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Abstract- Content Delivery Networks (CDNs) deliver web
content to end-users from a large distributed platform of
web servers hosted in data centers belonging to thousands
of Internet Service Providers (ISPs) around the world. The
bandwidth cost incurred by a CDN is the sum of the amounts
it pays each ISP for routing traffic from its servers located
in that ISP out to end-users. A large enterprise may also
contract with multiple ISPs to provide redundant Internet
access for its origin infrastructure using technologies such as
multihoming and mirroring, thereby incurring a significant
bandwidth cost across multiple ISPs. This paper initiates the
formal study of bandwidth cost minimization in the context
of a large enterprise or a CDN, a problem area that is both
algorithmically rich and practically very important. First, we
model different types of contracts that are used in practice
by ISPs to charge for bandwidth usage, including average,
maximum, and 95th -percentile contracts. Then, we devise
an optimal offline algorithm that routes traffic to achieve
the minimum bandwidth cost, when the network contracts
charge either on a maximum or on an average basis. Next,
we devise a deterministic (resp., randomized) online algorithm
that achieves cost that is within a factor of 2 (resp., e e 1) of the
optimal offline cost for maximum and average contracts. In
addition, we prove that our online algorithms achieve the best
possible competitive ratios in both the deterministic and the
randomized cases. An interesting theoretical contribution of
this work is that we show intriguing connections between the
online bandwidth optimization problem and the seemingly-
unrelated but well-studied ski rental problem where similar
optimal competitive ratios are known to hold. Finally, we
consider extensions for contracts with a committed amount of
spend (CIRs) and contracts that charge on a 95th -percentile
basis.

I. INTRODUCTION

Over the past years, the Internet has emerged as a
business-critical medium for an enterprise to communicate
with their vendors and clients. However, the Internet itself
was designed as a best-effort delivery network with no
guarantees on availability or performance. The Internet is
a network of networks, where each network is managed
independently by an Internet Service Provider (ISP) who
builds and manages the routers, links, and other networking
infrastructure. As such, there are tens of thousands of ISPs
that constitute the Internet today, ranging from large Tier-I
providers with a global presence (such as Level 3, ATT,
Sprint), national providers (such as China Telecom, VSNL
in India, SingTel in Singapore), regional providers (such
as Earthnet), and local ISPs. An enterprise requiring high-

levels of availability for their Internet services faces a
fundamental challenge. It is not sufficient for the enterprise
to obtain their Internet connectivity from a single ISP,
as any single ISP is prone to failure caused by router
mishaps, fiber cuts, and configuration snafus. Therefore,
many enterprises use strategies such as mutihoming and
mirroring that allow them to access the Internet using
multiple ISPs and data centers. In addition, many major
enterprises also use a Content Delivery Network (CDN)
that is a large fault-tolerant distributed platform of web
servers hosted in potentially thousands of ISPs. Examples
of such CDNs include Akamai [6] and Limelight [5]. More
than 15% of the web traffic today use CDNs, including
most major media, entertainment, ecommerce and extranet
portals.
The model and results of this paper apply in several

general technological contexts where cost-efficient traffic
management is critical, but we will pick CDN technology
as a concrete application to illustrate the value of the results.
A CDN works as follows. A CDN negotiates network
contracts to buy Internet bandwidth from a large number of
ISPs and co-locates its servers in those ISPs. An end-user
accessing web content hosted on the CDN is directed' by
the CDN to an appropriate server at one of the contracted
ISPs, so as to optimize availability and performance for the
end-user and minimize bandwidth costs for the CDN. The
browser of the end-user then downloads the content from
that server. Thus, a CDN operates as an "Internet traffic-
cop" by controlling which portion of the traffic is served
from which ISP. The traffic assignments happen in an online
and "real-time" fashion where assignments are changed
periodically at the time granularity of minutes (say, every
5 minutes). For more details on CDN architecture, please
see an overview paper co-written by one of the authors of
this paper [1].
A CDN can be viewed as a reseller of bandwidth, where

it pays each ISP for the traffic served from that ISP to
end-users. A CDN in turn gets paid by the enterprises for
the traffic the CDN delivered on their behalf. A significant
portion of the variable costs of operating a CDN is the total

1The mechanism for directing an end-user to a particular server at
a particular ISP is typically through the Domain Name Service (DNS),
where a domain name such as "www.yahoo.com" is translated to the IP
address of the selected server by the CDN's DNS servers.
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bandwidth costs that it pays the ISPs, and minimizing this
cost is the primary focus of this paper. In particular, CDNs
buy bandwidth from ISPs using network contracts that fall
into three categories depending on how billable traffic (in
Mb/s) is computed over the billing period (typically, a
month). Given a monthly profile of the traffic sent from an
ISP, the billable traffic is either computed on an average
basis (AVG), a maximum basis (MAX), or as the 95th
percentile (95th) of the traffic profile. While most real-
world contracts are either AVG or 95th, MAX is highly
important from a practical system design perspective, since
traffic cannot be controlled in a precise enough fashion2to
take advantage of the 5% window for free traffic in a 95th
percentile contract. Therefore, real-life traffic optimizers
view 95th percentile contracts as MAX contracts for pur-
poses of the optimization, and hence studying the MAX
contract model is very important.
The overall bandwidth cost to be minimized is the sum

of the costs incurred at each individual ISP, where each
ISP charges for the billable traffic at a specific contracted
rate. Because of these contract type differences, a given
traffic profile for a billing period can have a significantly
different cost depending on how it is assigned to the ISPs.
The primary focus of this paper is the problem of how a
CDN should assign traffic to multiple ISPs to minimize the
overall bandwidth costs incurred.

