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This paper analyzes the impact of virtual channels on the performance of
wormhole routing algorithms. We study wormhole routing on network in
which each physical channel, i.e., communication link, can support up to B
virtual channels. We show that it is possible to route any set of messages with
L flits each, whose paths have congestion C and dilation D in O((L+
D) C(D log D)1�B�B) flit steps, where a flit step is the time taken to transmit
B flits, i.e., one flit per virtual channel, across a physical channel. We also
prove a nearly matching lower bound; i.e., for any values of C, D, B, and L,
where C, D�B+1 and L=(1+0(1)) D, we show how to construct a
network and a set of L-flit messages whose paths have congestion C and dila-
tion D that require 0(LCD1�B�B) flit steps to route. These upper and lower
bounds imply that increasing the buffering capacity and the bandwidth of
each physical channel by a factor of B can speed up a wormhole routing
algorithm by a superlinear factor, i.e., a factor significantly larger than B. We
also present a simple randomized wormhole routing algorithm for the but-
terfly network. The algorithm routes any q-relation on the inputs and outputs
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of an n-input butterfly in O(L(q+log n) log1�B n log log(qn)�B) flit steps. We
present a nearly-matching lower bound that holds for a broad class of
algorithms. � 2001 Academic Press

1. INTRODUCTION

Wormhole routing has become the routing method of choice in the latest genera-
tion of parallel computers, including experimental machines such as iWarp [8] and
the J-Machine [37], and commercial machines such as the Intel Paragon, Cray
T3D [23], and Connection Machine CM-5 [31].

In a wormhole router, the bits in a message are grouped into a sequence of flits,
where a flit is the smallest unit of information that can be buffered at a node of the
network. Typically the number of bits in a flit is small. The message is viewed as
a worm that traverses the network in a flit-serial fashion. The header flit or flits,
which specify the route that the message will take, proceed first. As the header flits
pass through a switch, they set up a connection between the incoming channel on
which they arrived and an outgoing channel on which they leave. The remainder of
the flits contain no routing information. Instead, it is the responsibility of the switch
to forward them from the incoming channel to the outgoing channel. As the header
flits work their way through the network, the flits following behind become spread
out across the network.

In order to keep the size of the switches small in a wormhole router, the capacity
of each switch to buffer flits is limited to one flit per incoming channel. Because a
switch cannot identify which message a flit belongs to from its contents, the flits of
a message must arrive on the incoming channel in a contiguous fashion. Further-
more, since a switch can only buffer one flit of a message, if the header flit of a
message cannot advance then the flits following the header must stall.

A natural generalization of wormhole routing is to allow a switch to buffer more
than one flit per message, perhaps even allowing-it to buffer an entire message. This
approach is called virtual cut-through routing [21], and predates wormhole routing.
In wormhole or virtual cut-through routing it is customary to measure time in flit
steps, where a flit step is the time taken to transmit one flit across a single link.4

A third common routing method is store-and forward routing. In a store-and-
forward router, a switch must store an entire message before it can forward any
part of that message along the next edge on its route. Hence, a message can be
viewed as making discrete hops from switch to switch as it traverses its path. The
time taken to transmit an entire message across a single link is called a message
step. Note that if a message is L flits long, a message step equals L flit steps.

Wormhole and virtual cut-through routing have several advantages over store-
and-forward routing. In a store-and-forward router, if a message traverses a path
of length D, and is never delayed, then it will reach its destination in D message
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steps, which equals LD flit steps. In a wormhole (or virtual cut-through) router,
however, the header flit does not wait for the rest of the message. Assuming that
the header flit is never delayed, it arrives at its destination after D flit steps, and the
last flit of the message arrives after D+L&1 flit steps. The difference in time is due
to the better utilization of network edges by the wormhole router; in a wormhole
router, multiple edges of the network can simultaneously transmit flits belonging to
a single message, whereas in the store-and-forward algorithm only one edge can
transmit a flit of the message at any time. In addition to reduced latency, wormhole
routing also has the advantage that it can be implemented with small, fast switches.

Wormhole routing owes much of its recent popularity to an influential paper by
Dally and Seitz [14], which introduced the method. Much of the paper by Dally
and Seitz is devoted to the design of wormhole routing algorithms that avoid
deadlock. A wormhole routing algorithm can deadlock if the header flit of every
worm is prevented from moving because the buffer that it wants to enter is full. For
example, a pair of worms can deadlock if the head of the first worm wants to enter
a buffer occupied by the tail of the second worm, and vice versa. The solution to
this problem in the paper by Dally and Seitz is to allow each physical channel to
emulate several virtual channels and to construct a virtual network in which the
worms cannot form cycles. The virtual channels share the physical wire (or wires)
provided by the physical channel, but the switch maintains a separate buffer for
each virtual channel. This solution has also been implemented in hardware. For
example, each physical channel of the iWarp machine supports four virtual
channels, and each physical channel of the J-Machine supports two virtual
channels.

This paper provides a rigorous and quantitative analysis of the impact of virtual
channels on the speed of a wormhole router. We make no queuing-theory assump-
tions about the independence of the behavior of the switches in the network. We
present two types of results: those that hold for networks with arbitrary topologies,
and those that hold for butterfly networks. In both cases, we show that allowing
each physical channel to emulate B virtual channels can yield a speed, up that is
larger than linear in B. These analytical results suggest to the practical network
designer that adding even a small number of virtual channels to a wormhole
network can disproportionately enhance the routing performance of the network.

1.1. Congestion, Dilation, Message Length, and Virtual Channels

Throughout this paper we express the performance of routing algorithms in terms
of four parameters: congestion, dilation, message length, and buffer size. The con-
gestion and dilation of a set of messages are properties of the paths taken by those
messages. We will generally decouple the process of selecting paths for the messages
from the process of scheduling the movements of the messages along their paths.
The congestion C of a set of messages is the maximum number of messages that
traverse any edge of the network. The dilation D is the length of the longest path
taken by a message. The message length L is simply the number of flits in each
message, including the header flit that contains information required to route the
message through the network.
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Further, we assume that each physical channel (or edge) of the network supports
B virtual channels. A flit that is transmitted across an edge of the network is stored
in a buffer at the head of that edge. Each buffer can hold a maximum of B flits, each
flit belonging to a different message. Further, in a single flit step, one flit can be
transmitted across each of the B virtual channels multiplexed over a physical
channel. The header flit of a message cannot be transmitted across an edge if there
is no buffer space available at the head of that edge. In this case, the flits of the
message are stalled and the message is said to be blocked.

Each message is initially stored at its source node in an injection buffer that is
external to the network. The message is injected by the source node one flit at a
time into the network. As soon as a flit reaches its destination node, the flit is
removed from the network and stored in a delivery buffer that is also external to
the network. The injection buffers and the delivery buffers are assumed to be
sufficiently large to store messages in their entirety.

