
Scheduling Time-Constrained Communication in Linear Networks

Micah Adler*
Dept. of Computer Science,

Univ. of Toronto,
Toronto ON, M5S3G4,

Canada

Ramesh K. Sitaramant
Dept. of Computer Science,

Univ. of Massachusetts,
Amherst, MA 0 1003

Abstract

We study the problem of centrally scheduling multiple messages in
a linear network, when each message has both a release time and
a deadline. We show that the problem of transmitting optimally
many messages is NP-hard, both when messages may be buffered
in transit and when they may not be; for either case, we present effi-
cient algorithms that produce approximately optimal schedules. In
particular, our bufferless scheduling algorithm achieves throughput
that is within a factor of two of optimal. We show that buffering
can improve throughput in general by a logarithmic factor (but no
more), but that in several significant special cases, such as when
all messages can be released immediately, buffering can help by
only a small constant factor. Finally, we show how to convert our
centralized, offline bufferless schedules to equally productive fully

* Email: micah@cs. toronto edu. Supported by an operating grant from
the Natural Sciences and Engineering Research Council of Canada, and by ITRC, an
Ontario Centre of Excellence. Thts research was conducted in part while he was at the
Heinz Nixdorf Institute Graduate College, D-33095 Paderborn, Germany.

’ Email: rsnbrg@cs .umass edu. Supported in pan by NSF Grant CCR-97-
10367.

t Email: ramesh@cs umass edu. Supported in part by an NSF CAREER
Award No. CCR-97-03017. A portion of the research of the second and third author
was done while visiting the Dept. of Mathematics and Infotmatik, Univ. of Paderhorn,

Paderbom, Germany.

5 Emal: quacksOil.informatik.rwth-aachen.de The work was
carried out white the author was a member of the research group of B. Monien at
the University of Paderbom. This work and the visits of the second and third author
was partially supported by the German Research Association (DFG) within the SFB
376 “Massive Parallelit%t: Algorithmen, Entwurfsmethoden, Anwendungen”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the fti page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission an&or a fee.

SPAA 98 Puerto Vallarta Mexico
Copyright ACM 1998 O-89791-989-0/98/ 6...$5.00

Arnold L. Rosenberg+
Dept. of Computer Science,

Univ. of Massachusetts,
Amherst, MA 01003

Walter Unger§
Lehrstuhl fur Informatik I,

RWTH Aachen, Ahomstr. 55,
52074 Aachen, Germany

distributed online buffered ones. Most of our results extend readily
to ring-structured networks.

1 The Time-Constrained Communication Problem

1.1 Introduction

Communication and interconnection networks are currently under-
going a transition from traditional best-effort data networks to net-
works capable of routing messages with timing constraints. In the
area of communication networks, this shift is motivated by mul-
timedia applications that use continuous media such as video and
audio [27]; for instance, a real-time audio packet in a teleconferenc-
ing application must reach its destination within a specified win-
dow of time for it to have any utility. The analogous shift in the
development of interconnection networks is motivated by emerg-
ing real-time applications that rely on time-constrained communi-
cation, such as industrial process control, avionics, and automated
manufacturing [41].

In this paper, we consider the scheduling of the transmission of
a given set of time-constrained messages in a multi-node network.
Our goal is to deliver as many of the given messages as possible,
within the following framework:

l Each message consists of a single packet. A network node
may send many messages to each of the other nodes.

l Each message m has, in addition to a source-node sm and
a destination-node d,, a release time, which is the earliest
moment at which m can start its journey from sm to d,, and
a deadline, beyond which no purpose is served by delivering
m. This means that a message should be dropped as soon as
it can no longer be delivered by its deadline.

Our framework allows us to model multiple classes of messages
with differing timing requirements-a feature that is essential to
modeling multimedia traffic. We can also mode1 messages for which
conventional best-effort transmission is sufficient, by setting these
messages’ associated deadlines to co. Our framework should be
contrasted with that of more traditional routing problems, which
seek to optimize global objectives such as overall completion time

269

or average message latency, and do not associate time constraints
with individual messages.
The Network Model. We focus on routing messages in linear
networks-although most of our results apply also to ring-structured
networks. This focus on linear topologies is a first step towards
considering more complex interconnection topologies proposed in
the literature, such as higher-dimensional arrays [41]. There are
often also other rationales for the focus, such as the following. (a)
When routing messages in electro-optical interconnection networks
such as hierarchical rings [22] or meshes [41], or their relatives,
one might have each packet follow a path composed predominantly
of long (inexpensive) bufferless hops, punctuated by a very few
(costly) optical-electric conversions at certain nexus nodes. In a
mesh, for instance, one might employ a dimension-order routing
strategy [41] which uses our near-optimal bufferless routing along
rows and along columns but that performs a single optical-electric
conversion to change dimensions, (b) In less regularly structured
communication networks, one often routes messages along sub-
networks that are either linear or ring-like, because of their easy
routing-path selection (coupled, in the case of rings, with a mod-
icum of tolerance to faults).

An n-node linear network can be viewed as a graph whose
node-set is vn = { 0, 1, , n - 1) and whose arcs are all pairs
(Ic, Ic + l), where 0 < k < n - 1. We assume a dual-ported
model where each node can pass and receive one message to/from
both neighbors at each step; each arc is a full-duplex link that can
accommodate one message in each direction at each step. We as-
sume messages are routed monotonically (i.e., with no backtrack-
ing) from their sources to their destinations. Thus, our model al-
lows us to decompose our message delivery problem into two dis-
joint subproblems, one for left-to-right messages, wherein .sm <
d,, and one for right-to-left messages, wherein sm > d,. Merely
superposing optimal solutions to these subproblems yields an op-
timal solution to the full problem. Henceforth, we discuss just fhe
left-to-right subproblem.

We study two scenarios, distinguished by buffering policies. In
the first, a network’s nodes are allowed to buffer messages in tran-
sit, in order to relieve contention for network links. In the second,
no such buffering is allowed, so that message m must move one
step closer to d, at every moment after its departure from sm.
The first scenario, which is appropriate for purely electronic envi-
ronments, has been studied extensively for decades. The second
scenario, which is particularly appropriate for current and foresee-
able optical technologies [22], is only beginning to receive attention
in the literature [S, 371. Significantly, we shall see that the study of
the bufferless scenario provides important insights into the buffered
scenario.
Definitions. An instance of the buffered (resp., bufferless) message-
scheduling problem OPTB (resp., OPTBL) is a set Z of mes-
sages to be routed, possibly using buffers (resp., without using
buffers). The goal is to schedule a subset OPTJ+I(Z) E Z (resp.,
OPTBL. (I) C 1) of maximum cardinality. Note that with release
times and deadlines, this is the natural question to study, since there
is no added benefit for messages that arrive early or only marginally
miss their deadline. The set of messages in Z that are succcss-
fully delivered under a scheduling algorithm A is denoted A(Z);
the throughput of A is IA(Z)).
Summary of Results. We present three categories of results. When
messages may not be buffered in transit, the problem of maximiz-
ing throughput is NP-hard (Section 3.1); however, one can effi-
ciently achieve at least one-half optimal throughput (Section 3.2).
In Section 4, we ask how much message-buffering can enhance the
throughput of scheduling algorithms. We show that when one or
more of the three parameters that complicate message-scheduling-
the release time, the source-target distance, and the allowable delay-

is held constant, buffers can increase throughput by only a small
constant factor (Section 4.1); however, in general, buffers can in-
crease throughput by as much as a logarithmic factor, but no more
(Section 4.2). We show that achieving optimal throughput is NP-
hard also when message-buffering is allowed (Section 5.1); how-
ever, we provide a distributed (a/k/a “local control”) and online
algorithm that uses buffers to exactly mimic the performance of the
(centralized and offline) bufferless approximation algorithm (Sec-
tion 5.2). In this algorithm, information about a message m to be
sent arrives only at the source-node sm, and only at the time when
message m is released. Each node makes all routing decisions lo-
cally, using only the information that it receives when messages
are released or that it receives from other nodes during the course
of routing messages. The results of Section 4 that relate buffered to
bufferless routing imply that our distributed and online algorithm
achieves nearly optimal throughput.