While the model and results presented in this paper use
CDNs as a motivating example, the results are also appli-
cable to other important technologies such as multihoming
[2], where an enterprise contracts with multiple ISPs to
provide redundant Internet access for its origin infrastruc-
ture. The enterprise would then route traffic to and from its
origin via the multiple uplinks, so as to minimize bandwidth
costs and maximize availability and performance. Recently,
commercial offerings from RouteScience [3] and Internap
[4] offer products that help the enterprise optimize traffic
across the different ISPs that provide network connectivity.
The astute reader will recognize that while this paper

considers optimizing cost in isolation, real-world technolo-
gies such as CDNs and multihoming aim to first optimize a
notion of performance (such as minimizing web download
time by reducing latency and loss) while striving to opti-
mize cost. However, pure cost optimization is an important
first step for the following reasons.

. From an algorithmic standpoint understanding pure
cost optimization is a major stepping stone for the
more general bi-criteria cost-performance optimization
that we plan to do in future work. We believe that
the algorithmic ideas generated in this study will shed
light on the more complex bi-criteria optimization
framework.

. Different types of traffic have different sensitivities to
performance and cost. Delivering a real-time applica-

2The imprecision comes from several sources. For instance, some
browsers don't comply with TTLs in a precise fashion, and traffic moved
away from an ISP by the optimizer will decay slowly over time instead
of falling sharply.

tion is extremely performance sensitive but also less
cost sensitive as customers are willing to pay more
for higher performance. However, other types of traffic
such as (non-realtime) background downloads of large
files is less performance sensitive but also more cost
sensitive as customers expect to pay much less. The
latter situation is more closely alligned with the pure
cost optimization regime presented in this paper.

. The pure cost optimization studied in this paper pro-
vides a lower bound on the bandwidth cost achievable
by any real-world system that simultaneously opti-
mizes performance and cost. Comparing the actual
incurred cost with this lower bound delineates the
portion of the actual cost that is intrinsic to the
contracts and traffic from the remaining additional cost
premium attributable to providing performance and
other considerations. Understanding this cost premium
and how it varies with different types of traffic is
critical to understanding the cost structure of service.

A. Prior Work
Considering the practical importance of the problem

in recent years, heuristic implementations exist. However,
this is the first formal study of algorithms for bandwidth
cost minimization across multiple ISPs. Recently, there has
been some interesting work on cost minimization from a
multihoming perspective [15] where AVG and 95th per-
centile contracts are considered and empirically evaluated.
However, our work is unique in considering the typical
CDN situation where the optimizer simultaneously routes
traffic to ISPs with bounded capacities and a mix of contract
types, and formal bounds for optimality are shown in the
competitive ratio framework for online algorithms. There
is extensive literature on online algorithms [13], [14]. Prior
research on online algorithms for ski-rental and related
problems [12], [11] is particularly relevant as we show
interesting connections between our problem and this class
of problems.
B. Our Contributions

The first contribution of the paper is the modeling
and formulation of an area of great practical importance
with a rich potential for future algorithmic investigation.
The model and algorithms presented here are immediately
relevant to commercial technologies of today, advancing
the current state-of-the-art. In Section II, we derive an
optimal offline algorithm that routes traffic to a set of ISPs
with AVG and MAX contracts such that the total cost is
minimized. The offline algorithm assumes that the traffic
that needs to be routed for the entire billing period is known
in advance. While this is not an assumption that holds in
practice, note that the offline optimal algorithm produces a
lower bound on the cost against which any online algorithm
can be compared at the end of each billing period.

In Section III-A, we turn to online algorithms that know
only the current and the past traffic levels, and are unaware
of any events in the future. Specifically, we devise a deter-
ministic online algorithm that is at most a factor of 2 in cost
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from the optimal offline solution. Further, in Section III-
B, we devise a randomized online algorithm that has an
expected cost that is a factor of at most ee1 from optimal.
In both cases, we show that the competitive ratios are the
best possible. An interesting theoretical contribution of this
work is that we show intriguing connections between the
online bandwidth optimization problem and the seemingly-
unrelated but well-studied ski rental problem. Specifically,
our work shows that the online decision to route through
a MAX versus an AVG contract is a generalized form
of the buy-versus-rent decision in the ski-rental problem.
This furthers our understanding of the class of online
problems where competitive ratios of 2 and e/(e - 1) are
optimal for deterministic and randomized online algorithms
respectively. Other problems in this class include previously
known generalizations of ski rental, such as the Bahncard
problem [9] and the TCP Acknowledgment problem [8],
[11] where the same competitive ratios apply. Next, in
Section IV, we extend the contract framework to include
the notion of a committed information rate (CIR), where
the CDN must send a certain committed amount of traffic
through an ISP. We extend our results of Section II to
provide an optimal offline algorithm for MAX and AVG
contracts with CIR. Finally, we show that optimizing costs
for 95th percentile contracts is NP-hard, differentiating it
from the MAX and AVG contracts.

