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Abstract

We consider the problem of off-policy policy
selection in reinforcement learning: using his-
torical data generated from running one pol-
icy to compare two or more policies. We show
that approaches based on importance sampling
can be unfair—they can select the worse of
two policies more often than not. We give two
examples where the unfairness of importance
sampling could be practically concerning. We
then present sufficient conditions to theoreti-
cally guarantee fairness and a related notion of
safety. Finally, we provide a practical impor-
tance sampling-based estimator to help miti-
gate one of the systematic sources of unfair-
ness resulting from using importance sampling
for policy selection.

1 INTRODUCTION

In this paper, we consider the problem of off-policy pol-
icy selection: using historical data generated from run-
ning one policy to compare two or more policies. Off-
policy policy selection methods can be used, for exam-
ple, to decide which policy should be deployed when two
or more batch reinforcement learning (RL) algorithms
suggest different policies or when a data-driven policy is
compared to a policy designed by a human expert. The
primary contribution of this paper is that we show that
the importance sampling (IS) estimator (Precup et al.,
2000), which lies at the foundation of many policy selec-
tion and policy search algorithms (Mandel et al., 2014;
Levine and Koltun, 2013 Thomas et al., 2015b), is often
unfair when used for policy selection: when comparing
two policies, the worse of the two policies may be re-
turned more than half the time.

After formalizing our notion of fairness, we show that
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unfairness can occur in both the on-policy and off-policy
settings. We further show that in the off-policy set-
ting, using importance sampling for policy selection can
be unfair in practically relevant settings. In particular,
we show that IS can favor myopic policies—policies
that obtain less total reward, but which obtain it early
in an episode—as well as favoring policies that pro-
duce shorter trajectories. Although IS is an unbiased
estimator, this unfairness arises because policy selec-
tion involves taking a maximum over estimated quanti-
ties. Depending on the distribution of estimates, impor-
tance sampling may systematically favor policies that are
worse in expectation.

We then present two new approaches for avoiding un-
fairness when using importance sampling for policy se-
lection. First, we give sufficient conditions under which
using importance sampling for policy selection is fair,
and provide algorithms that guarantee a related notion of
safety. We also describe how our approach to guarantee-
ing fairness and safety is related to the notions of power
analysis and statistical hypothesis testing. Although of
theoretical interest, the reliance of this approach on con-
servative concentration inequalities limits its practicality.
Thus, in our second approach, we introduce a new prac-
tical IS-based estimator that lacks the theoretical prop-
erties of our first approach, but which can help mitigate
unfairness due to differing trajectory lengths.

Although there is significant literature surrounding re-
ducing the variance and mean squared error of off-policy
policy evaluation methods that use IS-based estimators
(Powell and Swann, [1966} |Dudik et al.l |2011; {Jiang and
L1, |2016; [Thomas and Brunskill, 2017), other challenges
associated with off-policy policy selection, such as fair-
ness, have not been explored in the literature. Similar
notions of fairness have recently been proposed in the
online RL setting, where an algorithm is fair if it never
takes a worse action with higher probability than a bet-
ter action Jabbari et al.| (2017). This is similar to our
notion of fairness in the offline RL setting, where an al-



gorithm is fair if it does not choose a worse policy with
higher probability than the best candidate policy. How-
ever, the issues surrounding fairness in the two settings
are different due to the different nature of each setting.
By introducing a notion of fairness for policy selection
and highlighting some limitations of existing IS-based
approaches, we hope to motivate further work on devel-
oping practical and fair policy selection algorithms.

2 BACKGROUND

We consider sequential decision making set-
tings in stochastic domains. In such do-
mains, an agent interacts with the environ-

ment, and in doing so, it generates a trajectory,
T = (O()7 Al, Rl, 01, AQ, RQ, cee ,AT, RT7 OT), which
is a sequence of observations, actions, and rewards,
with trajectory length 7. The observations and re-
wards are generated by the environment according to a
stochastic process—such as a Markov decision process
(MDP) or partially observable Markov decision process
(POMDP)—that is unknown. The agent chooses actions
according to a stochastic policy 7, which is a conditional
probability distribution over actions A; given the partial
trajectory 71.4—1 £ (Oo, A1, R1,01,A5, R, ..., Otfl)
of prior observations, actions, and rewards. The value
of a policy m, V'™, is the expected sum of rewards when

the policy is used: V™ 2 E {Zthl Rt’ T ~ 7r] , where
T ~ 7 means that the actions of 7 are sampled according

to m. The agent’s goal is to find and execute a policy
with a large value.

In this paper, we consider offline (batch) reinforcement
learning (RL) where we have a batch of data, called his-
torical data, that was generated from some known be-
havior policy m,. We are interested in the problem of
batch policy selection: identifying a good policy for use
in the future. This typically involves policy evaluation or
estimating the value of a policy 7. using the historical
data that was generated from the behavior policy ;. If
m. = T this is known as on-policy policy evaluation.
Otherwise it is known as off-policy policy evaluation.

2.1 ON-POLICY POLICY EVALUATION

Although we are primarily interested in the off-policy
setting, i.e., the setting where 7, # 7, we will also dis-
cuss the problem of on-policy policy evaluation. This
problem arises, for example, when running a random-
ized control trial or A/B test to compare two policies. In
this case, the value of each policy is directly estimated
by running it to generate n trajectories, 71, 7o, ..., Tn,
and then estimating the policy’s performance using the
Monte Carlo estimator: Vggn £ L5 Z]‘Tzl R;+,

where R;; and T; denote the reward of 7; at time ¢ and
the length of 7; respectively.

2.2 IMPORTANCE SAMPLING

In this paper, we primarily focus on off-policy policy
evaluation and selection. Specifically, we focus on esti-
mators that use importance sampling. Model-based off-
policy estimators tend to have lower variance than IS-
based estimators, but at the cost of being biased and
asymptotically incorrect (not consistent estimators of
V™) (Mandel et al.,|2014)). In contrast, IS-based estima-
tors can provide unbiased estimates of the value. There
has been significant interest in using IS-based techniques
in RL for policy evaluation (Precup et al., [2000; Jiang
and Li, 2016; Thomas and Brunskill, [2016)), as well as
growing recent interest in using it for policy selection
(Mandel et al., [2014)) and the related problems of policy
search and policy gradient optimization (Jie and Abbeel,
2010; |[Levine and Koltun, [2013; Thomas et al., 2015bj
Wang et al.| 2016).