1.2 Related Work

To our knowledge, we present the first analytical results for rout-
ing time-constrained messages that have arbitrary release times and
deadlines, Of course, best-effort routing in fixed-connection net-
works has a long history; see [23, 241 for a survey. Much early
work routes static message-sets, wherein ail messages are released
simultaneously [45, 26, 40, 25, 31, 321. More recent work looks
at dynamic routing, wherein messages arrive at varying times, gov-
erned either by a random process [43, 7, 171 or an adversary [6,2].
Several recent studies focus on bufferless routing algorithms, which
allow simpler, faster switches. Optical networks provide strong
incentives to avoid buffering, due to the cost of optical i+ elec-
tronic conversions [22]. The important class of hot-potato (a/k/a
deflection) bufferless routing algorithms has been widely studied
[1,4, 10, 20, 8,441. More general approaches to bufferless routing
can be found in [5, 37, 39,9, 121. These sources focus on optimiz-
ing a global parameter such as overall completion time or average
message latency: individual messages do not have deadlines.

Some recent papers focus on the “session model,” wherein session
i packets arrive once every l/ri time steps and travel along spec-
ified length-di paths. A distributed routing algorithm in [35, 361
guarantees a delay of Pdi/ri for session-i packets, provided that
edges are used with rate < 1; this bound is improved to O(l/ri +
d;), via a centralized algorithm, in [3]. By creating a different ses-
sion for each packet, these results can be used to route each packet
pi to its destination in time O(c; + di), where ci is the maximum
congestion on the path of pi. Note that while these results provide
per-packet delay bounds, they do not accommodate arbitrary timing
requirements for each packet, i.e., arbitrary release times and dead-
lines. A recent paper [30] considers the problem of routing a static
set of messages with arbitrary deadlines in the linear network with-
out dropping any of the messages. They show that if there exists
a feasible schedule then the closest-deadline-first greedy strategy
succeeds in routing all the messages.

There are several empirical, simulation-based, studies of time-
constrained routing. [41] introduces a router architecture for mes-
sages with individual deadlines, using a multi-class variation of
the earliest due-date algorithm [29]. [48] proposes a minimum-
laxity-first protocol for transmitting messages with deadlines in a
multi-access shared-bus network. Some scheduling policies-such
as Virtual Clock [47], Stop-and-Go [151, Rotating Combined Queu-
ing [21]-do not explicitly use message deadlines, but just attempt
to keep the worst-case message delay small and bounded. Other
relevant experimental work includes [33,46, 28,42, 131.

270

24

22

20

10

16
14

12

10

0

6

4

2

0

0 2 4 6 8 10 12 14 16 10 20 22

24

22

20

18

16

14

12

10

8

6

4

2

0

6 8 10 12 14 16 18 20 22

Figure 1: Left side: Six message parallelograms on the 22-node line. Right side: (a) Available bufferless delivery routes for message #2 of
the 1efthandBgure; (b) the mesh of available buffered delivery routes for message #5 of the lefthandjgure.

2 A Geometric View of the Problem

Fundamental to both our insights and analyses is the following ge-
ometric transformation of our message scheduling problem. Say
that we are transmitting an ensemble M of messages in the net-
work whose node-set is V, g (0, 1, . . . , n - 1) and whose arcs
are all pairs (/e, k + I), where 0 5 Ic < n - 1. Consider the “one-

way infinite” subset M, 2 {(t, w) 1 t 1 0, and 0 5 v 5 n - 1)
of the two-dimensional integer lattice.

. Each “row” Rt g {(t, u) IO I: u 5 n-l} of M, represents
“time-instant” t.

l Each “column” C, g {(t, v) 1 t 2 0) represents node u
when

- v is the source of a message, or

- v is the destination of a message that originates at node
v’ < v.

Then each message m E M can be viewed as a parallelogram
within M,, whose left and right sides are vertical and whose tops
and bottoms have 45-degree southwest-to-northeast (henceforth “sw-
ne”) slopes. Specifically, if m has source-node sm, destination-
node d,, release-time t$‘, and deadline t:‘, then m’s parallelo-
gram has the following shape. The parallelogram’s:

l left (vertical) side lies between rows tk’ and t$-(d, -sm)
within column s,;

l its right (vertical) side lies between rows tg’ + (d, - sm)
and t$ within column d,.

&’ g &$ _ $’ + s m - d, is the slack of message m, and
6, g d, - s, is its span.

In Fig. 1, we depict six time-constrained messages in a 22-node
linear network, over a period of 25 time units. Reading from left
to right in the figure, and from bottom to top in each column, the
messages have the defining characteristics listed in the following
table.

Message 1 Source 1 Destination 1 Release 1 Deadline
Number 1 Node Node

m=l Sm = 2 d, = 9
m=2 sm = 2 d, = 12
m=3 sm = 2 d, = 7
m=4 Sm = 5 d, = 14
m=5 sm = 10 d, = 18
m=6 sn = 11 d, = 13

1 Time
t(,d) = 13
tr’ = 23
ty’ = 24
tk”’ = 23
tS”’ = 15
t(d) = g 6

To understand the role of the parallelograms, focus on a mes-
sage m that can be delivered. Then m must leave sm at some time
t$’ < tl 5 tC’ - (d, - sm); it can leave no earlier, for &’ is
its release time; it can leave no later, for then it would not reach d,
before its deadline t$. By similar reasoning, m arrives at d, at
some time tg’ + (d, - sm) 5 tz 5 tf,f’. The trajectory of m is a
path in m’s parallelogram from row tl on the left to row tz on the
right, having the following form.

l In the bufferless case, the trajectory is a 45-degree sw-ne line
whose linearity reflects m’s unimpeded progress from sm to
d,, with no delay at an intermediate node; see Fig. l(a).

l In the buffered case, the trajectory is a “staircase”: left-to-
right motion is along 45-degree sw-ne edges; “risers” (which
represent m’s being detained in a buffer) are upward edges;
see Fig. 1 (b).

A schedule for a set M of messages is a set of trajectories, at most
one for each m E M, such that no two trajectories share a 45-
degree sw-ne edge; distinct trajectories in a schedule may, however,
share a “riser” edge or an endpoint. The throughput of a schedule
is the number of independent trajectories that it specifies.