C. Problem Description

1) Network Contracts: A first important step in our
study is accurately modeling a network contract with an
ISP. While a network contract is a complex legal document,
there are three important parameters that provide a simple
yet realistic model for designing applicable optimization
algorithms.
Type. The contract type dictates how the ISP will bill
for the traffic that is sent over its link. The billing period
(typically a month) is divided into M 5-minute time buckets
(typically, M = 8640), and the total traffic sent on the
link is averaged within each 5-minute interval. The three
types of contracts we study are AVG, MAX, and 95th
contracts where the billable traffic is computed as the
average, maximum or the 95th percentile respectively of the
5-minute-bucket-averages in the billing period. The AVG
and 95th contracts account for most network contracts in
existence today. As noted earlier, routing traffic demand
on the Internet is imprecise, since the offered traffic load
is often hard to estimate and the controls are imprecise
(for instance, when web traffic is moved from one ISP to
another ISP, it may take several minutes for the move to
take effect depending on DNS TTLs and browser behavior).
Due to the imprecision in both traffic estimation and
control, 95th contracts are handled as though they were
MAX contracts in practice. Hence, the great importance
of studying MAX contracts. Further, as we will see MAX
contracts are more tractable and provide good insights into
the underlying optimization.

Unit Cost. Unit cost is the cost per Mbps of billable traffic.
Let xi > XS2 > - - - > XM be the average traffic within each
of the M 5-minute buckets during the billing period, placed
in descending order. For an AVG contract, the bill for the
month is CAVG*(Ei Xi IM), where CAVG is the unit cost.
For a MAX contract, the bill for the month is CMAX * (XI),
where CMAX is the unit cost. Likewise, for a 95th contract,
the bill for the month is C95th * (X M ).
Capacity. The capacity P is the maximum bandwidth (in
Mbps) that one can send through the uplink of the ISP.

In addition to these three parameters, an additional
parameter called the Committed Information Rate (CIR) is
important to model. CIR represents the committed amount
of billable traffic that must be sent through an ISP. The CIR
is paid for in advance, whether or not it is used. CIRs are
considered in the later part of the paper in section IV.

2) The Bandwidth Cost Minimization Problem: The
optimization problem proposed here is part of a core com-
ponent in a CDN that senses the incoming traffic requests
and assigns them to servers in multiple ISPs. Typically,
the routing is performed by resolving domain names using
DNS, and the incoming traffic represents requests from
thousands of nameservers around the world. Since each
nameserver can be routed independently to an ISP, we
assume that the traffic is splittable and assignable in any
fashion to the ISPs3.
The Internet bandwidth cost minimization problem is

modeled as follows. The billing period (typically one
month) is divided into M 5-minute time buckets. We model
the incoming traffic as a sequence bt, 1 < t < M, where
bt is the average traffic (Mbps) in time bucket t. Each bt
represents the average traffic demand from end-users that
must be served from the contracted ISPs at time bucket
t. At any time t, a traffic routing algorithm partitions the
incoming traffic bt and assigns yt Mbps to ISPj such that
Ej Y' = bt. Further, it ensures that capacity constraints
are met at each ISPj and at each time 1 < t < M, i.e.,
y < Pj, where Pj is the capacity of ISPj.
An offline algorithm knows the entire time-ordered input

sequence of traffic demands, I = (bt), 1 < t < M, for
the entire billing period. It makes traffic routing decisions
based on this complete knowledge. An online algorithm
makes routing decisions at time t knowing only bj, 1 <
j Kt, i.e., knowing only the past and current values. Note
that the incoming traffic bt, the traffic assignments yt , and
capacities Pi are integral values in the units of bits per
second.

In this paper, we study both offline and online algorithms
for traffic management that optimize the total cost incurred
in the network contracts for the billing period. We use the
notion of competitive ratio to bound the cost CA(I) of an
online algorithm A in terms of the optimal offline cost of

3This is a good first-cut approximation as most of the internet web
traffic comes from a large number of nameservers, where each nameserver
accounts for only a small fraction of the total traffic. Further, each
individual web request induces only a small amount of traffic and can
be served within a short period of time (milliseconds), as web objects are
small on average (under 1OKB).
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COPT (I). In particular, a deterministic online algorithm A
is said to be c-competitive if there exists a constant a such
that for all input sequences I, CA(I) <c COPT(I) + a.
A similar competitive notion applies to randomized online
algorithms where the expected value of the cost is used
instead. Note that the competitive ratio guarantees derived
for our online algorithms hold in the worst-case, irrespec-
tive of the behavior and (un)predictability of the incoming
traffic.

