive is the architecture-independent
algorithm of [24], which produces, for arbitrary dags and
arbitrary � , a schedule whose makespan is within a factor of
2 of optimal; this algorithm recomputes tasks when
convenient. Also presented in [24] is the simple version of
Algorithm P.Y that suffices when � has the form 2k ÿ 1 for
some k that divides the height of the up-tree; recomputation
cannot help when scheduling up-trees. There is a ªgreedyº
algorithm for environments in which � � 1, which produces
p-processor schedules for arbitrary dags, that are within a
factor of 3ÿ 2=p of optimal [27]. (A scheduling algorithm is
ªgreedyº if it never allows a processor to remain idle while
some task is eligible for execution.) When interprocessor
communication time is negligible (� � 0), there are a

GAO ET AL.: OPTIMAL CLUSTERING OF TREE-SWEEP COMPUTATIONS FOR HIGH-LATENCY PARALLEL ENVIRONMENTS 815

3. Implicit in our evaluation of EET is the assumption that our parallel
computing platforms observe a multiport communication protocol.



number of near-optimal scheduling algorithms. For general
dags whose atomic tasks differ arbitrarily in complexity,
there is a greedy algorithm whose schedules have make-
span within a factor of 2 of optimal [14]. Moving from the
realm of scheduling algorithms to that of scheduling
strategies, one finds in [12] the sweeping result that any
schedule for a coarse-grain dag that is produced by an
algorithm that uses linear clustering has makespan within a
factor of 2 of optimal. Next, one finds in [4] a nonconstruc-
tive strategy for scheduling N-node dags on p-processor
machines with makespan N=p� h, where h is the length of
the dag's critical path. This strategy, which has been
implemented for numerous specific computational pro-
blems, easily produces schedules that are within a factor of
2 of optimal: To wit, N=p is the best possible speedup on a
p-processor machine and h is the inherent sequential
computation time of the dag. The literature on scheduling
dags on multiprocessors with fixed topologies is rather
sparse. One notable study is [29], which presents a
polynomial-time algorithm for scheduling tree-dags on
rings of processors. The resulting schedules are proven to
be within a factor of 11 of optimal in makespan, but
simulations show the deviation from optimality to be closer
to 2 or 3.

1.3.4 Other Related Problems

Of course, there exist voluminous literatures on two classes
of scheduling problems that are quite different from ours.
First is the quest for (nearly or asymptotically) optimal
schedules for specific functions, both in an architecture-
independent setting (see, e.g., [18], [19]) and in a fixed-
topology setting (see, e.g., [10], [17], [26]). Second is the
simulation study of algorithms for scheduling classes of
dags (see, e.g., [21], [28], [32]). None of these studies is really
relevant to the current paper because of either focus or
methodology.

We turn now to the scheduling algorithm that is our
main contribution, laying the mathematical foundations in
Section 2 and presenting and validating the algorithm in
Section 3.

2 CLUSTERING FINE-GRAIN TREE-SWEEPS

This section is devoted to developing the theory that
underlies the main contribution of the paper, the linear-
time algorithm of Section 3 that produces exactly optimal
schedules for fine-grain (� > 1) up-sweeps of a complete
binary tree. In Sections 2.1-2.4, we develop the under-
pinnings of our main algorithm. We compile a list of five
constraints on a scheduling algorithm and prove that we

lose no generality by restricting our search for an optimal

schedule to those that satisfy these constraints. In fact, we

prove that there is a unique optimal schedule having the five

properties. For definiteness, we assume throughout that we

are scheduling the height-n complete binary tree T n; for

succinctness, we henceforth abbreviate T?�T n� by T?�n�.
2.1 The Five Underlying Properties

This section is devoted to specifying the five properties of

tree-sweep schedules that help us narrow our search for an

optimal schedule and that are enjoyed by precisely one

optimal schedule.
Notation and terminology. Let � be a schedule for the

complete binary tree T n. The top-cluster of T n under �,

denoted C�T n; ��, is the subtree of T n comprising all nodes

whose paths to root�T n� contain no communication-edge.