3 Bufferless Message-Scheduling

Our goal in this section is a centralized bufferless scheduling al-
gorithm whose schedules are maximal in throughput. We show in

271

Section 3.1 that this goal is NP-hard. In Section 3.2, we devise a
centralized bufferless scheduling algorithm whose schedules come
within a factor of 2 of the goal.

3.1 The NP-Hardness of Optimal Bufferless Scheduling

Unfortunately, like many significant scheduling problems, the buffer-
less message-scheduling problem OPTBL is NP-hard.

Theorem 3.1 The bufferless message-scheduling problem OPTBL
is NP-hard.

Proof. See Appendix A.

3.2 A P-Approximation Algorithm for Bufferless Scheduling

WhileTheorem 3.1 suggests that we cannot efficiently achieve truly
optimal throughput, we show now that we can efficiently achieve
throughput that is within a factor of 2 of optimal.

Theorem 3.2 There is a polynomial-time algorithm that produces
bufferless schedules whose throughput is within a factor of 2 of
optimal.

Proof. We represent each message in the set Z to be scheduled
via its parallelogram. At each step of our algorithm, we maintain
the set U C Z of as-yet unscheduled messages and the set S of
assigned message-trajectories; initially, U = Z and S = 0.

A scan line is any sw-ne line segment in M, that originates
either on the X-axis or in Column Co and terminates either on row
max,,z{t$$} or in Column C,- 1. Each scan line is a segment of
a level line of the function z - 1~, hence is uniquely specified by its
ao-parameter, namely, the (abscissa - ordinate) difference of any
point on the line. This specification affords us a natural “left-to-
right” ordering of scan lines, in increasing order of ao-parameters.
Algorithm BFL: preliminaries. A scan line is active if no scan
line to its “left” has already been scanned; initially all scan lines are
active. A scan line is relevant to a message 771 if it intersects m’s
parallelogram. We maintain a priority queue Q of scan lines, or-
dered by ao-parameter, from which we can extract the “rightmost”
active scan line that is relevant to some m E U. We denote by
BFL(Z) the subset of Z actually scheduled by Algorithm BFL.

Algorithm BFL

1. Extract a scan line e from the priority queue Q.

2. Determine the sequence of segments of e determined by all m E
U which ! is relevant to.

3. Use a se-nw scan of f? to find a maximal set S(e) of segments
that are independent in the sense of not intersecting, except
perhaps at their endpoints. In more detail:

a. Start scanning e at the “lowest” left endpoint of a paral-
lelogram that I intersects.

b. Find the “lowest” intersection off? with the right endpoint
of a parallelogram p. Use the segment of e that in-
tersects p to schedule the message associated with p.
For the remainder of this step, ignore all parallelograms
whose left endpoints along e lie “below” the right end-
point of p.

c. Continue scanning C at the “lowest” left endpoint of a par-
allelogram that either coincides with, or lies “above”
the right endpoint of p along f?. If no such left endpoint
exists, then this step is complete: else repeat sub-step
(b).

Note that we never schedule any parallelogram whose inter-
section with C properly contains some other parallelogram’s
intersection with e.

4. Add the segments in S(I) to set S; remove the associated mes-
sages from U.

5. If Q is not empty, go to step 1; else return the schedule S.

Claim. (BFL(Z)I 2 $IOPTBL(Z)I.
Verification. Consider an arbitrary m that is assigned a scan line
segment by OPTBL but not by BFL. Let the right endpoint of a
scan line segment be the last edge of the segment. It must be that
the scan line segment e(m) assigned to m by OPT~L contains
the right endpoint of at least one scan line segment in S; asso-
ciate e(m) with the “leftmost” of these. Since OPTBL produces a
valid schedule, at most one such e(m) can be assigned to each scan
line segment in BFL. We thus have a one-to-one mapping from
OPTBL (1) - S into S, whence the desired inequality. n

The implementational details and a tighter time analysis of Al-
gorithm BFL appear in the full paper. Here, we prove the follow-
ing claim.
Claim. Algorithm BFL can be implemented in time polynomial
in n + 1x1, independent of the message slacks.
Verification. The slack of a message m can be set to min{ 111 -
1, tk’}, without altering the throughput. Thus, the number of scan
lines considered in step 1 is polynomial in (11. For a given scan line
e with ao-parameter Q, a message m is relevant to C if and only if I
intersects the message-parallelogram of m, i.e., d, - t$,$’ _< cy _<
sm -tk’. The left (or lower) endpoint of the segment of e contained
in the parallelogram of message m is (sm, sn - a), while the right
(or upper) endpoint is (d,, d, - cr). Thus, computing the set of
segments of e that correspond to relevant messages in U in step 2
takes time O((Ul), which is O((Zl). Choosing a subset S(e) of
these segments takes time polynomial in n + (U(. Therefore, steps
3 and 4 take time polynomial in n + 111. n

4 Comparing Buffered and Bufferless Message Schedul-
ing

How much can the ability to buffer messages enhance the through-
put of time-constrained communication? We answer this question
with bounds on OPTB (1) in terms of OPTBL (1). We show that,
when all messages have the same slack, or the same span, or the
same release time, buffering can enhance throughput by at most a
small constant factor (Section 4.1), while in general, it can improve
throughput by a logarithmic factor, but no more (Section 4.2).
Notation. For each message m in BFL(Z) (resp., OPTB(Z))
(resp., OPTBL(Z)), we denote by n(m) (resp., nB(m)) (resp.,
~BL. (m)) the trajectory assigned tom by algorithm BFL (resp., an
optimal buffered schedule) (resp., an optimal bufferless schedule).

4.1 Important Special Cases

We focus on three natural restrictions of the routing problem, as-
suming in turn that all messages have the same slack, or the same
span, or the same release time.

4.1.1 The Power of Buffers when Message-Slacks are Uni-
form

Theorem 4.1 Ifall messages in problem instance Z have the same
slack S, then OPTB (Z) 5 3 . OPTBL (I).

377

Proof. We compare JOPZ’B(Z)) with IgFL(Z)I, using a scheme
in which messages in OPTB(Z) - BFL(Z) donate “credits” to
messages in BFL(Z). A message m E OPTB(Z) - BFL(Z)
is not included in BFL(Z) because each of the S + 1 poten-
tial bufferless trajectories specified by its parallelogram contains
the right endpoint of at least one trajectory r(m’) of a message
m’ E BFL(Z). We collect a set D, of some S + 1 messages
from BFL(Z) that collectively block all of m’s potential buffer-
less trajectories, and we have m “donate” l/(S + 1) units of credit
to each m’ E D,. (Note that some m’ E BFL(Z) may receive
credits from more than one m E OPTB (Z) - BFL(Z).)