1.2. The Butterfly Network

Some of the results in this paper apply to a popular type of multistage intercon-
nection network called a butterfly network. Figure 1 shows an eight-input butterfly
network. We use the following terminology to describe butterfly networks. An
n-input butterfly has n(log n+1) nodes arranged in log n+1 levels of n nodes each.
(Throughout this paper we use log n to denote log2 n.) Each node has a distinct
label (w, i) where i is the level of the node (0�i�log n) and w is a log n-bit
binary number that denotes the column of the node. All nodes of the form (w, i) ,
0�i�log n, are said to belong to column w. Two nodes (w, i) and (w$, i $) are
linked by an edge if i $=i+1 and either w and w$ are identical or w and w$ differ
only in the bit in position i $. (The bit positions are numbered 1 through log n.) The
nodes on level 0 are called the inputs of the network, and the nodes on level log n
are called the outputs. Level 0 is the top of the butterfly, and level log n is the
bottom. Sometimes the level 0 and log n nodes in each column are assumed to be
the same node. In this case, the butterfly is said to wrap around.

FIG. 1. An eight-input butterfly network.
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We study two canonical routing problems on butterfly networks: the q-relation
routing problem and the random routing problem with q messages per input. In a
q-relation routing problem at most q messages originate at each input and at most
q messages are destined for each output. The special case of q=1 is called permuta-
tion routing. In a random routing problem with q messages per input, each of the
q messages at each of the inputs independently selects a random output as its
destination.

1.3. Previous and Related Research

There is a vast literature devoted to the subject of routing messages in networks.
For a broader treatment of the subject, see the survey paper by Leighton [28] or
his book [25]. In what follows we describe only the research most closely related
to this paper.

1.3.1. Network-independent algorithms. The idea of decoupling the path selec-
tion process from the scheduling process, and then analyzing the scheduling process
alone, was first used by Leighton, Maggs, and Rao [27]. They proved that for any
set of messages whose paths are edge-simple (i.e., no path uses the same edge more
than once) and have congestion C and dilation D, there is a store-and-forward
schedule that routes the messages in O(C+D) message steps and never stores more
than a constant number of messages in the buffer at the head of an edge. The
O(C+D) bound improves on the naive O(CD) bound and is optimal. Since a
message step equals L flit steps, the bound translates to O(L(C+D)) flit steps,
which is optimal for flit-serial routing when C>D (because some edge must trans-
mit LC flits). Note that there is no restriction on the structure of the network and
that the size of the network and number of messages do not appear in the running
time. The proof used the Lova� sz local lemma (LLL) and was nonconstructive: i.e.,
the proof shows the existence of a schedule without providing an efficient algorithm
for actually computing the schedule. Leighton et al. also devised a simple ran-
domized online store-and-forward algorithm that routes n messages in O(C+
D log n) message steps, with high probability. Scheideler recently presented in [42]
an alternative simpler proof of the existence of O(C+D)-step schedules that only
require edge buffers of size 2.

The O(C+D) bound of Leighton et al. was followed by a number of algorithmic
results. For the special case of leveled networks, Leighton, Maggs, Ranade, and
Rao [26] presented a simple online store-and-forward algorithm for routing any
set of n messages in a leveled network with depth D in O(C+D+log n) message
steps. In a leveled network with depth D, each node is labeled with an integer
between 0 and D, and each edge with its tail on level i, 0�i<D, has its head on
level i+1. Mansour and Patt-Shamir [33] then showed that, in any network, if
messages are routed greedily on shortest paths, then all of the messages reach their
destinations within D+n&1 message steps, where n is the total number of
messages. These schedules may be much longer than optimal, however, because n
may be much larger than C. Meyer auf der Heide and Vo� cking [35] later devised
a simple online randomized algorithm that routes all messages to their destinations
in O(C+D+log n) message steps, with high probability, provided that the paths
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taken by the messages are shortcut free (e.g., shortest paths). Recently, Leighton,
Maggs, and Richa [29, 30] discovered a sequential algorithm for finding a store-
and-forward routing schedule of length O(C+D) on any network. The algorithm
is based on the techniques of Beck [5] and Alon [2] for making the Lova� sz local
lemma constructive. It uses information about the entire network and all of the
messages and runs in O(P log1+= P log*(C+D)) time, for any fixed =>0, where P
is the sum of the lengths of the paths taken by the messages.

Recent advances in online local control algorithms for universal store-and-
forward routing include the work of Rabani and Tardos [40] and Ostrovsky and
Rabani [38]. Ostrovsky and Rabani improve on the results in [40] by presenting
a randomized online algorithm that delivers all the messages to their destinations
in O(C+D+log1+= n) message steps with high probability, for arbitrary =>0.

The universal store-and-forward message routing results outlined so far deal only
with the problem of scheduling messages after paths have been chosen for each
message. Srinivasan and Teo [46] show how to select paths, given the source and
destination for each message, so that the value of C+D is the smallest possible to
within constant factors. (Finding the exact minimum value of C+D is NP-hard.)
This result in conjunction with the results in [29, 30] yields the first offline algo-
rithm for routing messages, given only the sources and the destinations of the
messages, in time that is a constant factor from optimal using constant-sized
buffers.

In contrast with store-and-forward routing, there is relatively little prior work on
network independent wormhole routing algorithms. Greenberg and Oh [19] were
the first to state nontrivial network-independent wormhole routing results in terms
of L, C, and D. They created a randomized algorithm that takes O(lCD+
lCL log n) flit steps, where l=min[L, D], provided the paths of any two messages
intersect in at most one contiguous sequence of edges and the channel dependency
graph is acyclic to avoid deadlocks. Ranade et al. [41] then showed that on any
leveled network, any set of L-flit messages whose paths have congestion C and dila-
tion D can be routed in O(LCD) flit steps. The O(LCD) bound improves on the
naive O((L+D) CD) bound.5 Neither of these papers considered the case where the
network has multiple virtual channels, i.e., B>1.

Cypher et al. [13] have recently independently proved a number of results that
are closely related, and in some cases superior, to the results in this paper. They
give a simple randomized algorithm for routing n messages in O((LCD1�B+
(L+D) log n)�B) flit steps, for any B�log n. It is worth noting that their algorithm
is online, in the sense that it can easily be performed by the network switches them-
selves, whereas the network-independent algorithm described in this paper is not
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online. While the bounds on the running time obtained by Cypher et al. are supe-
rior to our bounds for some ranges of the parameters L, C, D, B, and n, our bounds
are superior to theirs for other ranges of the parameters. The techniques used in the
two papers to design network-independent algorithms are very different and are of
independent interest.