Note that all nodes in C�T n; �� are executed in the same

processorÐwith no loss of generality, processor 0. We use

the top-cluster of schedule � to assign each node v of T n to

one of three classes. 1) v is �-external if it does not belong to

C�T n; ��; 2) v 2 C�T n; �� is �-internal if both of its

predecessors also belong to C�T n; ��; 3) v is a �-boundary

node in all other cases. Table 1 codifies this classification.
When the specific schedule � in question is either

irrelevant or clear from context, we omit the prefix ª�-,º

thereby shortening the three node-classes to just ªexternal

node,º ªinternal node,º and ªboundary node.º By exten-

sion, we designate the subtree rooted at node u of T n an

external subtree of � if u is a �-external node and ��u� is a �-

boundary node.
Henceforth, let us say that a schedule �0 is as fast as a

schedule � if, for all complete binary trees T ,

MKSPN�T ; �0� � MKSPN�T ; ��. By extension, schedule �0 is

optimal if it is as fast as any other schedule.
We now present the five properties that collectively

prune our search space for optimal schedules.
External-subtree optimality (the ESO property). Our

first property requires each external subtree of T n to be

scheduled exactly optimally. More formally,
Schedule � has the external-subtree-optimal property if it

schedules all �-external subtrees optimally, employing a set

of processors that are used nowhere else in the computation

of T n.
Maximum-height boundaries (the MHB property). Our

second property has a schedule ªmoveº its boundary nodes

as high as possible subject to the precedence constraints.
Schedule � has the maximum-height-boundary property if

each �-boundary node u has
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AET�u; �� � T?�HGT�u�� � � ÿ 1:

Our informal description of the MHB property follows from

this formal specification of the property for the following

reason. For any valid schedule �, the precedence constraints

imply that T?�HGT�u� ÿ 1� � � � AET�u; ��. Thus, the MHB

property requires that each boundary node u has the

maximum allowable height allowed by its AET value and the

precedence constraints.
Importantly, for our later analysis, any schedule � with

the MHB property executes its boundary nodes in non-

decreasing order of height: If the boundary nodes u and v

satisfy HGT�u� < HGT�v�, then AET�u; �� < AET�v; ��.
Postorder execution (the PO property). The PO property

requires a schedule to execute the nodes of its top-cluster in

order of their positions in the postorder linearization of the

input tree. In other words:
For any u; v 2 C�T n; ��, if u precedes v in the postorder

linearization of T n, then AET�u; �� < AET�v; ��.
Eagerness. A schedule � is eager if it executes each top-

cluster node as soon as possible, while retaining the same

set of top-cluster nodes and their order of execution. This

means formally that, for each v 2 C�T n; ��:
AET�v; �� �

EET�v; ��;
if v is the first node executed by processor 0

maxfAET�u; �� � 1; EET�v; ��g;
otherwise; where u is the top-cluster node

that is executed immediately before v:

8>>>>>><>>>>>>:
Persistence. Our final property requires a schedule to

execute top-cluster nodes ªalmostº consecutively, with no

large gaps. For each node u 2 C�T n; ��, we define

gap�v; �� �def
AET�v; ��;

if v is the first node executed by processor 0

AET�v; �� ÿ AET�u; �� ÿ 1;

otherwise; where u is the top-cluster node

executed immediately before v:

8>>>>>><>>>>>>:
Schedule � is persistent if for any top-cluster node

v 2 C�T n; ��, gap�v; �� < 1. This means that processor 0 is

always busy during the execution of T n, from time 0 to time

MKSPN�T n; ��, except possibly for a fraction of one unit idle

time.
We call a gap of size � 1 large.

2.2 A Simplifying Lemma

We now present a lemma that materially simplifies the

proofs of the lemmas that allow us to focus on schedules

that enjoy the five properties of Section 2.1.

Proposition 2.1. One can transform any schedule � to a

schedule �0:

. which is as fast as �,

. for which both predecessors of each �0-boundary node
are �0-external nodes,

. which enjoys the ESO, MHB, and PO properties
whenever � does.

Proof. We obtain schedule �0 from � as follows: We

convert each nonexternal predecessor of each �-

boundary node to an external node (by changing its

incident edge to a communication-edge). We then

schedule all newly created external subtrees optimally,

employing a set of processors that are used nowhere

else in the computation of T n. Tree-nodes that are not

rescheduled in this way retain both their processor

assignments and AET's from �.
The validity of schedule �0 is argued as follows:

. Each �0-internal node has the same and AET as it
had under �.

. Each �0-external node is rescheduled via a valid
schedule.

. Each �0-boundary node u still observes the
precedence constraint since

AET�u; �0� � AET�u; �� �? �HGT�u� ÿ 1� � �
� EET�u; �0�:

The preservation of properties is argued as follows:

. Each new external subtree is scheduled optimally
by �0, using new processors.

. All top-cluster nodes of �0 are executed in the
same order as they are under �.

. Each �0-boundary node was also a �-boundary
node.

Finally, since AET�root�T n�; �0� � AET�root�T n�; ��, we

conclude that schedule �0 is as fast as schedule �. tu
We turn now to our series of enabling lemmas.

2.3 Endowing Schedules with the Five Properties

2.3.1 External-Subtree-Optimal Schedules

Lemma 2.1. One can transform any schedule � into a schedule

eso��� that is as fast as � and that enjoys the ESO property.