II. THE OFFLINE ALGORITHM

In this section, we derive an optimal offline algorithm
that routes traffic with minimum total bandwidth cost to
ISPs with AVG or MAX contracts.

To start with, assume that we are given contracts from
m MAX ISPs Maxi, 1 < i < m, such that CMax,1 <
CMaX2 < *-- < CMaxm. Define the threshold tMaxi of
an ISP Maxi to be the maximum traffic routed during the
billing period through that ISP. The proof of the following
Lemma is easy, and is omitted.
Lemma 1: There exists an optimal solution in which

Maxi is not used in a time interval unless each ISP Max ,
j < i, has been used to its full capacity of PMaxj.

Thus the greedy algorithm of using a cheaper MAX ISPs
to its full capacity before using a costlier MAX ISPs routes
traffic through m MAX ISPs with the least cost. As the cost
is determined by the bucket with most traffic to be routed
the time taken to calculate the cost of the optimal routing
is O(m log m + M) (sorting is necessary).
Now we give a similar greedy algorithm for routing

traffic when we have only AVG ISPs. Assume that we are
given contracts from n AVG ISPs Avgi, 1 < i < n, such
that CAV91 < CAV92 <_ - <K CAvg9. The proof of the
following Lemma is easy, and is omitted.
Lemma 2: In any optimal solution, ISP Avgi is not used

in a time interval unless each ISP Avgj, j < i, is used to
its full capacity.

Thus the greedy algorithm where in each interval a
cheaper AVG ISPs is used to its full capacity before using
costlier AVG ISPs routes traffic through n AVG ISPs with
the least cost. We can find the most expensive AVG ISP
that needs to be used in a bucket in O(log n) time by
using binary search to search for the bucket capacity in
an array of size n, whose kth element is E.k1 CAv9g for
1 < k < n. As the ISPs need to be sorted by their cost, the
total time taken to calculate the cost of the optimal solution
is O((n+M)logn).
Now we consider the general case when we have both

MAX ISPs and AVG ISPs. Assume that we are given
contracts from m MAX ISPs Maxi, 1 < i < m, such
that CMaxi < CMaX2 < .. < CMaxm-. Further, assume
that we are also given contracts from n AVG ISPs Avgi,
1 < i < n, such that CAVg1 < CAV92 < ... < CAvgn- Now
we show that there exists an optimal solutions which has
the same form as Figure 1.
Lemma 3: There exists an optimal solution such that in

ISPs are used to their respective thresholds for the billing
period.
Proof: Start with any optimal solution where ISP Avgi
receives x > 0 units of traffic in a time interval, but some

ISP Maxj is used less than its threshold by y > 0 units.
By moving min{x, y} > 0 units of traffic from Avgi to

Maxj, the total cost of ISP Avgi does not increase while
the cost of Maxj remains the same. Thus, the overall cost
does not increase and we have an optimal solution which
satisfies the given property. l
Thus there exists a dividing line (Figure 1) such that all

traffic below this line is routed through MAX ISPs and
all traffic above is routed through AVG ISPs.4 Thus the
problem can be broken into three parts - finding the optimal
height h of the dividing line, routing traffic below the height
h through MAX ISPs and routing traffic above the height
h through AVG ISPs. The problem of routing traffic below
(resp., above) the dividing line at height h through only
MAX ISPs (resp., AVG ISPs) can be solved by greedy
algorithms given above. The Max-Threshold h, defined to
be the sum of the thresholds of the MAX ISPs, can be
found by binary search using the following lemma.

Define CMax(h) (resp., CA,g(h)) to be the total cost
of routing traffic below (resp., above) the dividing line at
height h through the MAX ISPs (resp., AVG ISPs) using
the greedy algorithms given above and define CMax (h+)
(resp., CA,g (h+)) to be its right derivative at h i.e.,
liM6hoO+(CMax(h + dh) - CMax(h))I/h. Let C(h) =

CMax(h) + CAvg(h) and thus C'(h+) = Cmax(h+) +
CAvg (h+).
Lemma 4: For all hl,h2 if C'(h+) and C'(h2+) are well-

defined and x- = PAv9i < h1 < h2 < ,=1 PMaxj,
then C'(hj+) < C(h+).
Proof: CMax (h+) is the cost of the cheapest MAX ISP
that has not been used to its full capacity when the
Max-Threshold is h. Thus CMax (h+) is defined wherever
CMax (h) is defined, except when h is the sum of the
capacities of the MAX ISPs. From Lemma 1, it follows
that C0Max(h+) is a non-decreasing function.

Avg(h+) =-
i
Z=(cost of the most expensive AVG

ISP used in the ith interval when the Max-Threshold is
h). Thus CAvg(h) is right differentiable wherever it is
defined. From Lemma 2, it follows that C'Avg(h+) is a

non-decreasing function. The lemma follows as C'(h+)
CMax(h+) + C'vg(h+).