Scheideler and Vo� cking [43] have also recently shown that the same factor of
D1�B appears in the maximum injection rate for continuous wormhole routing algo-
rithms. A continuous routing algorithm is one that accepts packets that are ran-
domly generated over time according to a Poisson process. The algorithms
described in this paper, which are designed to route a batch of packets, are not con-
tinuous.

1.3.2. Network-independent lower bounds. In a classic paper, Borodin and
Hopcroft [9] proved that any deterministic oblivious store-and-forward algorithm
must take a least 0(- n�d 3) message steps to route some permutation on any
n-node degree d network. An oblivious routing algorithm is one in which every
message's path is determined solely by its origin and destination and not by the
actions taken by other messages. The Borodin�Hopcroft lower bound was later
improved to 0(- n�d ) by Kaklamanis et al. [20]. These congestion-based bounds
for store-and-forward routing can be translated to lower bounds (in flit steps) for
oblivious wormhole routing algorithms simply by multiplying the time bound by
the factor L�B, where L is the message length in flits and B is the number of virtual
channels, e.g., the Kaklamanis et al. bounds become 0(L - n�(dB)) flit steps.

The Borodin�Hopcroft lower bound was extended to randomized oblivious algo-
rithms by Aiello et al. [1]. The result of [1] adapted to our model implies that on
any degree-d network, almost all permutations require 0(log n�(log d+log log n))
message steps, or 0(L log n�(B(log d+log log n))) flit steps. For constant-degree
networks such as the butterfly, this bound is 0(L log n�(B log log n)) flit steps.
Borodin et al. [10] later showed that for d�n�log3 n, any oblivious randomized
single-port permutation routing algorithm requires 0(logd n+log n�log log n)
message steps, on average. The bound from [10] is stronger than the bound from
[1] when d is large.

For wormhole routing, Ranade, Schleimer, and Wilkerson [41] showed how to
construct a network with B=1, and a set of L-flit messages whose paths have con-
gestion C and dilation D in which the optimal wormhole routing schedule requires
0(LCD) flit steps. Hence, in this example store-and-forward routing, which requires
at most O(L(C+D)) flit steps, is more efficient than wormhole routing.

As a point of contrast with our paper, Cypher et al. [13] do not present a
network-independent lower bound.

1.3.3. Routing on butterfly networks. A large number of store-and-forward algo-
rithms have been designed for butterfly networks. Since this paper presents no new
results in this area, we will not review the previous results. Descriptions of several
of the algorithms can be found in [25, 28]. Instead, we focus on algorithms for
wormhole routing.

In two early papers, Beizer [6] and Benes� [7] showed that it is possible to route
edge-disjoint paths between the inputs and outputs of a Benes� network in any
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permutation. A Benes� network is simply two back-to-back butterfly networks.
Waksman [48] gave an elegant linear time algorithm for determining how the
nodes should be set in order to realize any particular permutation. Waksman's
algorithm can be used for wormhole routing. It shows how to route any permuta-
tion of n L-flit messages in O(L+log n) flit steps, or any q-relation in O(qL+log n)
flit steps. This algorithm was implemented on the IBM GF-11 parallel computer.
Waksman's algorithm, however, uses global knowledge of the permutation in order
to set the switches of the network.

The next few results deal with the problem of circuit-switching on a butterfly
network. In a circuit-switched network, each message must lock-down a dedicated
path from its input node to its output node before it can be transmitted.

Kruskal and Snir [24] showed that if each input in an n-input circuit-switched
butterfly network sends a message to a randomly-chosen output, and at most one
message can use any edge of the network, then the expected number of messages
that reach their destinations (i.e., succeed in locking-down paths) is 3(n�log n).

Koch [22] generalized the result of Kruskal and Snir by showing that if each
edge can support B messages, then the expected fraction of messages that get
through is 3(n�log1�B n). Thus, Koch observed in the context of circuit-switching
that increasing the capacity of each edge by a constant factor may increase the per-
formance of a routing algorithm by more than a constant factor. Koch's work was
motivated by the fact that on the BBN Butterfly parallel computer [4], B=2. Note
that in this paper we show similar superlinear resource-performance trade-offs for
wormhole routing.

Maggs and Sitaraman [32] generalized the previous two results by showing that
by making two passes through a butterfly it is possible to route a 3(n�log1�B n) frac-
tion of any permutation (rather than only a random permutation), with high
probability.

Some results derived in the context of circuit-switching can be readily adapted to
wormhole routing. In Problem 3.285 of [25], Leighton describes an algorithm for
solving a random routing problem in which each input has one L-flit message to
send. The algorithm runs in O((L+log n) log n) flit steps. In Problem 3.286, he
observes that the algorithm can be converted to one that routes any permutation
using Valiant's idea [47] of first routing to random intermediate destinations. For
the interesting case of L=O(log n), the time is O(log2 n) flit steps. The algorithm
can easily be generalized to the case q>1 and runs in O(q(L+log n) log n) flit
steps. For the interesting case of L=O(log n) and q=log n, the time is O(log3 n)
flit steps.

Felperin et al. [18] independently discovered an O(log4 n) flit step algorithm for
solving a random problem for the case L=O(log n) and q=log n, and then Ranade
et al. [41] discovered an O(log3 nlog log n) flit step algorithm.

Ranade et al. also proved an 0(log3 n�(log log n)2) lower bound on the number
of flit steps required for a wormhole routing algorithm to route a log n-relation
when L=log n and B=1. This lower bound is nearly tight.

Cypher et al. [13] recently independently described a randomized algorithm that
requires O((qL log1�B n+log(qn) log n)�B) flit steps, with high probability, to route
q worms from each input to random outputs, assuming that each edge can
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simultaneously transmit flits from B messages. They also proved an 0((qL log1�B

n(log log n)&2�B)�B) flit step lower bound. Both these bounds are similar to the
bounds we prove in this paper.

1.3.4. Other wormhole routing algorithms. Following the paper by Dally and
Seitz, many papers were written on the subject of wormhole routing. Most of these
can be placed into one of the following four categories:

1. papers that describe implementations of wormhole routing switches,

2. papers that make queuing-theory independence assumptions to analyze the
performance of wormhole routing algorithms, and validate the analysis via simula-
tions,

3. papers that describe deadlock-free wormhole routing algorithms, and

4. papers that prove rigorous worst-case bounds on the running times of
wormhole routing algorithms.

In the first category Seitz et al. describe the architecture of the Ametek Series
2010 Multicomputer [44], and Dally and Seitz [17] describe the Torus Routing
Chip.

In the second category, two of the most influential papers were written by Dally
[15, 16]. The first analyzes the behavior of wormhole routing algorithms for k-ary
n-cubes. The second analyzes the effect of virtual channels on the throughput of
multistage networks.