Proof. We obtain schedule eso��� from schedule � by

rescheduling (if necessary) each external subtree opti-

mally, employing a set of processors that are used

nowhere else in T n. Any node of T n that is not so

rescheduled retains both its and AET from �.
The validity of schedule eso��� is argued as follows:

. Each eso���-internal node has the same and AET

as it had under �.
. Each eso���-external node is rescheduled via a

valid schedule.
. Finally, focus on an eso���-boundary node u.

Letting v denote an external predecessor of u, the
fact that eso��� schedules external subtrees
optimally implies that AET�v; eso���� � AET�v; ��.
It follows that

AET�u; eso���� � AET�u; �� � EET�u; ��
� EET�u; eso����:
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By construction, eso��� enjoys the ESO property. Finally,
since root�T n� is in the top-cluster of every schedule, we
have AET�root�T n�; eso���� � AET�root�T n�; �� so that
eso��� is as fast as �. tu
Lemma 2.1 allows us to concentrate henceforth on the

problem of identifying and assigning AET's to nodes in the
top-cluster of T n.

2.3.2 Maximum-Height-Boundary Schedules

Lemma 2.2 One can transform any schedule � that enjoys the
ESO property into a schedule MHB��� that is as fast as � and
that enjoys both the ESO and MHB properties.

Proof. By Proposition 2.1, we may assume that both
predecessors of each �-boundary node are external.
We construct schedule MHB��� from schedule � via a
finite sequence of applications of a transformation �MHB

that eliminates violations of the MHB property. We
thereby produce a sequence of schedules,

� � �0;�1; . . . ;�k � MHB���;
each as fast as its predecessor and each retaining the ESO
property; moreover, each successive �i�1 represents
ªprogressº toward MHB��� in the following sense. Either
�i�1 enjoys the MHB property, in which case
�i�1 � MHB���, or �i�1 has a strictly smaller top-cluster
than �i. Of course, the former contingency must hold
eventually. We now describe a single application of
transformation �MHB, which produces schedule �i�1

from the non-MHB schedule �i.
Let u be a �i-boundary node that violates the MHB

property so that AET�u; �i� > T?�HGT�u�� � � ÿ 1. We
distinguish two cases.

Assume first that u � root�T n�. Since both predeces-
sors of u are ext erna l u nder �i, we have
C�T n; �i� � froot�T n�g. Construct �i�1 by assigning
AET�u; �i�1� :� T?�HGT�u� ÿ 1� � � and by having �i�1

inherit all other PROCs and AETs from �i. Now, �i�1 is
valid by construction since AET�u; �i�1� � EET�u; �i�1�.
Clearly, �i�1 enjoys the ESO property by inheritance
from �i. Additionally, we have

AET�u; �i�1� �
T?�HGT�u� ÿ 1� � � �? �HGT�u�� � � ÿ 1:

In the last inequality, we use the elementary fact that for
all n > 1, T?�n� � T?�nÿ 1� � 1. This is true because, for
any valid schedule �, EET�root�T n�; �� � T?�nÿ 1�, so
that MKSPN�T n; �� � T?�nÿ 1� � 1. Thus, �i�1 enjoys the
MHB property. Finally, since we have assigned u a
smaller AET than it had under �i (in fact, we have
assigned it the smallest valid AET), we have
MKSPN�T n; �i�1� < MKSPN�T n; �i�.

Assume next that u 6� root�T n�. We transform �i to

�i�1 by making node ��u� a �i�1-boundary node and by

making both predecessors of ��u� �i�1-external. We then

schedule the new external subtrees rooted at ���u�� and

���u�� (one of which is node u) optimally, employing a

new set of processors for each. We have �i�1 inherit all

other assignments from �i. Note first that �i�1 is a valid

schedule. To wit, all nodes other than ��u� satisfy the

precedence constraint either by construction or by

inheritance from �i; and node ��u� satisfies the pre-

cedence constraint from the fact that:

AET���u�; �i�1� � AET���u�; �i�
� AET�u; �i� � 1

> T?�HGT�u�� � � ÿ 1� 1

� EET���u�; �i�1�:
Additionally, �i�1 enjoys the ESO property by construc-

tion and inheritance from �i. Moreover, �i�1 has fewer

nodes in its top-cluster than does �i, because

u 2 C�T n; �i� ÿ C�T n; �i�1�. Finally, since we have not

modified the AET of root�T n�, we have

MKSPN�T n; �i�1� � MKSPN�T n; �i�:
In both of the enumerated cases, transformation �MHB

preserves the validity and the external-subtree optim-
ality of its initial schedules; moreover, the transformation
can speed up a schedule but can never slow it down.
Finally, the transformation either results in a MHB
schedule, or it decreases the size of the top-cluster.
Clearly, then, a finite sequence of applications of �MHB

will ultimately produce the desired schedule MHB���. tu

2.3.3 Postorder Schedules

Lemma 2.3. One can transform any schedule � that enjoys the

ESO and MHB properties into a schedule PO��� that is as fast

as � and that enjoys the ESO, MHB, and PO properties.