The IS estimator (Precup et al| [2000) is given
7 Te T;
by: Vi§© & L3 w;i>,', Ry, where w; =
HTz‘ Te(aie|Ti1e—1)
.t:l (@i, e |Ti1:6—1) " i : )
biased and strongly consistent estimator of V7 if
me(alr.i—1) = 0 for all actions, a, and partial tra-
jectories, 71.t—1, where my(a¢|T1.4—1) = 0. How-
ever, Vig° often has high variance. ~The weighted
importance sampling (WIS) estimator,  Vijfs =
ST 2t Wi S°7t . Riy, is a variant of the IS esti-
mator that often has much lower variance, but which is
not an unbiased estimator of V7,

The IS estimator is an un-

3 FAIR POLICY SELECTION

A policy selection algorithm is given a set of candidate
policies and must choose one of the policies for use in the
future. Any policy evaluation algorithm (i.e., estimator)
can be converted to a policy selection algorithm by sim-
ply evaluating each policy using the estimator, and then
selecting the policy that has the largest estimated value.
Thus we can use the Monte Carlo estimator for on-policy
policy selection, and we can use the IS or WIS estimators
for off-policy policy selection.

There are two natural properties we would like in a batch
policy selection algorithm:

e Consistency: In the limit as the amount of historical
data goes to infinity, the algorithm should always
select the policy that has the largest value.

e Fairness: With any amount of historical data, the
probability that the algorithm selects a policy with



the largest value should be greater than the proba-
bility that it selects a policy that does not have the
largest value. When choosing between two poli-
cies, this implies that the algorithm should choose
the better policy at least half the time

Exploring and ensuring the fairness of (IS-based) pol-
icy selection algorithms is the focus of this paper. There
has been recent interest on combining model-based es-
timators and IS-based estimators (Jiang and Li, 2016
Thomas and Brunskilll [2016), however as both model-
based estimators and (as we will show) IS-based estima-
tors are unfair, it is easy to show that these new estimators
must also be unfair. Therefore, we restrict our attention
to the standard IS and WIS estimators.

Before proceeding, we formally define a way to rank
policies. Let the better-than operator >, be such that
m »=p 7o is True if m is better than 75 and False
otherwise, for some notion of “better”. For example, we
can define >y to order policies based on their values:
m =y my is True if V™ > V7™ and False other-
wise. Define the optimal policy 7* in a policy class II to
be the policy where 7* =g 7’ for all 7’ # 7* € HE] We
will now formally define fairness.

Definition 3.1. A policy selection algorithm that chooses
policies from a policy class II is fair with respect to a
better-than operator g if whenever the algorithm out-
puts a policy, the probability that it outputs 7* is at least
as large as the probability that it will output any other
policy. The algorithm is strictly fair if the probability of
outputting policy 7* is strictly greater than the probabil-
ity of outputting any other policy.

Notice that the probabilistic guarantee in this definition
conditions on when the algorithm outputs a policy. This
allows for a policy selection algorithm that does not out-
put any policy in cases when it cannot determine which
policy is better. Also, notice that the trivial policy selec-
tion algorithm that never outputs a policy is fair. How-
ever, ideally we want a policy selection algorithm that
outputs a policy as often as possible while maintaining
fairness. This is an important distinction: although we
want an algorithm that often outputs a policy, we re-
quire the algorithm to at least be fair. We now see that
this seemingly straightforward property is not satisfied
by even the most natural policy selection algorithms.

We begin by showing that even Monte Carlo estimation
is unfair when used for on-policy policy selection. Sup-
pose we want to select the better of two policies, 71 and

"For simplicity, hereafter we assume that there are no two
candidate policies that are equally good.

2We assume such a best policy exists; however, for some
reasonable better-than operators, this may not be true, as we
explore in Section 5.1}

Table 1: The probability of each action under 7, and 75
for the example domain where Monte Carlo estimation is
unfair. Rewards, R, are deterministic.

ai(R=0) a(R=r) a3(R=1)
1 0 1 O
T2 1 —p 0 p

Ty, in a multi-armed bandit (MAB) domain with three
actions a1, ag, and as with rewards and probabilities as
described in Table[I] Notice that V™ = r and V™ = p.
So, if r < p, then V™ < V™2, However, notice that
using one trajectory (n = 1), the Monte Carlo estima-
tor is unfair with respect to >y if 7 < p < 0.5 since
Pr(Vis, < Vﬁéﬁ = p. We can similarly show that
Monte Carlo policy selection is unfair using n trajecto-
ries for n > 1, as long as r and p are sufficiently small.

4 UNFAIRNESS OF IMPORTANCE
SAMPLING POLICY SELECTION

Unsurprisingly, importance sampling is also unfair with
respect to >y . However, the unfairness of importance
sampling can be arbitrarily worse than the unfairness of
the Monte Carlo estimator, in that for any n, we can con-
struct a domain such that IS policy selection is unfair
even though the Monte Carlo estimator will always pick
the correct policy with even a single sample! We provide
one such example in Supplementary Material [A] In this
section, we present two examples that highlight how the
unfairness of importance sampling can arise in counter-
intuitive ways in practically interesting settings, motivat-
ing the importance of caring about satisfying fairness.