In the third category, several types of deadlock-free algorithms have been
devised. A minimal algorithm is one in which messages travel only along shortest
paths. An adaptive routing algorithm is one in which the path taken by a message
may depend on the actions of the other messages in the network. (In contrast to
an oblivious routing algorithm.) A fully-adaptive minimal algorithm is one that con-
siders every possible shortest path for a message. Minimal deadlock-free algorithms
have been designed for de Bruijn and shuffle-exchange networks [11]. Fully-adap-
tive minimal deadlock-free algorithms have been devised for trees [34], meshes
[39], toruses [12], and hypercubes [39].

In the last category, wormhole routing algorithms have been designed for hyper-
cubes, multibutterflies, trees, and meshes with constant dimension. (A mesh with
constant dimension is a k-ary n-cube where n is a constant.)

On the hypercube network, Aiello et al. [1] devised a randomized algorithm for
routing n L-flit messages on an n-node hypercube in any permutation in
O(L+log n) flit steps. The algorithm requires the number of virtual channels to be
a small constant larger than one and assumes that each hypercube node can service
all log n of its edges simultaneously.

On the multibutterfly network, Arora et al. [3] devised an algorithm for routing
n L-flit messages from the inputs to the outputs of an n-input network in
O(L+log n) flit steps. The algorithm can also be applied to a multi-Benes� network
(two back-to-back multibutterfly networks), which is a nonblocking network.

On trees and meshes with constant dimension, Ranade et al. [41] presented off-
line algorithms for routing in O(LC+D) flit steps. The lengths of the schedules
produced by these algorithms are optimal.
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1.4. Our Results

Our most general result is a proof that if each edge can queue up to B message
flits, then it is possible to route any set of L-flit messages whose paths are edge
simple and have congestion C and dilation D in

(L+D) C(D log D)1�2�B

flit steps. The proof is nonconstructive, but can be made constructive using the
techniques in [29, 30]. The algorithm uses information about the entire network
and all of the messages in order to find a routing schedule. Hence, it is not an
online algorithm. We also prove a nearly matching lower bound; i.e., for any values
of C, D, B, and L, where C, D�B+1 and L=(1+0(1)) D, we show how to con-
struct a network and a set of paths with congestion C and dilation D and a set of
L-flit messages that require 0(LCD1�B�B) flit steps to route. The proof of our lower
bound is a generalization of the 0(LCD) lower bound proved by Ranade et al. for
the case B=1. These nearly matching upper and lower bounds imply that increas-
ing the queueing capacity of each edge can speed up a wormhole routing algorithm
by a superlinear factor, an observation that was first made by Koch [22] for cir-
cuit-switching on the butterfly.

For the butterfly, we present a simple randomized wormhole routing algorithm.
The algorithm routes a q-relation on the inputs and outputs of an n-input butterfly
in O(L(q+log n)(log1�B n) log log(qn)�B) flit steps, when B�log log n�log log log n.
The algorithm has the same performance (to within small factors) as the fastest pre-
viously known algorithms when B=1 and q=log n, but is faster by a factor of
about B log1&1�B n for 1<B�log log n�log log log n. We present a nearly matching
lower bound that holds for a broad class of algorithms. (Our algorithm, however,
does not fall into this class.)

For the case L=log n, q=log n, and B=1, the lower bound of Ranade et al. is
0(log3 n�(log log n)2) flit steps, but several known store-and-forward routing algo-
rithms run in O(log2 n) flit steps (see Leighton [25]). Hence, the store-and-forward
algorithms are faster. The switches executing the store-and-forward algorithms,
however, must each have the capacity to buffer an entire message, i.e., 0(log n) flits.
For B=log log n�log log log n, the time for our wormhole routing algorithm drops
to O(log2 n log log n log log log n). Hence, a wormhole routing algorithm can
achieve nearly the same time bound as the store-and-forward algorithm, while
buffering at most log log n�log log log n flits at the end of each edge.

For a fixed amount of buffer space, it is also interesting to compare the perfor-
mance of a wormhole router with virtual channels to a virtual cut-through router.
Suppose that for each incoming edge, a switch in the wormhole router can store up
to one flit from each of B different messages and that in the virtual cut-through
router, for each incoming edge, a switch can store up to B flits from a single
message. The performance of the virtual cut-through router will be roughly equiv-
alent to the performance of a wormhole router in which there are no virtual
channels, but in which the messages have length L�B, rather than L. Hence the
speedup is linear in B. In the wormhole router with virtual channels, however, the
speedup is BD1&1�B, which can be much larger when B is small and D is large.
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Remarks. The algorithms presented in these papers also hold for a slightly dif-
ferent model of virtual channels where each switch can buffer B flits but each switch
can forward only one flit per time step (as opposed to B flits per time step). In this
model, the buffering is increased by a factor of B (in comparison with a network
with no virtual channels), but the bandwidth of the links remain the same. The two
algorithms presented in this paper can be emulated in this more restrictive model
with a slowdown of a factor of B. Interpreting the results in this restricted model,
our work implies that increasing the size of the buffers alone by a factor of B
decreases the running time bound of our network-independent (resp., butterfly)
routing algorithm by a factor of about D1&1�B (resp., log1&1�B n). Note that this
factor could be larger than B yielding a superlinear benefit.

1.5. Outline

The remainder of this paper is organized as follows. Section 2 presents the results
for general networks. Section 3 presents the results for butterfly networks.

2. NETWORK INDEPENDENT ANALYSIS

In Section 2.1 we provide offline algorithms for wormhole routing and bound
their routing times in terms of the parameters L, C, D, and B.

In Section 2.2 we show that there exists a routing problem that requires at least
0(LCD1�B�B) bit steps to route. The lower bound closely matches the upper bounds
derived in Section 2.1.

2.1. Upper Bounds on Schedule Length

The method used is to partition the messages by coloring them. Successive collec-
tions of messages of a given color are released at times separated by time intervals
of ``sufficient'' length so that messages with different colors do not ``interfere'' with
each other. Our goal is to produce a coloring so that at most B messages of the
same color use any given edge. This provides a schedule where the messages make
progress without getting blocked, since B messages can be multiplexed over any
given edge at any given time step.

The coloring is obtained by repeated refinement. Each step of the construction
uses the Lova� sz local lemma [45, pp. 57�58] outlined below.

Lemma 2.1.1 (Lova� sz). Let A1 , ..., ar be a set of ``bad '' events, each occurring
with probability at most q. Suppose that every bad event depends on at most b other
bad events (i.e., every bad event is mutually independent of some set of r&b other bad
events). If 4qb<1, then the probability that no bad event occurs is nonzero.