Proof. First, note that we can simplify our task by ignoring

the MHB property. To wit, if we can transform � into a

schedule PO��� that is as fast as � and that enjoys the

ESO and PO properties, then we can invoke Lemma 2.2

to endow PO��� with the MHB property without

jeopardizing the PO propertyÐbecause transformation

�MHB does not modify the AET's of top-cluster nodes. So,

we concentrate on constructing schedule PO��� from

schedule �.
Creating C�T n; PO����. As before, Proposition 2.1

allows us to assume that for each �-boundary node u,
all nodes in subtree T �u� are external except u. We
specify C�T n; PO���� to be a subtree of T n such that:

. C�T n; PO���� and C�T n; �� have equally many
nodes at each level;

. The nodes of C�T n; PO���� at each level are the
leftmost nodes of T n at that level.

Let eN` represent the number of nodes at height ` of

C�T n; ��. We construct C�T n; PO���� by choosing the eN`

leftmost nodes at each height ` of T n. This is possible

because, for all ` < n, eN` � 2 eN`�1. Not only do C�T n; ��
and C�T n; PO���� have equally many nodes of each

height, they also have equally many boundary nodes of

each height. Since �-boundary nodes have no predeces-

sors in the top-cluster, the same applies to �PO-boundary
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nodes. Therefore, the number of boundary nodes at

height ` in either top-cluster equals eN` ÿ eN`ÿ1=2.
Scheduling C�T n; PO����. Since we design PO��� to

enjoy the ESO property, we need explicitly schedule only
the nodes of C�T n; PO����. First, we establish a one-to-
one correspondence that associates a unique �-boundary
node ��u� with each PO���-boundary node u. We begin
by ordering the PO���-boundary nodes by height, from
smallest to largest, breaking ties by left-to-right order.
Next, we order the �-boundary nodes by AET, also from
smallest to largest. We create the correspondence � by
pairing the elements of these two lists seriatim. Note that
u and ��u� have the same height since PO��� and � have
equally many boundary nodes of each height and since
the MHB property mandates that boundary nodes be
executed in nondecreasing order of height.

We visit the nodes of C�T n; PO���� in postorder
fashion to assign AETs. Let v 2 C�T n; PO���� be the node
we are visiting currently and let u be the node visited
immediately before v. Then we assign

AET�v; PO���� :�
maxfAET�u; PO���� � 1; AET���v�; ��g;

if v is a PO���-boundary node

AET�u; PO���� � 1;

otherwise:

8>>><>>>:
We note first that schedule PO��� is valid because each

internal node observes the precedence constraint from
the postorder construction and each boundary node v
inherits validity from the corresponding boundary node
��v� in �. Next, we note that, by construction, PO���
enjoys both the ESO and PO properties. Finally, we
prove via two cases that PO��� is as fast as �.

Assume first that PO��� keeps processor 0 busy at
every time-step, starting at time 0. It is immediate, then,
that MKSPN�T n; PO���� � jC�T n; PO����j. In contrast,
MKSPN�T n; �� is no smaller than jC�T n; ��j. Since our
construction of PO��� guarantees that

jC�T n; PO����j � jC�T n; ��j;
it follows that MKSPN�T n; PO���� � MKSPN�T n; ��.

Alternatively, say that PO��� does not keep processor 0
busy at every time-step. Let v be the last node that has
gap�v; PO���� > 0 (so that processor 0 is busy at every
time-step from time AET�v; PO����). From the construction
o f PO���, v i s a PO���- b o u n d a r y n o d e a n d
AET�v; PO���� � AET���v�; ��. Since there is no gap be-
tween consecutively executed nodes' AETs after v,
MKSPN�T n; PO���� is the sum of AET�v; PO���� and the
number of nodes executed from v to root�T n� under
schedule PO���. From similar considerations,
MKSPN�T n; �� is no smaller than the sum of AET���v�; ��
and the number of nodes executed from ��v� to
T troot�T n� under schedule �. Since

jC�T n; �PO�j � jC�T n; ��j;
if we can prove that PO��� executes at least as many top-
cluster nodes before v as � does before ��v�, then we
shall have proven that PO��� is as fast as �. We turn now