4.1 IS FAVORS MYOPIC POLICIES

In the following example we show that even when com-
paring two policies that are equally close to the behavior
policy, importance sampling can still be unfair. In par-
ticular, we show that using IS for policy selection could
be biased in favor of myopic policies, which could be of
significant practical concern. This may come up in prac-
tical settings where we are interested in comparing more
heuristic methods of planning (e.g., short look-ahead) to
full-horizon planning methods. If we have the correct
model class, full horizon planning is expected to be op-
timal, however it is both computationally expensive (so
possibly not even tractable) and potentially sub-optimal
if our model class is incorrect (e.g., our state representa-
tion is inaccurate or the world is a POMDP but we are
modeling it as a MDP). Thus, we may be interested in
comparing full-horizon planning (or an approximation
thereof) to myopic planning, and the following exam-
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Figure 1: Domain in Section The agent is in a chain of length 10. In each state, the agent can either go right (ar)
which progresses the agent along the chain and gives a reward of 0 unless the agent is in s;¢, in which case it gives a
reward of 10 (and keeps the agent in the s1(), or go left (ar), which takes the agent back to state s; and gives a reward

of 1.
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Figure 2: Domain in Section The agent is placed uniformly at random in either a chain MDP of length 2 or a
chain of length L. At each time step, action a x deterministically gives a reward of 1 to the agent if the agent is in the
chain of length 2 and 0 otherwise, and action ay deterministically gives a reward of 1 to the agent if the agent is in the
chain of length L and O otherwise. Both actions progress the agent along the chain.

ple shows that IS can sometimes favor policies resulting
from myopic planning even when full horizon planning
is optimal.

Consider the MDP given in Figure [I Now suppose we
have data collected from a behavior policy 7 that takes
each action with probability 0.5 and all trajectories have
length 200. We want to compare two policies: T yopic
which takes aj, with probability 0.99 and ar with proba-
bility 0.01, and ,,; which takes a, with probability 0.01
and ar with probability 0.99. (Note: the actual optimal
policy is to always take ag, for which 7, is a slightly
stochastic version.) Notice that the probability distribu-
tion of importance weights is the same for both 7,y opic
and 7,,;, so both are equally close to the behavior pol-
icy in terms of probability distributions over trajectories.
However, for datasets that are not large enough, the im-
portance sampling estimate will be larger for m,yopic
than for m,,, even though it is clearly the worse policy.
For example, when we have 1000 samples, (1) around
60% of the time, the importance sampling estimate of
Tmyopic 15 larger than that of m,,,, and (2) around 95%
of the time, the weighted importance sampling estimate
of Tmyopic 1 larger than that of 7,,:. Thus both the IS
and WIS estimators are unfair for policy selection.

The reason IS is unfair in this case is because one policy
only gives high rewards in events that are unlikely under
the behavior policy, and hence the behavior policy often
does not see the high rewards of this policy as compared
to a myopic policy. However, note that these events are
still likely enough that we can build a model that would

suggest choosing the optimal policy. IS is unable to de-
tect simple patterns that a model-based approach (or even
a human briefly looking at the data) would easily infer;
this is the cost of having an evaluation technique that
places virtually no assumptions on policies.

4.2 IS FAVORS SHORTER TRAJECTORIES

Importance sampling can also systematically favor poli-
cies that assign higher probability to shorter trajectory
lengths in domains where the length of each trajectory
may vary. This is a problem that could arise in many
practical domains, for example domains where a user is
free to leave the system at any time, such as a student
solving problems in an educational game or a user chat-
ting with a dialogue system. In such systems, a bad pol-
icy may cause a user to leave the system sooner resulting
in a short trajectory, which makes it particularly prob-
lematic that importance sampling can favor policies that
assign higher probability to shorter trajectories. The fol-
lowing example shows that importance sampling can fa-
vor policies that generate shorter trajectories even when
they are clearly worse.

Consider the domain given in Figure[2} Now suppose we
have data collected from a behavior policy 7 that takes
each action with probability 0.5. We want to compare
two policies: 7x, which takes action ax with probabil-
ity 0.99, and 7y, which takes action ay with probability
0.99. Consider the case where L = 80. Clearly my is
the better policy, because it incurs a lot of reward when
we encounter trajectories of length 80, while only los-



Table 2: Median estimates, out of 100 simulations, of
different estimators using 100 samples of mx and 7y in
the domain in Section @

VMC ‘715 VW]S
mx 139 098 198
Ty 39.52 0010 0.020

ing out on a small reward when encountering the short
trajectories. Table [2| shows the median estimate, out of
100 simulations, of the Monte Carlo estimator, as well
as the median IS and WIS estimates using 1000 samples
each. We find that while 7y is, in actuality, much better,
IS essentially only weighs the shorter trajectories, so the
estimates only reflect how well the policies do on those
trajectories. WIS simply (almost) doubles the estimates
because half of the samples have extremely low impor-
tance weights. So why does this occur? When using IS in
settings where trajectories can have varying lengths, the
importance weight of shorter trajectories can be much
larger than for longer trajectories, because for longer tra-
jectories we are multiplying more ratios of probabilities
that are more often smaller than one. This happens even
if the policy we are evaluating is more likely to produce
longer trajectories than a shorter one (because there are
exponentially many longer trajectories and so each in-
dividual trajectory has an exponentially smaller weight
than an individual short trajectory).

S A NEW KIND OF FAIRNESS

The examples above illustrate that even the most straight-
forward way of evaluating policies could misguide some-
one about which policy is actually better under the ob-
jective of maximizing the expected sum of reward. Al-
though we showed that off-policy policy selection using
IS can be much less fair than doing on-policy Monte
Carlo estimation, the fact that on-policy estimation is
also unfair suggests that perhaps we are using the wrong
measure of performance to construct our better-than op-
erators. The problem is that, even if 7 usually produces
trajectories with more reward than those produced by
7o, it could still be that V™ < V72 if there is a rare
trajectory with very large reward that is more likely un-
der mo. It is therefore worth considering a different no-
tion of “better-than” that better captures which policy is
likely to perform better given a fixed and finite amount
of historical data. This can be captured using the follow-
ing better-than operator, which we refer to as better-than
with respect to Monte Carlo estimation: 71 >wmc,, 72 is
True if Pr(Vige,, > Viid,) = Prife, < Wid,).
and False otherwise.

Notice that this notion of better-than is also exactly what

we would want to use if we want to find a policy where
we optimize our chance of beating a baseline in an ex-
periment or A/B test with n samples (i.e., obtaining a
statistically significant result). Also, notice that we have
a different better-than operator for each n, which is not
necessarily related to the number of samples that we have
from our behavior policy 7. (For example, we may
have collected data from interactions with 1,000 users,
but want to deploy a policy and expect one million users
to use it; in that case we may want to be fair with respect
t0 >mc,106.) We will use =yic to refer to this notion of
better-than in general (even though it is not technically
a better-than operator without specifying the number of
samples). Of course, for this new better-than operator,
the Monte Carlo estimator is fair by definition. It is in-
teresting to note that if the distribution over the sum of
rewards under the two policies are symmetric distribu-
tions (e.g., normal distributions), then the two better-than
operators are equivalent. It may seem as though it is eas-
ier to satisfy fairness for importance sampling with re-
spect to >wmc,, than with respect to >y ; however, we
will show below that, at least in some sense, this is not
the case. However, we can present conditions where both
are satisfied simultaneously. We will henceforth consider
and present results with respect to both notions of fair-
ness (i.e., fairness with respect to >y and fairness with
respect to >c,, ). But we will first consider some coun-
terintuitive properties of this new better-than operator.