To derive bounds on the probability that a random variable deviates from its
expectation we use the following version of the Chernoff bound [36, pp. 72�73].
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Lemma 2.1.2 (Chernoff). Let X1 , X2 , ..., Xn be independent Bernoulli trials such
that for 1�i�n, Pr[Xi=1]= p and Pr[xi=0]=1& p. Then, for X=�n

i=1 Xi ,
+=E[X]=np, and any 0<$�1,

Pr[X>(1+$) +]<e&+$2�3.

The following definitions will be helpful.

Definition 2.1.3. A color class consists of all messages of a given color.

Definition 2.1.4. Given a set S of messages with a color assigned to each
message in S, the multiplex size of S is the maximum over all edges and all color
classes of the number of messages in a color class crossing an edge.

Initially, all messages are placed in a single color class, so the messages have mul-
tiplex size C. Our goal is to reduce the multiplex size from C to B by iteratively
applying the following lemma.

Lemma 2.1.5 (Color Refinement). Given a collection of messages with multiplex
size at most ms , it is possible to partition each original color class into r new color
classes so that the multiplex size is at most mf , provided that one of the following
conditions hold.

1. log D�ms>B, mf=B, and r=3e(D } ms)
1�B ms �B.

2. D�ms>log D, mf=log D, and r=32ems�log D.

3. ms>D, mf=max[D, 15 ln3 ms], and r=ms�((1&(1�ln ms)) mf).

Proof. Each original color class is partitioned into r new color classes in the
following fashion. (Note that the r new colors used to refine an original color class
are distinct from the new colors used to refine other original color classes.) Each
message in the original color class is equally likely to be placed in any of the r new
color classes and the choice for each message is independent of the choices made
for any other message.

We show that there exists a coloring with multiplex size mf by using
Lemma 2.1.1. For each new color class and edge of the network, we say that a bad
event has occurred if more than mf messages of that color class use that edge. Let
the probability of a bad event be q. The occurrence of a bad event gives information
about the colors of at most ms messages. Since each of these messages use at most
D edges, each bad event influences at most b=ms } D other bad events. Therefore,
it suffices to show that in each of three cases 4qms D<1. It follows from
Lemma 2.1.1 that the probability that no bad event occurs is nonzero.

Case 1 (log D�ms>B, mf=B, and r=3e(D } ms)
1�B ms �B). The probability q

of a bad event is at most ( ms
mf

)�rmf. It follows that

4qb�4 \ms

mf + msD�rmf�4 \mse
mf +

mf

msD�rmf=4�3B<1,
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provided B>1. When B=1,

4qb�4 \ms

mf + msD�rmf=4m2
s D�(3em2

s D)<1.

Case 2 (D�ms>log D, mf=log D, and r=32ems�log D). As before, we bound
the probability q of a bad event to be at most ( ms

mf
)�rmf. It follows that

4qb�4 \mse
mf +

mf

msD�rmf�4msD�D5<1,

provided D�2.

Case 3 (ms>D, mf=max[D, 15 ln3 ms], and r=ms�((1&(1�ln ms)) mf)). Unlike
the first two cases, we use Lemma 2.1.2 to bound the probability q of a bad event.
The number of messages of a new color class that use a specific edge can be viewed
as a sum of at most ms independent Bernoulli trials with probability p=1�r and
mean + at most ms �r. Therefore, the probability q that a bad event occurs, i.e., the
probability that more than mf messages of a color class use an edge, is at most
e&+$2�3, where $=mf �+&1. Thus,

4qb�4e&+$2�3msD�4e&(mf &+) $�3msD�4e&mf �3 ln 2 msmsD.

Since mf�15 ln3 ms , the above bound is at most

4e&5 ln msmsD�4m&5
s msD<1,

since ms>D�1.
Therefore, applying Lemma 2.1.1, it follows that the probability that no bad

event occurs is nonzero in all three cases. The lemma follows. K

In the following theorem, we assume that C>B, since otherwise all messages can
be routed simultaneously without conflict in L+D&1 flit steps.

Theorem 2.1.6. Given a routing problem with parameters L, C, D, and B such
that C>B, there is a wormhole routing schedule of length

1. O((L+D) C(D } C)1�B�B) flit steps, for C�log D, and

2. O((L+D) C(D log D)1�B�B), for C>log D.

Proof. Initially, all messages are placed in a single color class. So the messages
have multiplex size C. Then, we reduce the multiplex size from C to B by iteratively
applying Lemma 2.1.5. Finally, we route each color class such that messages in dif-
ferent color classes do not interfere with each other. Since at most B messages of
a given color use any edge, all the messages in a given color class can be routed
simultaneously without any message being blocked. A message that is never
blocked takes at most (L+D&1) flit steps to complete routing, since the header
flit takes at most D flit steps to reach its destination and L&1 more flit steps are
required for the other flits to reach the destination. Thus, we start routing the
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messages in the i th color class at time (i&1)(L+D&1) and we can complete rout-
ing all the messages in time }(L+D&1), where } is the total number of color
classes.

We compute the number of color classes } and the resultant schedule length for
each of the following cases.

Case 1 (C�log D). In this case, we set ms=C, mf=B, and r=3e(D } C)1�B C�B
and apply condition 1 of Lemma 2.1.5. The length of the schedule that we obtain is

(L+D&1) } 3e(D } C)1�B C�B=O((L+D) C(D } C)1�B�B).

Case 2a (log D<C�D). In this case, a two-step construction is used. In the
first step, the multiplex size of the messages is reduced from C to log D using condi-
tion 2 of Lemma 2.1.5. Note that we replace each color class with r=32eC�log D
color classes in this step. In the second step, the multiplex size is reduced from
log D to B using condition 1 of Lemma 2.1.5. Note that each color class is replaced
with r=3e log D(D log D)1�B�B color classes. Overall, the number of color classes
used is

(32eC�log D) } (3e log D(D log D)1�B�B)=O(C(D log D)1�B�B).

This gives a schedule of length O((L+D) C(D log D)1�B�B).

Case 2 (C>D). In this case a three-step construction is used. In the first step,
we iteratively apply condition 3 of Lemma 2.1.5 to reduce the multiplex size of the
messages from C to D. Let d be the value of ms in the last application of condition 3
of Lemma 2.1.5, i.e., d>D�15 ln3 d. The total number of color classes created is at
most C�(;D), where ; equals

\1&
1

ln C+\1&
1

ln(15 ln3 C)+\1&
1

ln(15 ln3(15 ln3 C))+ } } } \1&
1

ln d+ .

We show that ;=0(1) as follows. Let # be a sufficiently large constant such that
for all x�#,

ln(15 ln3 x)=ln 15+3 ln ln x�ln x�2.