Theorem 5: The cost of the offline optimal solution can

be computed in O(L(log m+M log n) +n log n+m log m)
time, where m is the number of MAX ISPs, n is the
number of AVG ISPs, M is the total number of intervals in
the billing period and L is the number of bits required to
represent the maximum amount of traffic sent in an interval.
Proof: C(h) is a continuous function as both CMax (h) and
CAV9 (h) are continuous functions. From Lemma 4 and the

4Note that the algorithm could produce a solution that uses only the
AVG contracts, if that is optimal, by computing the height h to be zero.
In fact, that would be the case if the unit cost of the AVG contracts are

any time interval an AVG ISP is used only if all MAX significantly lower than the unit cost of the MAX contracts.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 7, 2009 at 19:23 from IEEE Xplore.  Restrictions apply.



t
Bits

p
Avg2

p
Avgl

I
I

Avg 3

Avg 2

MxI

Avg 1

I

hp
Max2

Maxl

< L2(h)
< L2(h) ' Buckets

< L3(h) ->

Fig. 1. The structure of an optimal offline solution

fact that C(h) is continuous it follows that C(h) reaches
its minimum whenever C(h+) changes from being non-
positive to being positive. We use binary search over all
values of h to find the h such that C(h+) changes sign.
There are at most 2L possible values for h. So there are at
most log(2L) = L steps. At each step of the binary search
we need to calculate C'(h+) (using C(h)) and this can be
done in 0 (log m + M log n) time. Thus we can calculate
the cost of the optimal routing in O(L(log m +M log n) +
n log n + m log m) time.D

III. ONLINE ALGORITHMS

We provide both deterministic and randomized optimal
online algorithms for the problem of routing traffic through
AVG and MAX ISPs with minimum cost with competitive
ratios of 2 and ee1 respectively. Note that an online
algorithm at time t knows the current and past traffic
values, bl, b2,--- , bt, but does not know future traffic
values bt+I, bt+2, ...* bm

A. Optimal Deterministic Online Algorithm
In this section, we present a 2-competitive deterministic

online algorithm A that routes traffic through AVG and
MAX ISPs. Assume the time-ordered sequence of traffic
demands is I = (bl,b2,- - ,bM-l,bM). At a given time
interval t, the online algorithm A does the following:

1) Runs the offline algorithm OPT described in Sec-
tion II on the input (b1, b2, ... , bt, ,O, * * , 0). That
is, runs the offline on a prefix of the input assuming
all future time intervals have zero traffic.

2) Routes the current traffic bt in the same manner as
OPT.

First, we show that the Max-Threshold, i.e., the sum of
the thresholds incurred in the MAX contracts, can only
increase with time as we progress through the month.

Lemma 6: Let ht be the Max-Threshold of OPT on input
(b1,b2,-.. ,bt,0,O,***0). Then, for all 1 < t < M - 1,
ht < ht+i.
Proof: Assume ht > ht+i. The cost of routing the
traffic (bl, b2, , bt,0,O, 0) with a Max-Threshold of
ht is less than or equal to cost of routing the same
traffic with a Max-Threshold of ht+i. As bt+l- ht <
bt+l- ht+l the contribution in the total cost of routing the
t + 1th interval traffic above the Max-Threshold through
the AVG ISPs with a Max-Threshold of ht is less than
or equal to the same with a Max-Threshold of ht+i.
Thus with a Max-Threshold of ht we can route the traffic
(br, b2,*... , bt, bt+i, 0, 0, - - - 0) with the same or lower cost
than with a Max-Threshold of ht+i. This contradicts the
fact that for no Max-Threshold of h > ht+l can we route
the traffic (b1, b2, ... , bt, bt+i, 0, 0, - - - 0) with the same or
lower cost. Hence proved by contradiction.E

Theorem 7: The competitive ratio of the deterministic
online algorithm A is 2.
Proof: The total cost CA of algorithm A equals the sum of
the cost CA,AV9 incurred in the AVG contracts and the cost
CA,Mao incurred in the MAX contracts. Note that the final
threshold hM of A equals the threshold hoPT computed
by the offline optimal algorithm OPT. Also by lemma 6
hM > ht for all t < M. Therefore,

CA,Max = COPT,Max < COPT (1)

Let C,AAv be the cost incurred in AVG ISPs by algorithm
A during the first t time intervals. Let COPT be the total
cost incurred by the optimal offline algorithm OPT when
provided an input of (b1, b2, ... , bt, 0, 0,* * *, 0). We prove
by induction on t that CtAvg < COPT
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Base Case: When t = 1, algorithm A runs OPT on the
first input and behaves identical to it. Therefore,

CA,Avg OCOPT,Avg <COPT
Inductive Case: Assume that the hypothesis is true until
t. So C,A K< As COPT is the optimal offline
solution for the input (b1, b2, * * , bt, 0,0, , 0), we have
CA,Avg <COPT < the cost of the optimal offline solution
with Max-Threshold as ht+l for the same input. The
contribution in the cost of Ct+1 and CO+1T of sending
part of the data in the t+ 1th interval through the AVG ISPs
is the same. This is because in both cases only the data
more than ht+l is sent through the AVG ISPs. Adding this
cost to the extremities of the inequality given above we get
Ct+Ag < CtOPT This completes the induction. Therefore,