5.1 FAIRNESS AND NON-TRANSITIVITY

It is a well-known result in probability theory that there
exists random variables X, Y, and Z such that Pr(X >
Y) > 05and Pr(Y > Z) > 0.5, but Pr(Z > X) >
0.5 as well, indicating that comparing between random
variables in such a way is non-transitive (Irybutal 1961}
Gardner, [1970). We claim that this non-transitivity holds
for the ordering induced by the >uc,,, operator as well.
This is shown in Supplementary Material [B] In fact, it
is possible that for any policy 7, there is another policy
7’ where >wmc,, (7', ™) = True, meaning a best policy
might not exist with respect to >yc.

The good news is that over fifty years ago,
Trybutal (1965) showed that for any m indepen-
dent random variables X1,...,X,,, min{Pr(X; >
Xs),...Pr(Xpm—1 > X)), Pr(X,, > Xy)} < 0.75.
Thus, in order to avoid such non-transitivity, we motivate
a new kind of fairness:

Definition 5.1. An algorithm is transitively fair with re-
spect to a better-than operator >p if it is fair with re-
spect to > p and if the algorithm does not output a policy
when comparing two policies from a set of policies 7y,
..., T such that m; »=p 741 fori € {1,...,k — 1} and



Tk >B T1.

Clearly any algorithm that is fair with respect to >y is
also transitively fair, as comparing real numbers is a tran-
sitive operation. This is not the case for any algorithm
that is fair with respect to >c ., but one way to ensure
transitive fairness in this case is to not only be fair with
respect to >pc,n, but to also not output a policy unless

Pr(Vit > Vi) 2 0.75.
6 GUARANTEEING FAIRNESS

Given that importance sampling is not fair in general, we
would like to understand under what conditions we can
guarantee importance sampling can be used to do fair
policy selection. Recall that even Monte Carlo estima-
tion is not fair, so we would also like to give conditions
for which we can guarantee on-policy policy selection
can be done fairly. Thus, we are interested in guaran-
teeing the following four notions of fairness: (1) fairness
with respect to >y when we have samples from each
policy, (2) fairness with respect to wc,, when we have
samples from each policy, (3) fairness with respect to >y
when we have samples from a behavior policy, and (4)
fairness with respect to >wmc,, when we have samples
from a behavior policy.

Notice that case (2) is satisfied whenever we use Monte
Carlo estimation for policy selection by definition of
>mc. We now give theorems describing the conditions
under which we can satisfy the remaining three cases.
Let Vj1,. be the largest value that could result from pol-
icy m and wyy,, be the largest importance weight possible
for policy m with samples drawn from behavior policy
mp. In what follows, for simplicity, we assume that the
minimum possible value of a trajectory for all policies is
0F] Our results can be extended in the case that this is not
true by considering the minimum possible value for each
policy. Theorem gives the conditions for which us-
ing the on-policy Monte Carlo estimator is fair for policy
selection, when comparing between two policies.

Theorem 6.1. Using the on-policy Monte Carlo esti-
mator for policy selection when we have n samples
from each of policies ™1 and T is fair provided that

Vitae + Vigae < V™ — V”2|\/% We can guarantee

strict fairness if the inequality above is strict.

Similarly, Theorem gives conditions for which using
the importance sampling estimator for policy selection is
guaranteed to be fair with respect to >y, Algorithm|I]is

3In the off-policy case, all our results also hold under the
very mild assumption that for each policy we evaluate there is
some trajectory that has non-zero probability under 7, but has
0 probability under the evaluation policy.

a fair policy selection algorithm that guarantees fairness
whenever the condition in Theorem is met, and oth-
erwise returns No Fair Comparison, provided that
€>|V™ — V7| and § > 0.5. Setting 6 = 0.5 is suffi-
cient to guarantee fairness, but we can guarantee stronger
notions of fairness by choosing some § > 0.5 (i.e., when-
ever the algorithm outputs a policy, it outputs the better
policy with probability at least § > 0.5). While we only
consider comparing between two policies in this section,
we can extend our results to the case where we select a
policy from a class of n > 2 policies, as we show in
Supplementary Material

Theorem 6.2. Using importance sampling for policy se-
lection when we have n samples from the behavior policy
is fair with respect to >y, provided that

2n

T U s s T T

wMileMalx + waleMc?x < ‘V =V 2| n 2

We can guarantee strict fairness if the inequality above
is strict.

Theorems and can both be shown with a sim-
ple application of Hoeffding’s inequality; the proofs are
given in Supplementary Material [C] Alternatively, we
can use other concentration inequalities to obtain fair-
ness conditions/algorithms of a similar form. Notice that
Theorem [6.2] tells us that as long as neither policy is too
far from the behavior policy in terms of the largest pos-
sible importance weight, then we can guarantee fairness,
which intuitively makes sense; we can only fairly com-
pare policies that are similar to the behavior policy. How-
ever, how far we stray will also depend on how different
the values of the policies are from each other. This is a
quantity we do not know, so we must pick an € where ei-
ther we think € > |V™ — V™| or we are comfortable
with the possibility of selecting a policy whose value
is € worse than that of the better policy. Thus € can be
thought of as a hypothetical effect size as would be en-
countered in hypothesis testing. To make the analogue
with hypothesis testing more clear, notice that if we fix
the policies that we want to compare, we can instead con-
vert Theorems [6.1]and[6.2]to give lower bounds on n that
guarantee fairness; that is, we can ask how many sam-
ples do we need before we can fairly compare between
two specific policies. This is analogous to doing a power
analysis in the hypothesis testing literature. A critical
difference is that in hypothesis testing we are typically
interested in minimizing the probability of a bad event,
whereas here we are ensuring that the better of the two
policies is chosen more often. Furthermore, in the off-
policy case, we are testing counterfactual hypotheses—
hypotheses that we never run in the real-world.