to this task. We are guided by the intuition that PO��� is
ªgreedy,º in the sense that it schedules as many internal
nodes as possible before scheduling the next boundary
node. To obtain a formal argument, we first establish an
upper bound on the number of top-cluster nodes that are
executed before ��v� under �. For each i, the number of
height-i top-cluster nodes that are executed before ��v�
under � is no greater than the number of top-cluster
nodes made eligible for execution by the boundary nodes
executed before ��v�. Say that N` height-` boundary
nodes are executed before ��v� under �; note that the
same number of height-` boundary nodes are executed
before v under PO���. The nodes executed before ��v�
under � can render eligible for execution no more than

ni �def
Xi
l�1

Nl2
lÿ1=2iÿ1

$ %
height-i top-cluster nodes: To wit, each height-i node has
2iÿ1 leaves below it and a node is eligible for execution
only if all of its leaves belong to subtrees rooted at
boundary nodes executed before ��v�. It is easy to check
that exactly ni height-i top-cluster nodes are executed
before v under PO���. Summing up top-cluster nodes
executed at heights 1; 2; . . . ; n, we conclude that at least
as many nodes are executed before v under PO��� as are
executed before ��v� under �. The lemma follows. tu

2.3.4 Eager Schedules

Lemma 2.4. One can transform any schedule � that enjoys the
ESO, MHB, and PO properties into an eager schedule
EAGER��� that is as fast as � and that enjoys the same
properties.

Proof. We construct schedule EAGER��� from schedule � via
a sequence of applications of a transformation �EAGER

that produces a sequence of schedules,

� � �0;�1; . . . ;�k � EAGER���;
each retaining all of the salient properties and each as
fast as �; moreover, each �i�1 will enjoy the following
additional property. Either �i�1 is eager, in which case,
�i�1 � EAGER���, or the first node that violates eagerness
in �i�1 is farther along the postorder linearization of T n
than is the first violating node in �i.

Let node v be the first node in the PO linearization of
T n that violates eagerness. Let u be the node in C�T n; �i�
that schedule �i executes immediately before v. Trans-
formation �EAGER eliminates this violation of eagerness
by decreasing the AET of v and otherwise leaving
schedule �i unchanged. This results in having schedule
�i�1 agree with �i in all respects, except for the AET of
node v, which is set to

AET�v;�i�1� :� max EET�v; �i�; AET�u; �i� � 1f g:
Easily, schedule �i�1 is as fast as schedule �i. Moreover,
�i�1 inherits from �i both validity and the ESO, PO, and
MHB properties. Finally, the earliest violation of eager-
ness in schedule �i�1 appearsÐif at allÐfurther along
the postorder linearization of T n than node v. Transfor-
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mation �EAGER thus steadily pushes violations of

eagerness farther along the postorder linearization of

the finite tree T n; it must, therefore, ultimately produce

the schedule EAGER���. tu

2.3.5 Persistent Schedules

Lemma 2.5. One can transform any schedule � that enjoys the

ESO, MHB, PO, and eagerness properties into a persistent

schedule PERS��� that is as fast as � and that enjoys the same

properties.

Proof. In the presence of a large gap, we transform � to the

desired persistent schedule PERS��� via a finite sequence

of applications of a transformation �PERS that produces a

sequence of schedules,

� � �0;�1; . . . ;�k � PERS���;
each retaining the ESO, MHB, PO, and eagerness

properties, and each having the following additional

property. Either �i�1 is persistent, in which case

�i�1 � PERS���, or jC�T n; �i�1�j � jC�T n; �i�j � 1. Since

the top-cluster cannot grow in size indefinitely, we are

guaranteed to terminate with a persistent schedule

having no large gaps, which enjoys the other four salient

properties.
We now describe and validate a single application of

transformation �PERS, which produces schedule �i�1

from schedule �i. Find the first node v in the postorder
linearization of T n that is in C�T n; �i� and that has a
large gap, i.e., gap�v; �i� � 1. First, we note that �i's
eagerness ensures that v is a �i-boundary node. Second,
we claim that v is not a leaf node. If it were, then we
would have EET�v; �i� � 0. The eagerness of �i would
then ensure that AET�v; �i� is either 0 or AET�u; �i� � 1,
where u is the the top-cluster node that is executed
immediately before v. In either case, we would have
gap�v; �i� � 0, which contradicts the assumed large gap
at v. With the preceding two facts, we are ready to
transform �i to �i�1, by moving one of v's predecessors
to the top-cluster as follows: Let v0 be the leftmost
external node that is a predecessor of v. Move v0 into the
top-cluster so that C�T n; �i�1� � C�T n; �i� [ fv0g. Assign
AET�v0; �i�1� :� AET�v; �i� ÿ 1 and have �i�1 schedule
both T ��v0�� and T ��v0��Ðif they existÐoptimally.
Finally, have �i�1 agree with �i in all other respects.