Clearly, this scheme allocates IOPTB(I) - BFL(I)I units of
credit in all. To bound the total credits a message m’ E BFL(Z)
can receive, let R,,,, G OPTB(Z) - BFL(Z) be the set of mes-
sages that donated credit to m’. The parallelogram of each m E
R,, must contain the right endpoint, (v,t) E Mn, of r(m’).
Hence, m’s optimal buffered trajectory nB(rn) must “reach” node
‘u, say at time TV. Since at most one message arrives at 21 in a
single timestep, TV,, is unique to message m. Further, since all mes-
sages have slack S, each m E R,, has IV-~ - tl < ,S, whence
IR,, (5 25 + 1. Since each m E R,, contributes exactly
l/(S + 1) units of credit to m’, the total credit received by m’
is

l
mER ,s+1 5 s+1 - c-

2s+1 < 2. (1)

It follows that the aggregate credit received by messages in BFL(Z)
does not exceed P.IBFL(Z)I. Thedesired bound now follows from
the fact that the total credits donated by messages in OPTB (2) -
BFL(Z) equals the total credits received by messages in BFL(Z),
combined with the definition of optimality:

n

4.1.2 The Power of Buffers when Message-Spans are Uniform

Theorem 4.2 If all messages in problem instance Z have the same
span 6, then OPTB (2) 5 2 OPTBL (Z).

Proof. We show how to route at least half the messages in OPTB (Z)
without buffers. Partition OPTB(Z) into sets SO and S1, by plac-
ing each m E OPTB (I) into Sj iff m’s parallelogram intersects
a column C;(,J+~), where 0 < i 5 L(n - l)/(& + l)] and i mod
2 = j: each m E OPTB(I) intersects exactly one such column.
At least one 1.9, I 2]0PT~(2))/2; assume without loss of gener-
ality that set is SO. We construct a bufferless trajectory z(m) for
each m E So as follows. Let rB(m) “reach” a column &(J+~) at
time TV. (By construction, such an i exists for each m E So.) The
bufferless trajectory a(m) is the unique sw-ne segment that passes
through point (2i(S + l), rm).

We claim that the bufferless schedule just constructed is valid,
in that distinct messages are assigned disjoint trajectories. To wit,
say that columns Cail(d+l) and Czi,(a+1) intersect $rnl) and
;i(mz), respectively. First, if il # i2, then these columns are at
least 2(S + 1) apart, whence G(ml) and ?(m,), both having span

6, cannot intersect. Say next that il = i2 g i. Since the buffered
trajectories ?‘r~(ml) and rB(m2) reach column C2i(s+1) at ~~~
and 7;n2, respectively, we have ~~~ # 7m2; hence, %(m,) does
not intersect %(mp). Our bufferless schedule for So is thus valid,
whence IOPTBL((Z)I 2 [SOI 2 ~IOPTB(Z)I. n

4.1.3 The Power of Buffers when Release Times are Uniform

Theorem 4.3 If all messages in problem instance Z have release
time zero, then OPTB (Z) 5 2 OPTBL (Z).

Proof. Let C be any buffered schedule that specifies trajectories for
a set of messages C(Z) E 1. We say that m’ E C(Z) conflicts with
m E C(Z) if (a) m’ reaches its destination on the same scan line
as m, and (b) .S,I < d, < d,,. C is a single-con$lict schedule
if for each m E C(Z), there is at most one other m’ E C(Z) that
conflicts with m.
Claim 1. At least half the messages in any single-conflict buffered
schedule C can be routed without using buffers.
Verification. We filter the messages in C(Z), dropping some and
routing others without buffers along the scan lines on which they
reach their destinations under C. We select the messages to route
greedily, by performing a sw-ne traversal of each scan line and
scheduling a message iff it does not conflict with any previously
scheduled message. By definition of single-conflict, each message
that we schedule can block at most one other message, whence the
Claim.
Claim 2. Any static message-set can be optimally scheduled via a
buffered single-conflict schedule C.
Verification. We start with an optimal buffered schedule C’ for the
messages in OPTB (2) and convert it in stages to a single-conflict
schedule C. We process scan lines from left to right, rerouting some
messages if necessary, to ensure the single-conflict property. When
we reschedule a message m, we use only scan lines to the right of
the current one and only messages whose destinations are to the
right of d, ; therefore, a single left-to-right pass over the scan lines
converts C’ to a single-conflict schedule C.

We describe a single iteration of the rerouting procedure. We
convert a schedule C’ under which message m has (potentially)
multiple conflicts along scan line !--call them ml, , mk, where
dm, < dm, < < d,,-to a schedule C”’ under which m has
at most one conflict along C. Say that k > 2 (or else no rerouting is
needed). We transform C’ to C”’ in two steps.

Step 1. We reschedule mk, routing it as before until it reaches d,,
and then routing it to d,, along e.

Step 2. We use the space freed by delaying mk to “push” all other
messages on e between d, and d,, , including
ml, ma, , rnk-1, to a scan line to the right of e.

This procedure ensures that m conflicts along e only with mk.
We accomplish Step 2 as follows. Let p be the distance traveled

by mk along C under C’. Denote by C” the “schedule” obtained by
performing Step 1 on C’. Now, C” may not be a valid schedule:
there may be a u E {d,, . . , d,, - q - l} such that more than
one message moves along e from v to v + 1 at the same time.
We transform C” into a valid schedule C”’ by removing all other
messages on e between d, and d,, - Q. We produce, in stages, a
sequence of schedules, cd,,, , cd,,, +1, , Cd,,,, -q, such that

. cd,,, = C”, and Cd,,-, = C”‘.

l Each C, is valid along scan line C up to node w, for d, 5
u i dm, - q.

We exploit the static nature of Z to transform each C, to X,+1.
Say that m’ # mk moves from ?J to 2) + 1 along e. (If no m’ exists,
then &+I = C,.) We create &,+I by altering C, so that m’
moves from v to w + 1 on a scan line to the right of e. Let C, be the
scan line along which rnk moves from v to v + 1 under C’. Note
that under C, , no message moves from node u to 2) + 1 along e,.

273

Now, if TJ = s,,, then since t$ = 0, we can simply reschedule
m’ to travel from v to v + 1 along C,, and we are done. If w > S,I ,
then we must be more careful. Let I’ be the scan line along which
m’ moves from v - 1 to v under C,. If e’ is not to the left of e,,
then we are done, since again we can simply reschedule m’ from
node 2, to IJ + 1 along &,; however, we cannot do this if e’ lies to
the left of &,. In this case, we reschedule m’ from w to v + 1 along
e’. If no message was previously routed from v to v + 1 along e’,
then again we are done. Otherwise, since C, is valid up to 21, and
since m’ is routed from w - 1 to u along e’, some other message m”
must encounter e’ at w. We repeat the same process with m”, and
we keep repeating until we reach either & or any other scan line
that does not forward a message from 2, to 2) + 1 under C,. With
each new message, we arrive at least one scan line closer to &;
hence we reach either & or some other empty scan line eventually.
Claim 2 follows.

If we use Claim 2 to construct a single-conflict schedule for
OPTB (I), then use Claim 1 to route at least half the messages in
OPTB (1) without buffers, we achieve the theorem. n

4.2 The General Comparison

We now derive a tight (to within constant factors) relationship be-
tween (OPTB (Z) I and IOPTBL (2) 1 for arbitrary problem instances
2. We express our bounds in terms of the parameter A(Z) ‘%

min{a(ZJ, a(Z), [Zl}, where ~(1) 2 max,,~{t~)} is themax-
imum slack in 1, and 6(Z) 2 max,ez{6,} is themaximum span.

Theorem 4.4 For any problem instance 2,

and

IOPTB(Z)I 5 4(logA(Z) + 1). IOPTBL(~)I.

The upper bound in the theorem is a direct consequence of the fol-
lowing three lemmas. We prove the lower bound in Theorem 4.5.