Notice that Theorem [6.2] is satisfied for a much smaller
subset of policies than Theorem as wyp, and wyd,



can be huge (exponential in the trajectory length). This
is not surprising and matches our intuition (as seen in the
examples above) that IS can be very unfair even in cases
where on-policy selection is fair.

Algorithm 1 Off-Policy FPS->y
Require: 7,72, Vi, Vii2, €, 0

T1,7T2y+ . 3Tpn ~ Tp
™1 ™2
lf dexVde + dexVde < € 1/6 then
T2
return maX(VIS ,VIs )
else
return No Fair Comparison
end if

In order to satisfy fairness with respect to >asc,y, the
condition on the difference between the two policies
will be in terms of the difference between typical Monte
Carlo estimates of the value, as shown in Theorem
We can also satisfy transitive fairness with a stricter as-
sumption on the difference between the two policies.

Theorem 6.3. For any two policies 7, and ws, behav-
ior policy my, and for all k € {1,2,3,...}, using im-
portance sampling for policy selection when we have n
samples from the behavior policy is fair with respect to
>Mc.kn provided that there exists ¢ > 0 and § < 0.5

such that Pr (| Mckn Af,% el = e) > 1 — 6 and
(Wigar T 1) Vigax + (Wi + 1) Vi < € n :{;—_«56
tance samplmg in this setting is transitively fair, provided
that 6 < 0.25.

. Impor-

The theorem essentially says that as long as the con-
ditions hold, we can guarantee fairness with respect to
=Mc,m for any m that is a multiple of n (which is
slightly weaker than being able to satisfy fairness for
all m > n). Notice that if we compare Theorem [6.2]
with Theorem [6.3] for the same choice of € and for any
choice of 6 < 0.5 (in Theorem [6.3), then provided that
the conditions on the difference between the two policies
for both theorems hold, the latter is satisfied for a strict
subset of policies. Thus, we can use Theorem @] to si-
multaneously guarantee fairness with respect to >y and
with respect to >wc,m (provided that the policy effect
size conditions of both theorems hold). It might seem
strange that satisfying >wc ,, requires a stricter test than
for satisfying >y, as it might seem as though importance
sampling would be more likely to choose the same policy
as the Monte Carlo estimator than the policy that has a
higher value (when they are not the same). However, this
is not necessarily the case, as the policy that importance
sampling chooses will depend on the behavior policy.

6.1 SAFETY

As mentioned above, our conditions on fairness require
us to have a reasonable estimate of an effect size between
the policies we want to compare. It would be worthwhile
to have a guarantee that does not require us to speculate
about this unknown quantity. In this section, we give
another type of guarantee which we refer to as safety.
Safety has been considered as a property for policy evalu-
ation and policy improvement algorithms (Thomas et al.,
2015alb). Here we extend the property to apply to policy
selection algorithms.

Definition 6.1. A policy selection algorithm that chooses
policies from a policy class II is safe with probability
1 — § with respect to a better-than operator > g if when-
ever it outputs any policy 7 such that there exists another
policy 7 € Il where 7 % g m, it does so with probability
at most ¢ for some 6 < 0.5.

Thus, a safe policy selection algorithm does not output a
sub-optimal policy often; however, it is still possible for
a safe policy selection algorithm to output a sub-optimal
policy more often than the best policy—but in that case,
the algorithm won’t output any policy often. This def-
inition is weaker than fairness, but as we will see, we
can satisfy it without requiring knowledge about an ef-
fect size between the policies. Theorem gives the
conditions for a safe policy selection algorithm with re-
spect to > and Theorem|[6.5]gives analogous conditions
for a safe policy selection algorithm with respect to >c,
both using Algorithm[2]as the underlying algorithm. The
proofs that these algorithms guarantee safety are given in
Supplementary Material [E]

Algorithm 2 Off-Policy SPS
input 7y, w2, w, P,

T15T2y. .3 T ~ Tp
In(2/(1—p))

B+ w o
ifVIgrl — V1§2 — 8 > 0 then

return m,
else if Vig' — V{g* + 3 < 0 then

return mo
else

return No Fair Comparison
end if

Theorem 6.4. For any two policies 7 and o, behavior
policy mp, w = wyt Vit 4wy Vii2, and 6 < 0.5, Algo-
rithm|2|is a safe policy selection algorithm with respect
to =y with probability 1 — 6.

Theorem 6.5. For any two policies m and o, where

Pr (‘ MC.kn ~
policy Ty, w = (wyp, + 1)Vyge +

A% knl = 0) > 1 — dyc any behavior

(w}Tlr/Iax )VMax’ p=



1 —6pcd for some § < 0.5, and for all k € {1,2,3,...},
Algorithm|2|is a safe policy selection algorithm with re-
spect to = pc in, With probability 1 — 6 when we have n
samples drawn from m,. It is a transitively fair policy
selection algorithm whenever dpc < 0.25.

Note that these algorithms are analogous to statistical hy-
pothesis testing in that we compare the lower bound of
our estimate of the value of one policy with the upper
bound of our estimate of the value of another policy. This
analogue is similar to how our fair policy selection algo-
rithms shared much in common with doing power analy-
ses for hypothesis testing. Also note that as with fairness,
Theorem [6.5] ensures safety with respect to both better-
than operators, so if one uses Algorithm[2]with the inputs
as described in Theorem[6.5] one does not have to deter-
mine which better-than operator one is using. Again, we
find that safety with respect to >pc is more difficult to
satisfy than safety with respect to >y,. We can formalize
this with the following theorem.

Theorem 6.6. There exists policies 7y, ma, and behavior
policy m, for which Algorithm2|with inputs as described
in Theorem is not a safe policy selection algorithm
with respect to =yc,1 with p = 0.5 when we have a sin-
gle sample drawn from m,.