M ' M2CA,Avg CA,Avg <_C/OPT = COPT (2)

Thus, combining equations 1 and 2, CA = CA,Max +
CA,Avg < 2COPT E

Theorem 8: The competitive ratio of 2 achieved by Al-
gorithm A is the best possible for any deterministic online
algorithm.
Proof: We first prove that the Ski Rental problem[ 1] is
a special case of the traffic routing problem. Given a ski
rental problem where the cost of renting a pair of skis is
1 and the cost of buying them is p, the optimal strategy
when you ski k times is to buy skis in the beginning if
k > p, and rent otherwise. Given an instance of the ski
rental problem we create an instance of the traffic routing
problem with one MAX ISP of cost p and one AVG ISP
of cost M, where M > k is the number of intervals in the
billing period. The input traffic bt = 1 bit, if 1 < t < k,
and zero for k < t < M. The capacity of each ISP is 1
bit/interval. Thus in an interval one can only send either
O or 1 bits through an ISP. It is easy to verify that in the
original ski rental problem the optimal solution is to buy
skis if and only if the optimal solution for traffic routing
problem is to use only the MAX ISP for routing the entire
traffic. Similarly renting skis is optimal if and only if AVG
ISP is used to route the entire traffic in the optimal solution.
Also the optimal cost in both problems is the same.

If for any e > 0 if there exists a deterministic online
algorithm with competitive ratio of 2 - e we can use it to
get a 2 - e competitive deterministic online algorithm for
the ski rental problem using the construction given above.
This contradicts the fact that ski rental problem has a lower
bound on the competitive ratio of a deterministic online
algorithm of 1+-r which -+ 2 as p -+ oo[1 1], [ 12].p

B. Optimal Randomized Online Algorithm
In this section we describe an e/(e - 1) competitive

randomized online algorithm ARand which
1) Picks z between 0 and 1 according to the probability

density function p(Z) - ez1
2) Routes the traffic using the deterministic online algo-

rithm A,.

If the time-ordered sequence of traffic demands is I =

(br, b2, *... , bm) then at a given time interval t, the deter-
ministic online algorithm A, does the following:

1) Runs the offline algorithm OPT(z) described in
Section II on input (bl,b2,... ,bt,O,0,**. ,O) but
with the costs of all MAX ISPs multiplied by z.

2) Routes the current traffic bt in same manner as
OPT(z).

Note that A1 is the deterministic online algorithm A
given in section III-A. Define COPT (Z) to be the cost
of the optimal offline solution with the same input but
with the costs of all MAX ISPs multiplied by z. Let
COPT,AV9(z)(resp., COPT,Max(Z)) be the contribution in
COPT(z) due to the AVG (resp., MAX) ISPs. Similarly
define CA,,A,g(resp., CA, ,Max) to be the contribution
in CAZ, the total cost due to algorithm Az, due to the
AVG (resp., MAX) ISPs. Note that CAZ and CAz,Max are
charged by the actual cost of the MAX ISPs but COPT(Z)
and COPT,Max (z) have a discounting factor of z. The
proofs of the following two lemmas are similar to the
analogous proofs of equations 1 and 2 in theorem 7.
Lemma 9: ZCAz,Max = COPT,Max(Z)
Lemma 10: CA,AV9 < COPT(Z)
Lemma 1]: For 0 < z < 1, COPT(1) -COPT(Z) >

fZ CAW,MaxdW
Proof: For any v such that 0 < z < K 1,

COPT(V) - COPT,Max(V) + COPT,AV9(V)
- VCA,,Max + COPT,AV9(V)

(using lemma 9)
d(COPT (v)) - dv - CAV,Max + v - d(CA, Max)

+d(COPT,Avg (V)) (3)

Define h(w) to be the Max-Threshold in the optimal offline
solution (COPT(W)) when the cost of all MAX ISPs are
multiplied by w. h(w) is a non-increasing function of w.
Also let CMa,,, be the original cost of the most expen-
sive MAX ISP that was used in optimal offline solution
COPT(W) (or in CAW). As the actual cost of any MAX
ISP used in the gap between h(v + dv) and h(v) would be
at most CMa,,, the increase in cost of MAX ISPs when
Max-Threshold is increased from h(v + dv) to h(v) is at
most CMaoc (h(v) - h(v + dv)). Thus

-d(CA ,Max) = CA ,Max - CAv+dv Max
< CMax,, *(h(v)-h(v + dv))
= -CMax, * d(h(v)) (4)

The actual cost of any MAX ISP used in the gap between
h(v) and h(v + dv) is at least CMax,+d,. Thus in the
optimal solution when the cost of the MAX ISPs have been
multiplied by v decreasing the Max-Threshold from h(v)
to h(v + dv) decreases the cost due to the MAX ISPs by at
least VCMasX,+d, * (h(v) - h(v + dv)). The corresponding
increase in the cost due to the AVG ISPs is at least this
much, since COPT(V) is the optimal cost. Thus,
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d(COpT,Avg (V)) - COPT,Avg (V + dv)
-COPT,Avg (V)