Lemma 4.1 For any problem instance 1,

IOPTB(Z)I 5 2(ln(a(Z) + 1) + 1). IOPTBL(Z)~.

Proof. We use the credit-distribution scheme of Theorem 4.1 to
compare (OPTB(Z)I with IBFL(Z)I. This scheme has each m E
OPTS(Z) - BFL(Z) donate l/(tk) + 1) units of credit to each of
t$’ + 1 messages in BFL(Z) that collectively block all of m’s po-
tential bufferless trajectories. Clearly, a grand total of IOPTB (I) -
BFL(Z)I credits are donated. Reversing our focus, we use the rea-
soning (and notation) of Theorem 4.1, tempered by the fact that
slacks are not uniform here, to generate the following analogue
of the upper bound (1) on the total credit received by any m’ E
BFL(Z).

c --!-- 5 c ,,‘t1.1 mER , &‘+ 1 TtER,l

5 1+2 C t 5 2ln(cT(Z)+l)+l. (2)
i=2

(Recall that R,t comprises those messages that donate credit to
m’.) Hence, the total number of credits received by messages in
BFL(Z) is 5 (2 ln(a(Z) + 1) + 1). IBFL(Z)I, which yields the
lemma, because IBFL(Z)I 2 lOPT~t,((z)l. n

Lemma 4.2 For any problem instance Z,

Proof. The proof is identical to that of Lemma 4.1, except that we
bound the sum (2) differently. Using the facts that (a) IR,t I 5
111 - 1 (since m’ # R,I), and (b) no two messages reach any node
simultaneously, we find (using the notation of Theorem 4.1) that

mER , I,‘t,+1 5 1+2 c c : 5 21n (jj[Zl) +l.

l<i6(Zl/2

The lemma follows. n

Lemma 4.3 For any problem instance 1,

IOPTB(Z)I 5 4([1og6(Z)J + 1). (OPTBL(~)I.

Proof. We partition OPTB (Z) into sets Ri, 0 5 i 5 Llog b(Z)],
by placing each m into Rll,, 6, J . Let R be an Ri of largest cardi-
nality, so that

IOPTBV)I
IRI 1 [log S(Z)] + 1’ (3)

Much as in Theorem 4.2, we show that at least l/4 of the messages
in R can be routed without buffers. To this end, let 6 be an integer
such that for all m E R, 6 5 6, < 26. Divide R into four
(possibly intersecting) sets Sj, 0 5 j < 3 by placing each m into
Sj iff m’s parallelogram intersects a column C;(J+~) of M,, where
0 5 i 5 [(n - l)/(S + 1)j and i mod 4 = j. The S, collectively
cover R because each m E R intersects at least one C;(J+~). Let
S denote the largest Sj , say Se. We note that ISI 2 f I RI.

We conclude the proof by showing that all m E S can be routed
without buffers. Say that m’s buffered trajectory, irB(m), reaches a
column C4k(S+i) at time 7,. (By construction, such a COh.IUIn ex-
ists for each m E S.) We assign m the bufferless trajectory z(m)
that is the unique sw-ne segment that passes through point (4k(6 +
l), rm). We claim that the bufferless schedule {z(m) 1 m E S}
is valid. To this end, let ki and k2 be integers such that columns
C4/E1(&+1) and C&(J+i) intersect Gi(mr) and%(m2), respectively.
First, if kl # kz, then columns Cdki(&+i) and C4kz(a+i) are at
least 4(6 + 1) apart. Since $(rn,) and z(rn2) each have span
5 26 - 1 each, the trajectories cannot intersect. Alternatively, if
kl = ka g k, then the buffered trajectories KB(mi) and nB(m2)

reach column C4k(J+1) at times rmml and 7;n2 # T,,,*, respectively
so that z(ml) and ji(m2) do not intersect. n

Theorem 4.5 There exists a problem instance Z such that

~OPTB(Z)I 2 i log R(Z). IOPTBL(Z)I.

Proof. We construct the “bad” problem instance Z recursively. The
base instance Ze contains a single message m such that sm = 0,
d, = 1, tk’ = 0, and t$$ = 1. Inductively, we construct in-
stance zk from xk - i , by setting zk = Sk U 7$1 1 U ZfJ 1, where:
(a) Sk consists of 2’-’ identical messages, each having sm = 0,
d, = 2”, &’ = 0, and t$ = 2k+’ - 1; (b, c) Zpl, and ZrJi
are obtained by translating two copies of zk- 1, positioning the first
with its “origin” at (0, Zk-‘) E M, and the second with its “ori-
gin” at (2”-’ ,2”-‘) E M,. See Fig. 2.

274

Figure 2: Problem instance Zk.

Claim. All messages in I,, can be routed using a buffered schedule,
SO rhar lOPTB(z,,)I > k2”-‘.
Verification. We proceed by induction on Ic, the case k = 0 being
obvious. Assuming the claim for I&r, we route the messages
in zk as follows. We adapt the schedule for Zk-r to its non-
overlapping copies, 1’: and Z’! . We then route each m E Sk
in turn, so that its trajbc:ory doe: niot conflict with an previously
routed message: m starts at some time t, 0 5 t < 2 l -t, along a
scan line t? that is not used by any other m” E Sk, until it reaches
node 2k; it then waits in node 2”‘s buffer for 2”-’ steps, to reach a
scan line !’ that is not used by any other m” E Sk; it linally travels
along e’ to d, (cf. Fig. 2). We thus have]oPTo(zk)] =]zk],
whence, by construction,

fork 1 1, with initial condition]Za] = 1. The Claim follows from
the above recurrence relation.

Wenowbound]OPTer,(Zk)].ForeachO<j<2”-l,let!,
be the scan line that passes through point (0, j). In our construction
of zk, any bufferless message that uses scan line J$ must be sent
from point (2” - j - 1,2” - 1) to point (2” - j,2”). Thus, no
bufferless schedule for zk can route more than one message along
any e,. This means, however, that IOPT~L (Zk)l < 2”. We now
note that o(zk) = 2” - 1, b(Zk) = 2”, and]zk] 2 k2”-‘, so
that A(zk) = 2” - 1. Combining this fact with our bounds on
]oP!FB(zk)] and]oPTBL(zI;)]. we have the claimed inequality.
n

5 Message Scheduling with Buffers

In this section, we seek buffered scheduling algorithms that are
maximal in throughput, making no attempt to limit the number of
buffers. We show that maximizing throughput in this scenario is
NP-hard (Section 5.1); however, we show that, surprisingly, a dis-
tributed and online buffered algorithm (which makes all routing de-
cisions locally) can mimic the performance of the centralized and

offline bufferless algorithm BFL-in both action and throughput
(Section 5.2). Using our results in Section 4, we infer that our
distributed and online algorithm achieves throughput to within a
constant factor of optimal when slacks or spans or release times are
uniform, and to within a logarithmic factor in general.

5.1 The NP-Hardness of Optimal Buffered Scheduling

Theorem 5.1 The bufferless message-scheduling problem OPTB
is NP-hard.

Proof. See Appendix A.