7 PRACTICAL FAIRNESS:
VARYING TRAJECTORY LENGTHS

While the algorithms above provide a way to guarantee
fairness, the concentration inequalities we used are nat-
urally quite loose in most cases, and would likely result
in returning No Fair Comparison in many cases.
Practically, it would be desirable to have algorithms that
can provide fair comparisons more often. As a first step
in this direction, here we discuss a heuristic approach to
policy selection for domains where we have varying tra-
jectory lengths, as seen in Section[d.2] The reason for fo-
cusing on this particular aspect of unfairness is because
it is systematic (potentially arising in any domain where
trajectories vary in length), yet it seems like there should
be a way to correct for the systematic preference towards
shorter trajectories in practically relevant domains. The
idea we propose here is to compute an IS-based estimate
for each trajectory length individually and then recom-
bine the estimates to get a new estimate. We propose us-
ing the following estimator, which we refer to as the Per-
Horizon Weighted Importance Sampling (PHWIS) esti-
mator:

T;
Verwis = » Wi ! > wi) Ry

leL Z{THTFl} Wi ey =1

WIS estimate on [-length trajectories
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Figure 3: Probability of various estimators choosing 7y
over mx for different values of L in the domain given in
Section [4.2] with 1000 trajectories drawn from the uni-
form random behavior policy. For each estimator, the
probability of outputting 7y was estimated using 100 in-
dependent estimates.

where L is the set of trajectory lengths that appear in the
data and W; is a weight for the relative importance of
each trajectory length.

Notice that in the domain in Section[4.2] the length of the
trajectories did not depend on the policy that was used
to generate them; in such cases, we can use the follow-
ing weights: W, (Behavior) £ W The weights
simply count the proportion of trajectories in our data
(i.e., generated by the behavior policy) that have length
. We will refer to PHWIS with this weighting scheme
as PHWIS-Behavior. Now we will see how this esti-
mator performs on the domain in Section [4.2] (Figure [2)
where L € {1, 3,5, 10, 20, 40, 60, 80} given 1000 trajec-
tories from the uniform random behavior policy. Figure[3]
shows that while IS and WIS are unfair (choose 7x more
often than 7y ) when the long trajectories are of length
20, PHWIS-Behavior always chooses the policy that the
on-policy Monte Carlo estimator would choose (i.e., mx
when L = 1, and 7y otherwise).

However, note that in cases where different policies
may generate trajectories of different lengths (for ex-
ample, bad policies causing users to dropout sooner),
this simple form of weighting might not work too well.
Ideally, we would like to use the following weights:
W, (Bvaluation) = Pr(1 (|7| = I|7 ~ 7)), where 7, is
the evaluation policy for which we would like to esti-
mate V™. We cannot actually compute these weights
because we do not know the probability of any trajec-
tory being generated by the evaluation policy, but when
we have ground truth, we can use the PHWIS-Evaluation
estimator as a point of comparison. To approximate these
weights, we can take the weighted importance sampling
estimate of the trajectory lengths generated by the be-
havior policy: W; (WIS) = ﬁ S wl (T =1)



(i.e., rather than reweighing the rewards of all the tra-
jectories generated by the behavior policy, we reweigh
the probability that trajectories of length [ are gener-
ated by the behavior policy). While this is a seem-
ingly reasonable thing to do, this estimate will still
suffer from high variance for the same reason the
WIS estimator does, which would again lead to as-
signing small weights for longer trajectories. Instead
we propose a heuristic way to make weights for dif-
ferent trajectory lengths have comparable magnitudes:

Wi (Estimated) £ ol Y77 wi/ 70 (T; =1). The
idea behind these weilgﬁts is that they should give us a
sense of which weights are preferred by the evaluation
policy while maintaining that weights of different trajec-
tory lengths have comparable magnitudes. As we see
in Figure [3] PHWIS-Estimated has almost identical per-
formance to PHWIS-Behavior and PHWIS-Evaluation
(with just a small probability of choosing the wrong pol-
icy when both trajectory lengths are short). However, the
true value of using such an estimator comes in domains
where the length of a trajectory depends on the policy,
and so PHWIS-Behavior may not be sufficient. We now
examine one such domain.

7.1 POLICY-DEPENDENT TRAJECTORY
LENGTHS

Consider a MDP that has three states—sg, s1, and so—
and two actions—X and Y. The agent starts in sg and,
on the first time step, if the agent takes action X, they
deterministically transition to s; and receives a reward
of r, and if the agent takes action Y, they transition de-
terministically to ss and receive a reward of 1. Thereafter
the agent will always remain in the same state until the
trajectory ends and will receive a reward of » whenever
it takes action X in state s1, a reward of 1 whenever it
takes action Y in state so, and a reward of 0 otherwise. If
the first action was X, the trajectory will end with prob-
ability 0.05 after each action, and if the first action was
Y, the trajectory will end with probability 0.01 after each
action. Thus, taking action Y in the beginning will result
in a trajectory that is five times as long in expectation.

The behavior policy 7, takes each action with probabil-
ity 0.5. Again, we want to compare two policies: 7Tx,
which takes action X with probability 0.99, and 7y,
which takes action Y with probability 0.99. Whether 7x
or Ty is better will depend on r. The policies have the
same value when r = 5, because the difference in re-
wards offsets the difference in lengths.

Figure |4| shows which policy is chosen when using dif-
ferent estimators for the domain described above with
various values for . We find that the IS, WIS, and even
PHWIS-Behavior estimators are unfair regardless of the

Probability of Choosing Policy 7y

Figure 4: Probability of various estimators choosing my
over mx for different values of r in the domain given in

Section

value of r (except for PHWIS-Behavior when r = 1).
PHWIS-Evaluation tracks the on-policy estimator rea-
sonably well, only sometimes choosing the wrong pol-
icy in the r = 4 case. PHWIS-Estimated similarly tracks
the on-policy estimator reasonably well, but it sometimes
chooses the wrong policy in the » = 3 case and is un-
fair when » = 4. Thus, PHWIS-Estimated seems to be
a reasonable policy selection estimator to use in such
domains, and can be much better than using PHWIS-
Behavior in some cases.