> VCMax,+dv
*(h(v) - h(v + dv))
-VCMaxv+dvd(h(v)) (5)

Substituting equations 4,5 in equation 3

d(CoPT(v)) > dv -CAV,Max-
V(CMaxv+dv - CMax)d(h(v))

- dv CA,Max
-v d(CMaxj) - d(h(v))

Integrating v from z to 1 and using the fact that COPT(V)
is a continuous function and that the integral of the product
of two differentials is 0, we get COPT(1) - COPT(Z) >
fz CAV, Max dV El

Corollary 12: COPT(1)> f0CA> ,MaxdW
Theorem 13: The competitive ratio of the randomized

online algorithm ARand is e/(e - 1)
Proof: Define P(z) = fz p(w)dw. Then

CAz =

E[CARand-

E[CARandI
COPT

CAZ Max + CAZ ,Avg

CAZ Max + COPT(Z)
(by lemma 10)

CAZ ,Max + COPT(1)

- CAW,MaxdW

(by lemma 11)

CAzp(Z)dZ

COPT(1) + CAz ,Ma,P(Z)dZ

-/ P(Z)(f CA,U Max dw)dz

COPT + CA,,MaxP(Z)dZ
P1 r~w

- CA.Ma.x( P(Z)dz)dw

COPT +

f(p(z) P(Z))CAz,Maxdz

I(P(Z+ - P(Z))CAZ,Maxdz
fL CAz,Maxdz

(by corollary 12)

Setting p(z) e§z and P(z) =
ez-1 in the above resulte-1 ~~e-1

we prove the theorem.
Theorem 14: The competitive ratio of e/ (e -1) achieved

by Algorithm ARand is the best possible for any random-
ized online algorithm.

Proof: As in theorem 8 we use the fact that this problem
is a generalization of the ski rental problem. The ski rental
problem has lower bound on the competitive ratio of a
randomized online algorithm of ep/(ep-1) where ep
(1 + p 1 )P when p, the ratio of the cost of buying to the
cost of selling, is an integer. The algorithm which achieves
this is similar to the randomized online algorithm for the
snoopy caching problem[12]. Also e /(ep-1) < e/(e - 1)
but tends to e/(e - 1) as p tends to oo.

If for any e > 0 if there exists a e/(e - 1) -e
competitive randomized algorithm for this problem then by
the construction in theorem 8 we get a e/(e - 1) - e com-
petitive randomized algorithm for the ski rental problem.
A contradiction. D

IV. EXTENSIONS
In this section we consider two different extensions to

our results. In Section IV-A we consider the notion of
Committed Information Rate (CIR) and in Section IV-B
we consider 95th percentile contracts.

A. Committed Information Rate (CIR)
Committed Information Rate (CIR) represents the com-

mitted amount of billable traffic that must be sent through
an ISP. The CIR is paid for in advance, whether or not
it is used, at a rate that is usually lower than the rate
for the traffic sent above the CIR. Since the cost for the
CIR is independent of the usage it can be assumed to be
O without loss of generality in all further analysis. Let
Xl > X2 > *-- > xm be the average traffic within
each of the M 5-minute intervals during the billing period,
placed in descending order. For an AVG contract, the
bill for the month is CAVG * (Ei Xi/M - CIRAVG) if
Ei xi/M > CIRAVG, otherwise it is 0 , where CAVG
is the unit cost and CIRAVG is the CIR. For a MAX
contract, the bill for the month is CMAX * (Xl - CIRMAX)
if xl > CIRMAX, otherwise it is 0, where CMAX is the
unit cost and CIRMAX is the CIR. Similar cost function
exist for a 95th percentile contract.
We derive offline algorithms for routing through ISPs

with CIR by first considering routing through MAX ISPs
alone and then AVG ISPs alone and finally when we have
both as in Figure 2. The main difference between the
algorithms for ISPs with CIR and ISPs without CIR is in
the greedy algorithm for routing traffic through AVG ISPs
alone.
Assume that we are given contracts from m MAX ISPs

Maxi, 1 < i < m, with unit cost CMaxi capacity PMaxi
and CIR CIRMaxi (< PMaxi), such that for all j < ,

CMaxj < CMaxi. The proofs of the following Lemma is
easy, and is omitted.
Lemma 15: There exists an optimal solution in which

Maxi is not used more than its CIR in a time interval
unless each ISP Maxj, j < i, has been used to its full
capacity of PMaxj and all MAX ISPs have been used at
least to their CIR.
Lemma 15 gives us an optimal greedy algorithm for

routing traffic through MAX ISPs alone. First use the CIRs
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Fig. 2. The structure of an optimal offline solution when the ISPs have a CIR

of all the MAX ISPs and then route the remaining greedily
by using cheaper ISPs to their full capacity before using
costlier ISPs. This greedy algorithm also takes at most
O(m logm + M) time to calculate the minimum cost of
routing through m MAX ISPs.