5.2 A Distributed and Online Approximation for Buffered Schedul-
ing

A scheduling algorithm is distributed if only the source-node of
a message initially receives information about each message to be
sent. Information can be transmitted to other nodes, for example,
when a message is forwarded to another node, but this information
travels no faster than messages, i.e., across one link per time step.
All decisions made by a node must be derived using only local in-
formation. In the algorithms discussed here, we transmit a small
amount of additional information along with each packet. How-
ever, this additional information can be encoded in log n bits-
which is exactly the number of bits required to describe message
destinations. This does not increase the required packet size for
messages by more than a factor of 2, and when the size of the mes-
sage is much larger than the size of the destination description, this
has no significant effect on the packet size. The scheduling algo-
rithms we consider here are also online: no node has any informa-
tion about a message m prior to &‘, the release time of m.

In our distributed and online algorithm, D-BFL, each node o
maintains a list of messages that are available to be forwarded to
node v + 1. Let Pit be the set of messages that are available for
transmission along scan line Ci by node 21. At time t, node 21 selects
a message mLv E Pt{, for i = 2) - t, and forwards it along scan
line &. We now show how to make the choice of rniv using only
local information. For any algorithm A, let L,,(A) denote the most
recent endpoint on f!i in column C,, i.e., the largest o’ 5 2, such
that some m with d, = o’ reaches d, along &. In D-BFL, we
ensure that each Y always knows the value of L,,(D-BFL) at time
step t, by always forwarding the current value along each scan line.
This is the only additional information that D-BFL forwards with
messages.

Algorithm D-BFL

Each node IJ performs the following steps at time t = v - i

1. Node v forwards L,,(D-BFL) to node v + 1 along &.

2. Let S be the set of all messages m’ such that m’ E P*f and
S,I 2 L%,(D-BFL). Node 2, selects a message miv such
that m+, has the nearest destination of any message in S
(breaking ties as in BFL). The message m,, is forwarded
to node v + 1 along &. Note that no message is forwarded if
s = 0.

Theorem 5.2 Foranyproblem instanceI, D-BFL(Z) = BFL(Z).

Proof. Let eoB[m] (resp., CBFL[rn]) be the scan line along which
m E D-BFL(Z) (rcsp., m E BFL(Z)) reaches d,. We claim
that !BFL[m] E eoB[rn] for all m.

Say that mzv is premature if dmiu = v + 1 and e~~[mi,] >
eBFL[m,,], i.e., if, under D-BFL, mi, is the final “hop” for a

275

message, and mi, reaches dmi, earlier under D-BFL than under
BFL. We say that mi, is preemptive if there is an m’ E Pi:
such that esFL[rn’] = i, but mzv # m’. Note that if l?BFL(rn] #
!,B[m] for some message m, then some mi, is either premature
or preemptive. We wish to show that this cannot occur.

Let the pair (i, u) specify the segment within scan line &, from
column C, to column C&,+1. For each pair (i,~), consider the
pairs (Ic, w) defined by the three relations: (1) i < k 5 i + 21 - 1;
(2) 0 5 w < w; (3) (i, w) # (k,w). These pairs consist of all
the segments-in a region of hl,. When i 2 0, this region is a
right triangle, minus the segment that originates where i = Ic and
2, = w. The legs of this triangle lie along the X-axis and column
C,; its hypotenuse is the portion of & between the legs. When
i < 0, the region has the same shape, except the portion of the
triangle where w < 0 is not present. In either case, we call this the
triangle of injh4ence of (i, 71).

Lemma 5.1 If there is no pair (k, w) in the triangle of injluence
for (i,v) such that rnkw is either preemptive or premature, then
mzv is neither preemptive nor premature.

Proof Let F’%t be the BFL-analogue of Pi:, comprising those
messages that have not been scheduled by BFL prior to scan line
!,, but that could be sent from v to v + 1 along e, (because their
parallelograms contain the appropriate segment of &). We prove
the lemma via three claims, the first of which is immediate from
the specification of BFL.
Claim 1. For any m E P%, , N if!n~~[rn] # &, then d, contains the
right endpoint of some other message m’ between nodes sm and
dm.
Claim 2. If no mkw. for a (k, w) in the triangle of injuence for
(i, u), is preemptive, then Pi: C Pzt.
Verification. Any m E P%t - Pzt must be sent by BFL along a
scan line & such that i < k 5 i + u - 1. Since m is sent on ek by
BFL, and thus it must have a release time making it available at
least as early as scan line &. However, since m E P%t, message m
must “pass through” scan line ek, and thus there must be some w,
sm 5 w < 2, such that m E PkDw, but m was not sent from node
w on scanline k. However, this means that mkw is preemptive. By
hypothesis, no m E Pit - Pzz can exist. n

Claim 3. If no mkw. for a (k, w) in the triangle of influence for
(i, v), is premature or preemptive, then Li,(BFL) = Li,(D-
BFL).
Verification. Let m be the message with d, = L,,(BFL) that
reaches its destination on &. Since no mkw in the triangle of in-
fluence is premature or preemptive, m must reach d, along &
under D-BFL also. Thus, we need only show that no m’ with
d, < d,, < w has .!,,[m’] = i # f?BFr.[m’]. Since no edge
in the triangle of influence is preemptive, if loo [m’] = i, then we
cannot have eAFL[rn’] > i. Also, since m;cd,, -1) is not prema-
ture, we cannot have e,F,[rn’] < i. n

To prove the lemma, we first show that miv is not preemptive.
To this end, let rnc be the message in BFL(Z) that was forwarded
along & from ‘II to 2) + 1; mV AJ is NULL if no message is sent.
We need only show that, if m;, is m Pzy and is not NULL, then
rn: = mnv. In BFL, rnz is the message in Pi: with the left-
most destination, that has a source after L,, (BF L). Furthermore,
by Claim 3, under D-BFL all messages in Pit with a source pre-
ceding L,, (BFL) are removed from consideration. If rn: E Pjf,
then rn: is not removed. By Claim 2, if rnz E Pi:, then it must be
one of the remaining messages with the leftmost destination. Since
we break ties in the same manner as is in BFL, if rn,: E Pit, then

N ‘m,,, = miv.

Lastly, we assume, for contradiction, that mi,, isjremature. If
so, it cannot be NULL. By Claim 2, then, mi, E P,, . Moreover,
by Claim 1, we must have Li, (BFL) > smiy. However, by Claim
3, L,,(D-BFL) > sm;, as well. This implies that m;, is not
delivered under D-BFL, which is a contradiction. n

We show how this lemma implies that no miv is preemptive or
premature, which in turn implies the theorem. We proceed induc-
tively along rows of M, (= time steps). For row t = 0: the triangle
of influence for any pair (i, v) such that t$, = 0 is empty, so the
hypothesis of Lemma 5.1 is satisfied trivially; hence, no such mi,,
is preemptive or premature. Now, assume inductively that for some
time t > 0, every message forwarded at time t’ < t is neither pre-
emptive nor premature. This implies that for any i and 2, = i + t,
no mkw in the triangle of influence for (i, v) is preemptive or pre-
mature. Then, by Lemma 5.1, no message forwarded at time t is
preemptive or premature, which extends the induction. n

References

[II

[21

[31

[41

[Sl

[61

[71

@I

[91

IlO1

IIll

[I21

1131

I141

[I51

A. Acampora and S. Shah (1992): Multihop lightwave networks:
a comparison of store-and-forward and hot-potato routing. IEEE
Truns. Commun. 40, IO82- 1090.