8 CONCLUSION

In this paper, we examined the problem of off-policy pol-
icy selection and introduced a new property for policy
selection algorithms called fairness. We showed that im-
portance sampling is unfair when used for policy selec-
tion even though it is an unbiased estimator for policy
evaluation. We presented two approaches to deal with
this issue, a theoretical solution and a new practical es-
timator. This is but a first step in tackling the issue of
fairness in off-policy policy selection. Our hope is that
our introduction of the notion of fairness for policy se-
lection will result in growing interest on the challenges
involved in doing off-policy policy selection, including
how unfairness propagates to policy search methods that
optimize over an infinite class of policies.
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SUPPLEMENTARY MATERIAL

A UNFAIRNESS OF
SAMPLING

IMPORTANCE

Suppose we want to use importance sampling to select
the better of two policies, 7. and 7, where we have prior
data collected from m;,, in a MAB with two actions a;
and a9, with rewards and probabilities as described in
Table 3] Notice that V™ = p + (1 — p)r and V™ =1,
so a fair policy selection algorithm should choose 7. at
least half the time since p + (1 — p)r < 1. If we draw
only a single sample from 7, we get that with probabil-
ity 1 — p, IS would select 7, over 7. Thus as long as
p < 0.5, IS will be unfair. Furthermore, notice that as
we decrease p, the gap between the performance of the
policies increases, yet the probability that IS chooses the
right policy only decreases!

Now suppose we draw n samples from ;. Notice that as
long as 75 is never sampled, IS will choose 73, since in
that case VI;“* = 0. m will never sample 7, with proba-
bility (1 — p)™. Thus IS is unfair as long as (1 — p)” >
0.5, oras long as p < 1 — 0.5/™ ~ In(2) /n for large n.

It may appear that this unfairness is not a big problem
when we have a reasonable number of samples, but the
practical significance of this problem becomes more pro-
nounced in more realistic domains where we have a large
number of possible trajectories, or equivalently, a long
horizon. For example consider a domain where there are
only two actions and the agent must take 50 sequential
actions and receives a reward only at the end of a trajec-
tory. Furthermore, consider that the only valuable trajec-
tory is to take a particular action for the entire trajectory
(analogous to ay above). In this case, we would need
over 10** samples just to get IS to be fair!

Table 3: Domain in Supplementary Material Rewards
are deterministic. The bottom two rows give the proba-
bility distributions for 7. and 7, over the two actions.

aq as
(R=r<1) (R=1)

Te 0 1

Tp 1-p p

B NON-TRANSITIVITY

Theorem B.1 (Non-Transitivity of >wc ). The relation
induced by ~yc,, is non-transitive. Specifically, there
exist§ policies Ty, T2, and 3 whefe .

Pr(Vigtw > Vigén) = Pr(Vigé, > Vién) =

Pr(Vps > Vit ) =1 — ¢ ~ 0.618 where ¢ = ¥Y3tL
is the golden ratio. Moreover, it is possible that for
any policy , there is another policy ©' where yc n
(n',7) = True.

Proof of Theorem|B.1] Consider a multi-armed bandit
where there are three actions: a;, which gives a reward
of n 4 1 with probability p and a reward of 0 with prob-
ability 1 — p, as which always gives a reward of 1, and
az which gives a reward of n? + n + 1 with probability
1 — ¢ and a reward of 0.5 with probability q. Suppose
policies 71, o, and w3 always choose action a1, as, and
a3 respectively. Now suppose we want to estimate the
three policies with n on-policy samples from each. We
have that m; gives a higher reward than 7o whenever we
get the large reward at least once, which happens with
probability 1 — (1 — p)™. Thus

Pr(Vid,, > Vaid,) = 1— (1 —p)"

Furthermore, clearly 75 gives a larger reward than 73
whenever all samples of 7y give a reward of 0.5, which
happens with probability ¢". Now, finally we see that 73
gives a larger reward than m; whenever it gives at least
one sample with a large reward or when both of them
give only samples of their small rewards, which happens
with probability (1 — ¢™) + ¢ (1 — p)", so

Pr(Viic, > Vi) = (1= ¢") +¢"(1—p)"

Nowletp =1—(2—¢)"/" and ¢ = (¢ — 1)"/", where
o = @ /2 1.618 is the golden ratio. Thus we have
that: R R

Pr(Vie,, > Vaidn) = ¢ — 1

Pr(Vige,, > Wid) = ¢ — 1
Pr(Vid, > Ve ) = (2= ¢)+ (60— 1)(2—¢) = 91

We now show that for this multi-armed bandit, there is
no optimal policy with respect to >wmc,,. A policy in
this setting is simply a distribution over a1, as, and as.
Equivalently, we can view any policy as a mix of the poli-
cies my, o, and m3. Suppose a policy 7 executes 7 with
probability p, mo with probability ¢, and 73 with proba-
bility 7. If p is the largest of the probabilities, then notice
that Pr(Vggm > Wicn) = p(@—1) > q¢ - 1) =
Pr(VI\Zme > Vﬁén) We can make a similar argument
if ¢ or r are the largest probabilities. Thus, there is no
optimal policy. O

C FAIRNESS PROOFS

Theorem 6.1. Using the on-policy Monte Carlo esti-
mator for policy selection when we have n samples



from each of policies m1 and T is fair provided that

Vi + V2. < V™ — V”ﬂﬁ We can guarantee
strict fairness if the inequality above is strict.

Proof of Theorem[6.1] Suppose w1thout loss of general-
ity that V™ > V7™, Let V’T Zt 1 Ris (e, the
estimate of the value of policy 7 using only 7.7). Now let

X, = ‘72_#1 _ ‘71_#2

Note that the range of X is [—Vj;2,, Vi1 . Let w be the
difference between the upper and lower bounds of X,
that is, w = Vjpl + Vj12.. Because all 7™+ and 7" are
independent of 77" and 7% for all i # j, we know that
X; is independent of X; for all ¢ # j. Thus we can use

Hoeffding’s inequality to find that:
Pr(X <0) = Pr (X - E[X] < -E[X])

o2

1nA‘n’ P
E;Viliviz

— V™. Thus, if we want to guarantee

Note that
_ 1
X ==
w2 i
and E [X ] vm
Pr (Vﬁén —
we can simply guarantee

_ T _ {/72)2
exp( 27”L(Vw2 1% )><5

Solving for w, we must have that:

_ T T2
- VMC,n - VMC,n

Vit <0) <6

2n

ws V" =V i)

Substituting § =
Orm Cr

Pr (VM(lj,n - VMé,n

ness when V™ > V™2 Since we do not actually know

which policy has a greater value, we can guarantee fair-
ness with the following condition:

0.5, we can thus guarantee that

> 0) > 0.5, which guarantees fair-

w < |V — VT2

In2
O

Theorem 6.2. Using importance sampling for policy se-
lection when we have n samples from the behavior policy
is fair with respect to >y, provided that

Vi, < [V

Wit Vi + R v

In2

We can guarantee strict fairness if the inequality above
is strict.