Thus, letting +=min[d, #],

;�\1&
1

ln ++\1&
1

2 ln ++\1&
1

22 ln ++ } } }

=\1&
1

ln + \1+
1
2

+
1
22+ } } } ++

�\1&
2

ln ++=0(1).
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Thus, the number of colors used in this step is O(C�D).
In the second step, the multiplex size is reduced from D to log D using condi-

tion 2 of Lemma 2.1.5. In this step, each color class is replaced with 32eD�log D
color classes. In the third step, the multiplex size is reduced from log D to B
using condition 1 of Lemma 2.1.5. In this step, each color class is replaced by
3e log D(D log D)1�B�B color classes. Over all the three steps of refinement, the
number of color classes created is

O(C�D) } (32eD�log D) } (3e log D(D log D)1�B�B)

=O(C(D log D)1�B�B).

This gives a schedule of length at most O((L+D) C(D log D)1�B�B). K

2.2. Lower Bounds on Schedule Length

We show that there exists a routing problem that requires at least 0(LCD1�B�B)
time to route. This matches our upper bounds to within small factors. This proof
is a generalization of the proof for B=1 in [41]. The structure of our proof is
similar to theirs.

Theorem 2.2.1. There exists a routing problem with message-length L, conges-
tion C, and dilation D such that the total time required to route all the messages is
0(LCD1�B�B), for any C, D�B+1, and for any L=(1+0(1)) D.

Proof. The key idea is to construct a set of messages such that every set of B+1
messages passes through some specific edge. Intuitively, this implies that if the
messages are long enough, at most B messages can make ``progress'' at any time-
step (this is made precise later). This gives the required bound.

Our construction is as follows. We start out with a set of M$ messages, where M$
is an integer such that

2 \M$&1
B +&1�D<2 \M$

B +&1.

We construct a network using two types of edges: primary edges and secondary
edges. The network has a total of ( M$

B+1) primary edges��every set of B+1 messages
passes through a distinct primary edge. Further, the end-point of each primary edge
is connected to the end-points of every other primary edge using secondary edges.
Each message uses primary and secondary edges alternately till it reaches its
destination. Each message originates at the end-point of one of its primary edges.
It uses this primary edge and then uses a secondary edge to reach its next primary
edge, until it has traversed its last primary edge.

The congestion and dilation of our construction are evaluated as follows. It is
clear that each message passes through ( M$&1

B ) primary edges and ( M$&1
B )&1

secondary edges, for a total dilation of 2( M$&1
B )&1. This is at most D by our choice

of M$. We could make it exactly D by adding extra edges at the end of the path
for each message, if necessary. The congestion of each primary edge is clearly B+1.
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The net congestion is also B+1, since the secondary edges have congestion at most
B. To obtain a set of messages with congestion C, we simply replicate each message
C�(B+1) times so as to obtain a total of M=CM$�(B+1) messages.

We now evaluate the time to route the M messages. A message is defined to make
progress in a specific time-step if and only if the message moves in that time-step
and one of its first L&D flits reaches its destination. Note that a message making
progress must occupy every edge on its path. Since every set of B+1 messages
passes through an edge, only B messages can make progress at each time step.
Therefore, the time required to route all messages is at least (L&D) M�B. Since
L&D=0(L) and since M$=0(BD1�B), the time taken is 0(LCD1�B�B). K

3. ROUTING ON BUTTERFLY NETWORKS

In Section 3.1, we provide a wormhole routing algorithm for the butterfly
network. We show that an arbitrary q-relation can be routed on an n-input but-
terfly in time O(L(q+log n)(log1�B n) w1(n, q)�B) flit steps, where w1(n, q) is a
slowly-growing function of n and q and 1�B�log log n�log log log n. As a typical
example, when L=q=3(log n), the algorithm routes all the messages in time
O((log2+1�B n) w1(n, q)�B), where w1(n, q)=O(log log n). This matches the best
known results for B=1 (to within the w1(n, q) factor) and is faster by a factor of
about B log1&1�B n for 1<B�log log n�log log log n. The results in Section 3.1 also
apply to the random routing problem with q messages per input.

In Section 3.2, we provide a lower bound for a broad class of algorithms that
matches the above upper bound to within small factors. Specifically, we show that
a random routing problem with q messages per input requires 0(Lql1�Bw&1

2 (n, q)�
B), where l=min[L, log n] and w2(n, q) is a slowly-growing function of n and q.
As a typical example, when L=q=O(log n), the lower bound evaluates to
0((log2+1�B n) w&1

2 (n, q)�B), where w2(n, q)=O(log log n). Thus this matches the
upper bound within a small poly-loglog factor. The results in Section 3.2 also apply
to routing a random q-relation.

3.1. Butterfly Algorithm

The algorithm for routing a q-relation on an n-input butterfly network proceeds
in rounds. There will be a total of 2 log log(nq)+1 rounds. Each round consists of
the following steps (R takes on values from 0 to 2 log log(nq) and denotes the
round number).

1. Each input makes two identical copies of each undelivered message that it
holds. (Skip this step for round 0).

2. Each message picks a color independently and randomly from the set of
colors [1, ..., 2], where 2=;q log1�B n�B, for some constant ;.

3. In each round, we run 2 subrounds��in each subround we route messages
of a particular color. Each message makes two passes through the butterfly. In the
first pass, the message routes from its input node to a random intermediate node
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FIG. 2. Routing message p using two passes through the butterfly.

in level log n of the butterfly. In the second pass, the message routes from the
random intermediate node to its actual destination output (See Fig. 2).

4. During the process of routing, if a message is delayed at a switch, then the
message is discarded. Each such undelivered message will be resent in the next
round.

We prove the following bound on the total time taken for a copy of each of the
qn messages to reach their respective destinations.

Theorem 3.1.1. The above algorithm delivers a copy of each message in a q-relation
routing problem in

O(L(q+log n)(log1�B n) w1(n, q)�B)

flit steps, with high probability, provided B�log log n�log log log n, where L is the
number of flits per message, B is the number of virtual channels, and w1(n, q)=
log log(nq).

We focus on the case where q�log n. The case when q is smaller follows. We
show that the following invariant is maintained.

Invariant 3.1.2. After Step 1 of each round, the total number of messages
originating in a specific input or destined for a specific output is at most q, with
high probability.

We show that Invariant 3.1.2 holds by using induction on the number of rounds.
Clearly, Invariant 3.1.2 holds at the beginning of round 0, since each input has q
messages and each output is the destination for q messages. Using the following
lemmas, we show in Theorem 3.1.6 that if the Invariant 3.1.2 holds in round i, it
continues to hold in round i+1.

Lemma 3.1.3. Let m1 , m2 , ..., mt be a set of t messages such that no two messages
in this set pick the same color in Step 2 of a certain round. The probability that no
message in this set is delivered in that round is at most 1�212t.