It is transparent that �i�1 enjoys the ESO and PO
properties. Let us, therefore, verify its validity and the
MHB property. Since gap�v; �i� � 1 and �i is an eager
schedule, we have

AET�v; �i� � EET�v; �i� � T?�HGT�v� ÿ 1� � �:
We can, therefore, see that �i�1 enjoys the MHB property

from the fact that

AET�v0; �i�1� � AET�v; �i� ÿ 1

� T?�HGT�v� ÿ 1� � � ÿ 1

� T?�HGT�v0�� � � ÿ 1:

The validity of �i�1 follows from the fact that

AET�v0; �i�1� � T?�HGT�v0�� � � ÿ 1 �? �HGT�v0� ÿ 1� � �:
The last inequality uses the elementary fact that, for all
n > 1, T?�n� � T?�nÿ 1� � 1. Finally, one sees easily that
we can make �i�1 an eager schedule by applying
transformation �EAGER repeatedly, all the while main-
taining the ESO, MHB, and PO properties. tu

2.4 Pruning the Search Space for Optimal
Schedules

Lemmas 2.1±2.5 assure us that we can focus our quest for
optimal fine-grain tree-sweep schedules on schedules that
enjoy the five underlying properties of this section.
Summing up the lemmas formally, we have:

Theorem 2.1. One can transform any schedule � to an eager,

persistent schedule �? that is as fast as � and that enjoys the

ESO, MHB, and PO properties.

It follows from Theorem 2.1 that there is an optimal
schedule that enjoys the five ªunderlyingº properties.
Importantly for the development of our efficient scheduling
algorithm in the next section, these five properties actually
narrow down our search for an optimal schedule to a
unique one!

Theroem 2.2. There is precisely one eager, persistent schedule for

a fine-grain complete-binary-tree up-sweep which enjoys the

ESO, MHB, and PO properties.

Proof. We prove that any two schedules, ��1� and ��2�, that

enjoy all five properties must be identical. To this end,

for some arbitrary i, let v
�1�
i (resp., v

�2�
i ) be the ith node to

be executed in the top-cluster of ��1� (resp., of ��2�). We

show by induct ion on i that v
�1�
i � v�2�i , and

AET�v�1�i ; ��1�� � AET�v�2�i ; ��2��.
The base case, i � 1, is immediate by persistence and

the PO property. Being persistent, both ��1� and ��2�

have processor 0 execute the first top-cluster node at
time 0. By the PO property, this first top-cluster node is
the leftmost leaf of T n.

Assume for induction that, for every k � i, the kth

nodes executed under ��1� and ��2� are identical and

have the same AET. We show via two cases that v
�1�
i�1 �

v
�2�
i�1 and that AET�v�1�i�1; ��1�� � AET�v�2�i�1; ��2��.

Assume first that some internal node is eligible for

execution after the first i nodes in the top-cluster have

been executed. (The coincidence of the two schedules to

this point means that this case holds for both schedules if

it holds for either one.) Because of the PO property, there

is exactly one node that is eligible. Thus, both ��1� and

��2� must execute this node next; in other words,

v
�1�
i�1 � v�2�i�1. S i n c e b o t h s c h e d u l e s a r e e a g e r ,

AET�v�1�i�1; ��1�� � AET�v�2�i�1; ��2�� � AET�v�1�i ; ��1�� � 1.

Alternatively, assume that no internal node is eligible

for execution after the first i nodes in the top-cluster have

been executed. As long as v
�1�
i 6� root�T n�, both ��1� and
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��2� must choose a boundary node to execute. Since both

schedules enjoy the MHB property, we must have the

following bounds on execution times. On the one hand,

for node v
�1�
i�1, we have

T?�HGT�v�1�i�1� ÿ 1� � � � aet�v�1�i�1; ��1��
�? �HGT�v�1�i�1�� � � ÿ 1: �1�

On the other hand, for node v�2�, we have

T?�HGT�v�2�i�1� ÿ 1� � � � aet�v�2�i�1; ��2��
�? �HGT�v�2�i�1�� � � ÿ 1: �2�

The bounds in (1) and (2) imply that

HGT�v�1�i�1� � HGT�v�2�i�1�:
Were this not so, the bounds would imply that

jAET�v�1�i�1; ��1�� ÿ AET�v�2�i�1; ��2��j � 1: �3�

However, since both schedules are persistent, if we let A

ambiguously denote AET�v�1�i�1; ��1�� or AET�v�2�i�1; ��2��, we

have

AET�v�1�i ; ��1�� � 1 � A < AET�v�1�i ; ��1�� � 2;

so that

jAET�v�1�i�1; ��1�� ÿ AET�v�2�i�1; ��2��j < 1:

Since this last bound contradicts (3), we conclude that

HGT�v�1�i�1� � HGT�v�2�i�1�. In the presence of the PO property,

this equality of heights implies that v
�1�
i�1 � v�2�i�1. By the

eagerness of both schedules, then,

AET�v�1�i�1; ��1�� � AET�v�2�i�1; ��2��:
Having thus extended the induction, we conclude that

schedules ��1� and ��2� are identical. tu

The upshot of Theorems 2.1 and 2.2 is:

Corollary 2.1. Any eager, persistent schedule for a fine-grain

sweep up a complete binary tree, which enjoys the ESO, MHB,

and PO properties, is optimal in makespan.