M. Andrews, B. Awerbuch, A. Femandez, J. Kleinberg, ET. Leighton,
Z. Liu (1996): Universal stability results for greedy contention-
resolution protocols. 37fh IEEE Symp. on Foundations of Computer
Science.
M. Andrews, A. Femandez, M. Harchol-Baiter, ET. Leighton,
L. Zhang (1997): General dynamic routing with per-packet delay
guarantees of O(distance + l/session rate). 38th fEEE Symp. on Foun-
dations of Computer Science.

1. Ben-Aroya, T. Eilam, A. Schuster (1995): Greedy hot-potato rout-
ing on the two-dimensional mesh. Distr. Computing 9, 3- 19.

S.N. Bhatt, G. Bilardi, G. Pucci, A.G. Ranade, A.L. Rosenberg, E.J.
Schwabe (1996): On bufferless routing of variable-length messages in
leveled networks. IEEE Trans. Camp. 45.7 14-729.
A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, D.P. Williamson
(1996): Adversarial queuing theory. ZRth ACM Symp. on Theory qf
Computing.
A.Z. Broder, A.M. Frieze, E. Upfal (1996): A general approach to
dynamic packet routing with bounded buffers. 37th IEEE Symp. on
Foundutions of Computer Science, 390-399.

A.Z. Broder and E. Upfal (1996): Dynamic deflection routing on net-
works. 2&h ACM Symp. on Theory of Computing, 348-355.

R. Cypher, E Meyer auf der Heide, C. Scheideler, B. Vocking (1996):
Universal algorithms for store-and-forward and wormhole routing.
28th ACM Symp. on Theory of Computing.

U. Feige and P Raghavan (1992): Exact analysis of hot-potato rout-
ing. 33rd IEEE Symp. on Foundations of Computer Science, 553-562.
P. Fizzano, D. Karger, C. Stein, J. Wein (1994): Job scheduling in
rings. 6th ACM Symp. on Parallel Algorithms and Architectures, 2 IO-
219.
M. Flammini and C. Scheideler (1997): Simple, efficient routing
schemes for all-optical networks. 9th ACM Symp. on Parallel Algo-
rithms and Architectures, 170- 179.

R. Games, A. Kevsky, P. Krupp, L. Monk (1995): Real-time com-
munications scheduling for massively parallel processors. Real-Time
Technology and Applications Symp., 76-85.

M.R. Garey and D.S. Johnson (1979): Computers and Intractability.
W.H. Freeman and Co., San Francisco.

S.J. Golestani (1991): Congestion-free communication in high-speed
packet networks. IEEE Trans. Communications 39, 1802- 18 12.

276

[161

[I71

1181

[I91

WI

1211

1221

1231

1241

1251

Pf3

1271

1281

1291

1301

1311

1321

I331

1341

[351

[361

[371

[381

M.C. Golumbic (1980): Algorithmic Graph Theory und Perfect
Graphs. Academic Press, New York.
M. Harchol-Baker and D. Wolfe (1995): Bounding delays in packet-
routing networks. 27th ACM Symp. on Theory of Computing, 248-257.

S. Hinrichs, C. Kosnk, D.R. O’Hallaron, T.M. Snicker, R. Take
(1994): An architecture for optimal all-to-all personalized commu-
nication. 6th ACM Symp. on Parallel Algorithms and Architectures,
310-319.

S.L. Johnsson and C.-T. Ho (1989): Optimum broadcasting and
personalized communication in hypercubes. /EEE Trans. Comp. 38,
1249-1268.

C. Kaklamanis, D. Krizanc, S.B. Rao (1993): Hot-potato routing on
processor arrays. 5th ACM Symp. on Parallel Algorithms und Archi-
tectures, 273. 282.

J.H. Kim and A.A. Chien (1996): Rotating Combined Queu-
ing (RCQ): Bandwidth and latency guarantees in low-cost, high-
performance networks, 23rd Inil. Symp. on Computer Architecture,
226-236.

C. Lam, H. Jiang, V.C. Hamacher (1995): Design and analysis
of hierarchical ring networks for shared-memory multiprocessors.
Intl. Gmfi on Parallel Processing, 1:46-50.

ET. Leighton (1992): Methods for message routing in parallel ma-
chines (invited survey). 24th ACM Symp. on Theory of‘ Computing.

ET. Leighton (1992): Introduction to Parallel Algorithms and Archi-
tectures: Arrays . Trees . Hypercubes. Morgan Kaufmann, San Ma-
too, CA.
ET. Leighton, B.M. Maggs, A.G. Ranade, S.B. Rao (1994): Rnndom-
ized routing and sorting on fixed-connection networks. .I. Algorirhms
17, 157-205.

ET. Leighton, F. Makedon, 1. Tollis (1989): A 2N - 2 step algorithm
for routing in an N x N mesh. Isr ACM Symp. on Parallel Algorifhms
und Architectures, 328-335.

J. Liebeherr (1995): Multimedia networks: issues and challenges.
IEEE Computer 28 (4) 68-69.

J.-P. Li and M.W. Mutka (1994): Priority based real-time communi-
cation for large scale wormhole networks. Intl. Purullel Proc. Symp.,
433-438.

C.L. Liu and J.W. Layland (1973): Scheduling algorithms for multi-
programming in a hard real-time environment. J. ACM 20, 46-61.
K.-S. Lui and S. Znks (1998): Scheduling in synchronous networks
and the greedy algorithm. Theoreticul Comp. Sci.

B.M. Maggs and R.K. Sitaraman (1992): Simple algorithms for rout-
ing on butterlly networks with bounded queues. 24th ACM Symp. on
Theory of Computing, l50- 161.
F. Meyer auf der Heide and B. Vocking (1995): A packet routing pro-
tocol for arbitrary networks. Symp. on Theoretical Aspeels of Com-
puter Sci.

M.W. Mutka (1994): Using rate monotonic scheduling technology for
real-time communications in a wormhole network. Wkshp. on I’urallel
and Disrr: Real-Time Computing Sysis. and Applicafions.

R. Ostrovsky and Y. Rabani (1997): Universal (congestion + dilation
+ loglfc N) local control packet switching algorithms. 29th ACM
Symp. on Theory cf Computing.

A.K. Parekh and R.G. Gallager (1993): A generalized processor shar
ing approach to flow control in integrated services networks: the
single-node case. IEEELACM Truns. Networking I, 344-357.

A.K. Parekh and R.G. Gallager (1994): A generalized processor shar-
ing approach to How control in integrated services networks: the
multiple-node case. IEEE/ACM Trans. Networking 2, 137-150.

A. Pietracaprina and F.P. Preparata (1995): Bufferless packet routing
in high-speed networks. Typescript, Brown Univ.
Y. Rabnni and E. Tardos (1996): Distributed packet switching in arbi-
trary networks. 28th ACM Symp. on Theory of Computing.

277

[391

[401

[411

1421

1431

P. Raghavan and E. Upfal (1994): Efficient routing in all-optical net-
works. 26th ACM Symp. on Theory qf Computing.

A.G. Ranade (1991): How to emulate shared memory.
.I. Camp. Sysr. Scis. 42,307-326.