Similarly there exists a greedy algorithm for routing
traffic through n AVG ISPs. Assume that we are given
contracts from n AVG ISPs Avgi with CIR CIRA,g, and
capacity PAV9,, 1 < i < n, such that CAVg9 < CAVg2 <
*-- CAvgn. Start with the costliest AVG ISP(Avgn) and
first route in each interval all the traffic (bk -j=Z PAv9g)
that cannot be routed through cheaper ISPs due to capacity
constraints. In case the AVG ISP Avgn has not been
utilized to its CIR then route more traffic to fully utilize
the CIR such that the maximum remaining height of all
intervals is minimized except for those intervals where
this is not possible as the ISP Avgn has been utilized to
its full capacity. The remaining traffic is routed through
ISPs Avg1,Avg2,...,Avg9n- using the same procedure
but now starting with ISP Avgn-1, the next costliest.

Theorem 16: The greedy algorithm given above routes
traffic through n AVG ISPs with minimum cost.

Proof: Given any solution we prove that it can be
transformed into the greedy algorithm solution without
increasing the total cost. Start with the costliest AVG ISP
Avgk used differently from the greedy solution. All the
costlier ISPs Avgi, i > k and the traffic routed through
them are not considered as the allocation of these costlier
AVG ISPs is not changed.

If the total amount of traffic routed through ISP Avgk is
more in the greedy solution then one can route more traffic
through Avgk in the optimal solution as average traffic is
less than the CIR and hence it is free. If the total amount
of traffic routed through ISP Avgk is less in the greedy
solution then all of this traffic is being paid for as it is

above the CIR. This traffic can be routed through other
ISPs Avgi, i < k which have the same or lower costs.

In case the total amount of traffic routed through ISP
Avgk is the same then one can redistribute the traffic
such that the traffic routed in all intervals through the
ISP Avgk is the same without changing the total cost.
There exists a interval r (resp., s) in which more (resp.,
lesser) traffic is routed through ISP Avgk in the greedy
solution. More traffic is routed in interval r through ISPs
Avg,, Avg2, . . ., Avgk-1 than in interval s as in the greedy
solution we are trying to make the traffic routed through
them the same. Thus for some x and some I < k in
interval r one can route x more units of traffic through ISP
Avg, instead of Avgk and in interval s one can route x

more units of traffic through ISP Avgk instead of Avg,.
This transformation does not change the total cost. By
repeatedly using this transformation one can convert the
optimal solution into the greedy solution without changing
the cost.

Once the intervals and the AVG ISPs are sorted, the
traffic that has to be sent through the most expensive
AVG ISP due to capacity constraints can be calculated
in O(M) time. Routing more traffic to fully utilize the
CIR of the most expensive AVG ISP can also be done in
O(M) time. This is done by keeping track of the heights
at which the buckets in which more traffic has to be routed
through the most expensive ISP changes. Thus routing
traffic through n AVG ISPs with CIR can be done in
O(nM + MlogM + nlogn) time.
The algorithm for routing traffic optimally through m

MAX ISPs and n AVG ISPs with CIR is similar to the
algorithm in section II when the ISPs did not have any

CIR. This is true because the proofs of Lemmas 3 and
4 still hold. The only change is that the greedy algorithms
given above are used to route traffic below (resp., above) the

h

I'
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dividing line of height h through MAX ISPs (resp., AVG
ISPs). Similar to the proof of Theorem 5 we can prove that
the cost of the optimal offline solution can be calculated in
O(L(log m + nM) +n log n + m log m + M log M) time.

B. 95th Percentile Contracts

Including network contracts that charge based on the
95th percentile of the traffic renders finding the optimal of-
fline solution NP-hard. In fact, the problem of determining
whether a given input can be routed using only the free
traffic (i.e., using only 5% of the intervals for each ISP)
of a set of 95th percentile ISPs is already NP-Hard. The
proof involves a straight forward reduction from the Bin
Covering Problem [7], which is known to be NP-complete
in the strong sense, to this problem, and is omitted.

Theorem 17: Finding whether one can route the entire
traffic with zero cost in a system consisting of n 95th
percentile ISPs is NP-Complete in the strong sense.

V. CONCLUDING REMARKS

An important contribution of this paper is that it opens
up the algorithmically rich and practically important area
of bandwidth cost optimization for CDNs and multihomed
enterprises, using realistic contract models. This paper is
but a first step into this area of research, and many open
questions for future research remain. An immediate next
step is to implement the algorithms in this paper and
empirically study their behavior for actual traffic traces
and network contracts derived from a CDN. Devising near-
optimal online algorithms under the right adversarial model
for AVG and MAX contracts with CIR is a problem
of great importance for future work. Further, devising
a suitable definition of approximation and finding good
approximation algorithms for 95th percentile contracts is
another interesting avenue for future investigation. Finally,
an important and critical avenue for future research is to
introduce the notion of performance and extend our model
and algorithms to simultaneously optimize both cost and
performance. We believe that the current work provides a
number of insights into reaching this final objective.
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