3 AN OPTIMAL SCHEDULING ALGORITHM FOR FINE-
GRAIN TREE-SWEEPS

In this section, we specify and analyze the promised linear-

time algorithm that optimally schedules sweeps up fine-

grain complete binary trees. It is quite simple to verify that

the schedules produced by our algorithm are optimal since

the schedules possess the five ªunderlyingº properties of

Section 2.1, hence, are ªcoveredº by Corollary 2.1. Our

algorithm builds on the following elementary fact.

Proposition 3.1. Let � be a schedule for T n that enjoys all five

underlying properties. If v is the leftmost node at some level of

T n, then AET�v; �� � T?�HGT�v�� ÿ 1. In other words, �

schedules subtree T �v� optimally.

Proof. Let v be the leftmost node in T n at some level and let

�0 be schedule � restricted to the nodes in subtree T �v�
i.e., for all u 2 T �v�,

AET�u; �0� � AET�u; ��;
and �u; �0� � �u; ��. Clearly, �0 is persistent; moreover, it

inherits the four other properties from �. Therefore,

Corollary 2.1 assures us that �0 schedules T �v�
optimally. tu

3.1 Description of Algorithm~Fine-Grain

Algorithm Fine-Grain produces an optimal schedule, �opt,

for T n as follows:

1. Scheduling the top-cluster. The algorithm chooses a
sequence of nodes v1; v2; . . . ; vk � root�T n� to
constitute the top-cluster. It then assigns each vi to PE 0

(�vi; �opt� :� 0) and computes AET�vi; �opt� as follows:

1.1. Base step: Choose v1 to be the leftmost leaf of T n
and set AET�v1; �opt� :� 0.

1.2. Inductive step: Say that we have chosen nodes
v1; v2; . . . ; viÿ1 and their respective AETs. Choose
node vi and its AET as follows:
(a) If some node v is eligible for execution4Ði.e.,

both of v's predecessors have been assigned
AETsÐthen choose v as vi and set
AET�v1; �opt� :� AET�viÿ1; �opt� � 1. Note that, in
this case, vi must equal ��viÿ1�.

(b) If no node is eligible for execution, then choose
vi to be a new boundary node that satisfies the
MHB property, in the following way:
(i) Choose the height hi (at which we shall select
vi) to be the smallest value of ` that satisfies
the following constraint:

AET�viÿ1; �opt� � T?�`� � � ÿ 2: (4)
Then choose vi to by the leftmost node of T n
at height hi that has not yet been assigned
an AET.

In greater detail, we proceed as follows. Let
vj be the last boundary node scheduled
before vi, and let hj � HGT�vj�. We
consecutively set ` to hj; hj � 1; . . . , until we
find a height ` that satisfies (4). Now, in
order to perform this search, we need to
compute T?�`� for each
` 2 fhj; hj � 1; . . . ; hig. Since vi is not the first
boundary node to be scheduled, it is never
the leftmost node of T n at its level. Thus,
when we choose node vi, we already know
the AET's of the leftmost nodes at all heights hi
and below. Proposition 3.1 allows us to use
these AET's to compute the relevant T?�`�.
After we determine hi, we can find the node
vi in constant time, as long as we maintain an
array that points to the leftmost unscheduled
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node at each level of T n. We update this
array every time a new node is assigned
an AET.

(ii) Set5
AET�vi; �opt� :

� maxfAET�viÿ1; �opt� � 1;? �hi ÿ 1� � �g.

2. Scheduling the external trees. We turn now to the nodes
of T n that do not reside in the top-cluster. We schedule
the external subtrees of T n in nondecreasing order of
height and in left-to-right order of their roots, as follows:
Let v be the root of an external subtree T �v�, and let v0 be
the leftmost node of T n at height HGT�v�. We schedule
T �v� on a set of processors that are used nowhere else by
�opt. We set the AET of each node in T �v� to coincide with
the AET of the corresponding node of T �v0�. This
scheduling is possible because of the order in which we
schedule external trees: all nodes of T �v0� have been
scheduled before we begin to scheduling subtree T �v�.