Proof. Let the P1 , P2 , ..., Pt denote the paths taken by messages m1 , m2 , ..., mt ,
respectively. Further, let c1 , c2 , ..., ct denote the distinct colors picked by these
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messages. Note that mi is delayed only if there are B other messages of the same
color using some edge on its path. Thus, if the algorithm fails to deliver all t
messages, then there must exist in each path Pi an edge ei such that the B other
messages of color ci use this edge.

We bound the required probability by enumerating the different configurations
that can result in the failure of all t of the messages. With each path Pi associate
an edge ei that spans levels li and li+1 of the butterfly. The probability that B
messages of color ci pass through edge ei is evaluated as follows. If edge ei is in the
first pass (resp. second pass) then there are 2li inputs (resp. outputs) that could use
this edge. Using Invariant 3.1.2, a total of 2liq messages could use edge ei . There-
fore, the total number of ways of choosing B-tuples of messages that could pass
through ei is ( 2liq

B ). Therefore, the total number of ways of choosing B-tuples of
messages for all the edges ei , 1�i�t, is at most

`
i \

2liq
B +�(qe�B)Bt `

i

2liB.

The probability that each chosen B-tuple of messages passes through the respective
edge with the right color is

1
2Bt } `

i

2&(li+1) B,

where 2=;q log1�B n�B. Note that we can multiply probabilities, since the messages
are distinct. Thus the probability that B messages of color ci pass through each
edge ei is at most

(qe�B)Bt } `
i

2li B } `
i

2&(li+1) B }
1

2Bt�\ qe
22B+

Bt

.

Since there are (2 log n)t ways of choosing the edges e1 , e2 , ..., et on the paths P1 ,
P1 , ..., Pt respectively, the net probability that all messages m1 , ..., mt fail to reach
their destination is at most

(2 log n)t \ qe
22B+

Bt

�
2t

(2;�e)
�

1
212t

for a sufficiently large value of ;. K

Lemma 3.1.4. Let each input (resp. output) have q messages in the beginning of
a round. With high probability, there are at least 3

4q messages in each input (resp.
output) with distinct colors.

Proof. The probability that fewer than 3
4q colors are used at a specific input is

at most

\ 2
3q�4+ } \(3q�4)

2 +
q

�\ 2e
3q�4+

3q�4

} \(3q�4)
2 +

q

,
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where 2=;q log1�B n. Simplifying it further and using the fact that q�log n and
B�log1�B n, this probability is at most

\ 3e3B
4; log1�B n+

q�4

�\3e3

4; +
q�4

�
1
nc

for some suitably large constant c. The probability that some input (resp. output)
uses smaller than 3q

4 colors is at most n } (1�nc)=1�nc&1, which is a polynomially
small probability. K

Lemma 3.1.5. Assume that Invariant 3.1.2 holds in the beginning of the round. At
the end of the round, the total number of messages in each input (resp. output) is at
most q�2, with high probability.

Proof. Let each input (resp. output) have q messages in the beginning of a
round. Using Lemma 3.1.4, at least 3

4q of the messages in each input (resp. output)
pick different colors, with high probability. We claim that, with high probability, at
least

q
2 of the messages that picked different colors succeed in reaching their destina-

tions. To prove this claim, we use Lemma 3.1.3 to bound the probability that there
exists a subset of

q
4 messages with different colors that fail to reach their destination.

This probability is at most

\3q�4
q�4 +

1
212q�4�

1
22q

which is polynomially small, since q�log n. K

Theorem 3.1.6. If Invariant 3.1.2 holds in round i, it continues to hold in round
i+1, with high probability.

Proof. Using Lemma 3.1.5, we know that if the Invariant 3.1.2 holds at the
beginning of round i, there are at most q�2 messages per input (resp. output) at the
end of the round, with high probability. Since two copies are made of each remain-
ing message, the total number of messages per input (resp. output) after Step 1 of
round i+1 is at most q. Thus Invariant 3.1.2 holds in round i+1. K

We can now use these results to prove the main theorem.

Proof of Theorem 3.1.1. First, we show that at least one copy of each message
succeeds in reaching its destination after the last round, with high probability. Let
p be a message such that no copy of p got through till the end of the second to last
round. In the last round, there will be 22 log log(nq)=log2(nq) copies of p, of which
at least log(nq) copies will receive different colors, with high probability. (This
follows from an argument similar to the proof of Lemma 3.1.4.) The probability
that none of the log(nq) copies gets through in last round is at most

1
212 log(nq)�

1
(nq)12 .
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Thus, the probability that there exists some message that did not reach its destina-
tion is at most

nq }
1

(nq)12�
1

(nq)11 ,

i.e., this probability is polynomially small.
Next, we analyze the total time taken by the algorithm. It is possible to pipeline

the subrounds of each round so that one subround starts every L flit steps. Note
that the messages belonging to different subrounds of the same round never meet
since any delayed message is removed from the network. Therefore, after 2 log n
time, one subround completes every L steps. There are 2=;q log1�B n�B subrounds
in each round. Therefore, each round takes L;q log1�B n�B+2 log n flit steps, which
is O(Lq log1�B n�B) flit steps. Since there are 2 log log(nq) rounds, the total time
taken is O(Lq log1�B n log log(nq)�B) which is O(Lq(log1�B n) w1(n, q)�B) flit steps.

This algorithm can be used to route messages even when q<log n. We simply
duplicate packets such that 3(log n) messages originate at each input and 3(log n)
messages are destined for each output. The analysis is identical except that q must
be replaced by log n in the expression for the running time. K

3.2. Butterfly Lower Bound

In this section, we provide a lower bound on the time taken by any routing algo-
rithm to route a random problem with q messages per input. The lower bound
deals only with the class of algorithms that route the messages in one pass through
the butterfly. Therefore, the lower bound does not apply to the algorithm presented
in Section 3.1. The lower bound also extends to routing a random q-relation.

The proof of this lower bound generalizes the lower bound for B=1 presented
by Ranade et al. [41]. The structure of our proof follows very closely the structure
of theirs. Note that the lower bound matches our upper bound to within small
factors.

Theorem 3.2.1. With high probability, any one-pass butterfly routing algorithm
must take time T to route a random routing problem with q messages per input, where

T=0(Lql1�Bw&1
2 (n, q)�B),

where l=min[L, log n], and w2(n, q) is a slowly-growing function of n and q.

Throughout this proof we will consider only the truncated-butterfly that consists
of the first l levels of the original log n-level butterfly, where l=min[L, log n]. Any
routing algorithm on the original butterfly translates in an obvious way to a rout-
ing algorithm on the truncated-butterfly that routes messages in the same or fewer
time steps. We prove a lower bound of T for routing on the truncated-butterfly,
which translates to a lower bound on the original butterfly.