WI

[451

[461

J. Rexford, J. Hall, K.G. Shin. (1996): A router architecture for real-
time point-to-point networks. 23rd Inrl. Symp. Computer Architecture.

A. Saha (1995): Simulator for real-time parallel processing architec-
tures. IEEE Ann. Simulation Symp., 74-83.

G.D. Stamoulis and J.N. Tsitsiklis (1991): The efficiency of greedy
routing in hypercubes and butterflies. 3rd ACM Symp. on Parallel Al-
gorithms and Architectures, 248-259.

T.H. Szymanski (1990): An analysis of hot-potato routing in a fiber-
optic packet-switched hypercube. IEEE INFOCOM 9 18.926.

L.G. Valiant (1982): A scheme for fast parallel communication. SIAM
J. Comput. I I, 350-36 I.

L.R. Welch and K. Toda (1994): Architectural support for real-time
systems: issues and trade-offs. Inrl. Wkrhp. on Real-Time Compufing
Syw. und Applications.

1471

[481

L. Zhang (1990): Virtual clock: A new traffic control algorithm for
packet switching networks. ACM SIGCOMM, 19-29.

W. Zhao, J.A. Stankovic, K. Ramamritham (1990): A window proto-
col for transmission of time-constrained messages. IEEE Truns. Com-
puters 39, 1186-1203.

A The NP-Completeness Proofs

We reduce 3-SAT [141 to the problem of determining a maximum
cardinality subset of messages that can be routed with or without
buffers. Given any 3-SAT formula Cp, we show how to construct an
equivalent time-constrained message routing problem Z(a) such
that OPTB(Z(@)) = OPTsr, (Z(@)). For this, we use three types
of structures: a structure to represent variables of @, a structure to
represent clauses of @,, and a structure called a chain that is used as
an interface between the two.

The structure for a variable 2 consists of two messages m, and
‘rnb: one for each literal of 5. These messages have span 2 and
slack 0. Messages m, and rnd must be sent on the same scan line,
and overlap for one unit of the distance traveled. Thus, at most one
of m, and ms can ever be routed successfully. In our construction,
the message corresponding to the literal that is true is the message
that is dropped. For all variables %, m, and rnt are placed on the
smallest numbered (leftmost) scan line in any arrangement where
only the messages corresponding to the same variable overlap. Call
the one unit of distance to be traveled by m, and rnz where they
do not overlap with the opposite literal the crirical time slot of that
message.

The critical time slot is used to interface with a chain. Each
chain is associated with a single literal x (or 2). Each message in
the chain has to travel the same 1 unit of distance as the critical
time slot for x. In the simplest chains, there are Ic messages, each
with slack k. The deadline for all of these messages is the same,
and coincides with the critical time slot for 2. This means that if
the literal that the chain is associated with is false (i.e., message m,
has N0I been dropped) one message of the chain has to be routed
as soon as the messages in the chain are released. We call this time
slot the bortom of the chain. When the literal is true (i.e., message
m, is dropped), on the other hand, the bottom of the chain does not
need to be occupied.

The bottom of each chain is connected to a clause structure.
Each clause structure uses 6 consecutive scan lines !r . . !s, and
these scan lines are allocated only to a single clause structure. The
structure is depicted in Fig. 3. This structure represents a clause
composed of the literals A, B, and C, where A is the earliest of

Figure 3: The clause structure.

the three literal in the linear order imposed by the ordering of the
variables in the leftmost scan line, and C is the latest. In this struc-
ture, parallelogram p,4 (resp. pn and pc) is lined up so that the
upper right corner of its parallelogram exactly coincides with the
bottom of the chain originating from message mA (resp. messages
mn and mc). The release times of these parallelograms, as well
as all of parallelogram px , are all at a node to the left of all m,.
Parallelogram px is available on e, and has slack 2. Parallelogram
pA is also available on er, and has slack 5. Parallelogram pe has
slack 3 and is available on es. Parallelogram pc has slack 1, and
is available on !a. Parallelogram pl is available on la, has slack 1,
and its source and destination are the same as the messages in the
chain for B. Parallelograms pz and ps have the same source and
destination as the messages in the chain for A. Parallelograms p2
is available on & with slack 3, and p3 is available on 1s with slack

be successfully routed (with or without buffers), then the bottom of
at least one of the chains for A, B and C is not occupied.
Verification. Note what happens when the bottom of chain C is
occupied: the message for pc must be routed by sending it entirely
along the first scan line of its parallelogram, regardless of whether
buffers are being used or not. Similarly, if the messages for pc
and pr are both successfully routed and the bottom of chain B is
occupied, then the message forpn must be routed along the earliest
scan line of its parallelogram. Likewise, when the messages for pn,
pc, ps and pa are all successfully routed and the bottom of chain
A is occupied, then the message for pA must be routed along the
earliest scan line of its parallelogram. However, if the messages for
PA, pn and pc are all routed along the bottoms of their respective
parallelograms, there is no room for the message in px to be routed.

For each variable 2, at least one of m, and rnz must be dropped,
and thus if OPTn(Z(@)) = n - u, then for each variable x, ex-
actly one of mz and rn, is dropped, and no other messages are
dropped. This and Claim A implies that every clause is connected
to at least one chain D such that the bottom of D is not occupied.
Thus, every clause is associated with at least one message mD that
has been dropped. By setting every literal D corresponding to a
message mD that has been dropped to true, we produce a satisfy-
ing assignment for a, The same holds if OPTBL((Z(+)) = n - w.

We complete the proof by showing that if there exists a satisfy-
ing truth assignment for a, then OPTB (Z(a)) = OPTBL (Z(a)) =
n - V. Given a satisfying assignment for a, we route all but v of
the messages by dropping only the messages corresponding to a
true literal. We route all the messages in each chain at as late a
time as possible. Since each clause has a true literal, this means
that at least one of the chain bottoms in each clause structure is
unoccupied. The message in the corresponding parallelogram can
be routed along the last scan line in its parallelogram, and since at
least one message is so routed in each clause structure, all messages
in every clause structure can be successfully routed. n

For each clause of Cp, there is one such structure in Z(a). When
a literal Y appears in more than one clause, the chain is extended,
starting at the lower right corner of the parallelogram Y. This ex-
tension to the chain interfaces with the next clause containing Y.
The behavior of the chain extension mimics that of the original
chain: if the bottom of the original chain is occupied, and all mes-
sages in the clause structure are successfully routed, then the bot-
tom of the chain extension is also occupied. However, if the bottom
of the original chain need not be occupied, then the bottom of the
chain extension need not be occupied either.

It is also the case that some chains need to cross over a clause
structure CS that does not contain the literal the chain represents.
However, in all such cases, we know exactly how many messages
for CS pass through the chain. To construct a chain of height k
with j messages passing through the chain, we simply use Ic - j
messages with slack Ic. The resulting chain has the same properties
as a chain without messages passing through it.

Let n be the total number of messages in Z(a), and let w be the
number of variables in 9. We first show that when OPTB(Z(@)) =
n - u or OPTBL (Z(a)) = n - w, then there must be a satisfying
truth assignment for a.
Cl&I A. Ifthe messages in PA, pB, pc, px, pl, pz andpa can all

278