The schedules produced by Algorithm Fine-Grain may

leave some boundary nodes in the top-cluster with only one

external predecessor. If desired, one can invoke

Proposition 2.1 to remedy this situation.

3.2 Verification and Analysis of Algorithm Fine-
Grain

We show first that Algorithm Fine-Grain's schedules

possess the five underlying properties, hence are optimal.

Theorem 3.1. Schedule �opt is optimal.

Proof. We comment on each of the five underlying

properties in turn.

First, �opt enjoys the ESO property because of

Proposition 3.1 and the fact that Algorithm Fine-Grain

schedules each external subtree in the same manner as

the leftmost subtree of T n of the same height. The MHB

property is ensured by the constraint imposed by

inequality (4). The PO property results from the facts

that each internal node is scheduled as soon as it is

eligible (Step 1.2.a) and that boundary nodes are chosen

to be the leftmost unscheduled nodes at their respective

heights (Step 1.2.b.i). Eagerness and persistence follow

from the fact that processor 0 starts executing at time 0

(Step 1.1) and from the manner in which AETs are

assigned to successive nodes (Steps 1.2.a and 1.2.b.ii).
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5. Here again, we compute the value of T?�hi ÿ 1� from the AET of the
leftmost node at height hi ÿ 1.



We now invoke Corollary 2.1 to conclude the
optimality of �opt. tu

Next, we analyze the computational complexity of

Algorithm Fine-Grain, proving that it operates in time

linear in the size of the input tree.

Theorem 3.2. For all tree-heights n, Algorithm Fine-Grain

generates an optimal schedule for a fine-grain up-sweep of T n
in time O�2n�, i.e., in time linear in �T n�.

Proof. We maintain an array to store information (such as

AET's) about each node of T n. The nodes of T n are

numbered in breadth-first-search order and the ith

numbered node is mapped to the ith slot of the array.

Note that the following queries can be executed in

constant time: 1) given node u, find the location of its

predecessors and successor in the array; 2) given a height

`, find the location of the leftmost node at height ` in the

array. Now, we bound the time spent on each step of the

algorithm.

. The initialization in Step 1.1 takes constant time.

. Each execution of Step 1.2.a to schedule a new
internal node takes constant time. Since Step 1.2.a
is executed at most jC�T n; �PO�j times, the total
time spent on this step is proportional to
jC�T n; �PO�j, hence is O�2n�.

. We bound the total time spent on Step 1.2.b by
bounding the total number of times (4) is tested.
Now, whenever we find a value of ` that satisfies
the inequality, we create a new boundary node.
Moreover, if a value of ` fails to satisfy the
inequality, then we never try that value of ` again.
Thus, the number of times that (4) is tested is no
greater than n (the height of T n) plus the number
of boundary nodes. This total is thus propor-
tional to jC�T n; �PO�j, hence is O�2n�.

. Step 2 consists entirely of copying information
from one node to another, which clearly takes
constant time per node. Therefore, the total time
spent in Step 2 is O�2n�.

The running time Algorithm Fine-Grain is the sum of all

the above bounds, hence is clearly O�2n�. tu
3.3 An Empirical Evaluation of Algorithm Fine-Grain

The analysis of Algorithm Fine-Grain in Section 3.2 shows

that it produces optimal schedules, but gives no informa-

tion about how much the algorithm actually improves

previously known fine-grain tree-sweep schedules. As we

note in Section 1.1, the best we can hope for is a factor-of-2

speedup since the schedules produced by Algorithm P.Y

are within a factor of 2 of optimal.
In order to gauge the actual quality of Algorithm Fine-

Grain, we compare the schedules it produces with those

produced by Algorithm P.Y, for a variety of tree-sizes and

values of � . Our results indicate that, at least for large trees

and large values of � , the schedules produced by Algorithm

Fine-Grain actually do approach being twice as fast as

those produced by Algorithm P.Y.

Our simulations compare the actual performance of a C-
program implementation of Algorithm Fine-Grain with the
easily derived explicit expression for

TP:Y �n� �def MKSPN�T n; �P:Y �:
Fig. 2 illustrates the results of the simulations, exhibiting
the functions T?�T n� and TP:Y �T n� for the cases � �
128; 256; 512; 1; 000 and n 2 f1; 2; . . . ; 40g. The plots indi-
cate that, even for moderate values of n and � , the
makespan of �opt is a fraction of that of �P:Y and,
moreover, that the fraction seems to approach 1=2 as n
and � increase. Further analysis shows that T?�T n�,
considered as a function of n, is ªalmost linear,º
exhibiting a ªslopeº that is periodic with lengthening
periods. Comparing the ªslopeº with the analytical
behavior of TP:Y �n�, as a function of n, strengthens our
belief that T?�T n� tends to 1

2TP:Y �T n� for large n and � .
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