Definition 3.2.2. A set of s messages is said to collide if there exist B+1
messages in the set whose paths all use a single edge in the truncated-butterfly.
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The proof of Theorem 3.2.1 proceeds in two steps. First, we show that every set
of s=3Bn log2�B(q log n)�l1�(B+1) messages chosen from the total of nq messages
collide, with high probability (Theorem 3.2.5). Next, in Theorem 3.2.6, we show
that if the routing algorithm completes in time at most T=nqL�s then there exists
a set of s messages that do not collide��which, using Theorem 3.2.5 is a low prob-
ability occurrence. This implies the result of Theorem 3.2.1.

We need the following lemmas to prove Theorem 3.2.5.

Lemma 3.2.3. Let m balls be thrown independently and randomly into n bins,
where m�n. The probability that no bin receives more than B balls is at most

exp {&
:mB+2

(2Bn)B+1 B= ,

where : is a positive constant.

Proof. Inspect each bin sequentially starting from bin 1. The probability P that
no bin receives more than B balls is

P=P1 } P2 } Pn , (1)

where Pi is the probability that bin i receives at most B balls given that all bins
from 1 to i&1 received at most B balls.

We examine bin i, after examining in order the first i&1 bins. If i� m
2B , at least

m�2 balls are yet to be assigned to bins. Therefore, the probability that bin i receives
more than B balls is at least

:
i�B+1

\m�2
i + 1

ni \1&
1
n+

m�2&i

�\ m�2
B+1+

1
nB+1 \1&

1
n+

m�2

�:$
mB+1

(2Bn)B+1 ,

where :$ is a positive constant. Thus, for all i�m�2B,

Pi�1&:$
mB+1

(2Bn)B+1 . (2)

We use the trivial upper bound of 1 for all Pi , i>m�2B. Now, using Eqs. (1) and
(2), we obtain

P�\1&:$
mB+1

(2Bn)B+1+m�2B
�exp {&

:mB+1

(2Bn)B+1 B= ,

where : is a positive constant.

Lemma 3.2.4. Given an arbitrary set of

s=3Bn log2�B(q log n)�l (1�B+1)
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messages, the probability that these messages do not collide is at most

exp {&
:sB+2l

(2Bn)B+1 B log log n= .

Proof. We partition the truncated subbutterfly into l�log m strips, where
m=log n. The jth strip consists of all nodes at levels j log m through to
( j+1) log m.

First, we bound the probability that the s messages do not collide in a specific
strip S. Strip S consists of n�m m-input subbutterflies. Let si , 1�i�n�m, represent
the number of messages that originate in the inputs of the i th subbutterfly in strip
S. Each message routes to a random output of the subbutterfly. Therefore the prob-
ability that these si messages fail to collide at the outputs of the subbutterfly can
be upper bounded, using Lemma 3.2.3, to be at most

exp {&
:sB+2

i

(2Bm)B+1 B= .

Since the subbutterflies within strip S are disjoint, the events of collision within
each subbutterfly are independent. Therefore, the probability that there is no colli-
sion in strip S is at most

`
i=n�m

i=1

exp {&
:sB+2

i

(2Bm)B+1 B= .

The above expression is maximized when all the si are equal to sm�n. Substituting
this value for the si 's, the probability of that there is no collision in strip S is at
most

exp {&
:(sm�n)B+2

(2Bm)B+1 B
n
m==exp {&

:sB+2

(2Bn)B+1 B= .

The probability of a collision at an output of some subbutterfly in a strip S
depends on the distribution of messages to the subbutterflies within S. The lemma
would be easier to prove if the probability of a collision within S was independent
of the probability of a collision within any other strip. This is not true. However,
because we count collisions only at the outputs of the subbutterflies, within a sub-
butterfly it does not matter which inputs start with messages. Furthermore, the
probability of a collision within S is maximized when sm�n messages start at the
inputs of each subbutterfly in S. Hence, the bound that we derived for this case
holds independent of the conditioning of the distribution of messages at the inputs
of the subbutterflies in S. As a consequence, when using this worst-case bound, we
can assume that the probability of a collision within one strip is independent of the
probability of a collision with any other strip. There are a total of l�log m strips.
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Therefore, the probability that there is no collision in the entire truncated butterfly
is at most

exp {&
:sB+2l

(2Bn)B+1 B log log n= . K

Theorem 3.2.5. Every set of s messages chosen from the total of nq messages
collides, with high probability, where s=3Bn log2�B(q log n) l1�(B+1).

Proof. There are a total of ( nq
s ) choices for the s messages. Thus, using

Lemma 3.2.4, the probability that there exists a set of s messages that do not collide
is at most

exp {&
:sB+2l

(2Bn)B+1 B log log n=\
nq
s +

�exp {&
:sB+2l

(2Bn)B+1 B log log n=\
nqe

s +
s

=exp {&s \:
sB+1l

(2Bn)B+1 B log log n
&log(nqe�s)+=

�exp[&s(: log1+2�B(q log n)&O(log(q log n)))]

�exp[&|(s)]�
1

n|(1) .

(Recall that s=3Bn log2�B(q log n)�l1�(B+1) and l=min[L, log n].) Thus, the prob-
ability that there exists a set of s messages that do not collide is polynomially
small. K

Theorem 3.2.6. If an algorithm takes T time to route a total of nq messages then
there exists a set of nqL�T messages that do not collide.

Proof. This lemma and its proof is similar to Lemma 4 of [41]. The key is that
the messages can be partitioned into phases such that the heads of all messages in
phase i arrive at the last level of the truncated-butterfly at time l+iL. Without loss
of generality, assume that every message that arrives after time l is delayed by some
other message��any message p that arrives after time l without incurring delay can
be started off at an earlier time until either p is delayed by some other message or
p arrives at time l.

Sort all the messages in the nondecreasing order of their time of arrival. Now, let
p be the first message in the list that arrives out of phase, i.e., it arrives at a time
other than l+iL for some integer i. Let p$ be the last message that delayed message
p. It is easy to see that as soon as the tail of p$ moves out of the path of p, the head
of p starts moving and is always one level behind the tail of p$. This implies that
the head of p arrives L steps after the head of p$. Since p$ arrives earlier than p, by
assumption, p$ arrives in phase. This implies that p arrives in phase also, which is
a contradiction.
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The fact that we can partition all the messages into T�L phases implies that at
least one phase has nqL�T messages. K

We can now prove the main lower bound theorem.

Proof of Theorem 3.2.1. From Theorem 3.2.5, we know that the probability that
there exists a set of s messages that do not collide is small. Therefore, setting
s=nqL�T, and using Theorem 3.2.6, the routing algorithm must take time

T=nqL�s=nqL } (l1�(B+1)�3Bn log2�B(q log n)).

Simplifying further, we get

T�Lql1�Bw&1
2 (n, q)�B,

where w2(n, q)=O(l1�B2
log2�B(q log n)). K
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