Proof of Theorem[6.2) Let Vi = 21 w™ R, (ie.,
the estimate of the value of policy 7 using only 7;). Now
let
_ f/jf 1 Vﬂ' 2

Note that the range of X; is [—wy2, Vit Witax Vatex) - Let
w be the difference between the upper and lower bounds
of X, that is, w = wif, Vi + Waiax V- Because 7;
and 7; are independent for all ¢ # j, we know that X
is independent of X; for all ¢ # j. The rest of the proof
follows exactly as in the proof of Theorem 6.1} O

Theorem 6.3. For any two policies w and o, behav-
ior policy my, and for all k € {1,2,3,...}, using im-
portance sampling for policy selection when we have n
samples from the behavior policy is fair with respect to
>=McC,kn provided that there exists ¢ > 0 and § < 0.5
such that Pr (|1A/Af,ré on — VA}% enl = e) > 1— 6 and
(wMax + 1)V1lzlr(1x (wMax + 1)VAZIF;X <e In 3175—55
tance sampling in this setting is transitively fair, provided
that § < 0.25.

. Impor-

Proof of Theorem|6.3] Suppose without loss of general-
ity that Pr (Vii& . — Viié i = €) 21— 6. Recall that
IS uses trajectories 71, . . ., 7, ~ mp. Consider additional
random samples 7', ..., 70} ~ m and 772, ..., T2 ~
mo. Note that these samples are all independent from
each other. Fori € {1,2,...,n}, let

1 k Tjq
Iy,
Jj=1t=1

(i.e., the estimate of the value of policy 7 using
only samples 77, 73;,...77;). Furthermore let Vig, =

23;1 w; ¢ 12 1. Now let

= gy = Vigy) — (V™ = V7™)
Notice that the range of X is [— V2 — Wi Vx> Vatax
Wy Vs ). Let w be the difference between the upper
and lower bounds of X, that is, w = (wy,, + 1) Vi +

T
(wMax + ]‘)VM:X
Notice that

K 23X 0 V) - 7 )

=1 =1

- ( AI7ST1 - ‘7I7STQ) ( MC kn VI\ZITC kn)

and

E[X] = (V™ —V™) - (VT - V™) =0

Thus we have that

Pr (Vg = Vg <0) = Pr (% =~ (Gt — Wit



= Pr (X ~B[X] € (Wit — Wit

Thus, we can use Hoeffding’s inequality to find that:

st e Orry S —2ne?
Pr (VIS —Vs® < O|VMc,kn - VMc,lm 2 6) < exp w2

So if we want to guarantee
Pr (Vg - Vi <0) <+
we can simply guarantee

72n(vl\jlr(lf,kn - Vvl\jlré,kn)2
exp <%

w?

Solving for w, we must have that:

Ve Ve 2n
w S (VMé,kn - VMé,kn) ln(l/'y)

Notice that
. f
Pr (Ve - Vg > 0)
~ A e S T
> Pr (Vlsl —Vis® < OVike kn — VM n 2 6)
O O
x Pr (VM(li,kn — Witkn = 6)

=z (1-=7)(1-9)

015__55 , we have that

If wesety =
Pr (Vg - Vg7 20) 205

which is what we want.

As long as § < 0.25, we have that the IS is transitively
fairness since any fair algorithm with respect to >wmc,kn
is transitively fair whenever Pr(\Vﬁéykn - Vﬂé wnl >
0) >0.75

D MULTIPLE COMPARISONS

Here we present an algorithm that uses pairwise compar-
isons to select amongst k& > 2 policies (Algorithm [3).
This algorithm can take as input either of the off-policy
fair policy selection algorithms above (or some variant
thereof).

Theorem D.1. For any finite set of k policies 11, behav-
ior policy my, p = 0.5, and fair off-policy policy selection
algorithm FPS, Algorithm[3|is a strictly fair policy selec-
tion algorithm with when we have n samples drawn from
Tp.

Algorithm 3 Oftf-Policy FPS for k policies

input II, Vl\l,;lax, €, D

T = {7’1,7’2,. ey T ™ 7Tb}, FPS
0+ (1—p)/(2k+3)
m* < Il.next
Eliminated < ()
CurrBeat < )
repeat
7’ < (II\CurrBeat).next
winner < FPS(7*, 7/, VJ;X, Vl\}[;x, €0,7T)
if winner == 7x then
Eliminated < Eliminated U {7’}
CurrBeat < CurrBeat U {7’}
else if winner == 7’ then
T — 7’
Eliminated <— Eliminated U {7*}
CurrBeat < CurrBeat U {7*}
else
7* < (IT\Eliminated).next
Eliminated <— Eliminated U {7*, 7'}
CurrBeat + ()
end if
until len(Eliminated) == k£ — 1 or len(CurrBeat) == k&
if len(Eliminated) == k£ — 1 then
return *
else
return No Fair Comparison

end if




Proof of Theorem[D.1] The algorithm essentially ap-
plies an algorithm for finding the maximum element
of a set, with the exception that whenever it cannot
make a fair comparison between two policies, it will
eliminate both of those policies from consideration
of being better than all other policies with respect to
the better-than function. The algorithm must return
No Fair Comparison if and only if every policy
is eliminated. Notice that we only eliminate a policy
when it is not returned by FPS or when No Fair
Comparison is returned, which is correct. Notice
that until there are k¥ — 1 policies that are eliminated,
at every comparison at least one policy is eliminated
and the last of those comparisons must include the
only remaining non-eliminated policy. Afterwards it
takes at most k — 2 comparisons with the final policy
(comparing it to every other policy other than the one it
was already compared to) to determine that no fair com-
parison is possible, making a total of 2k —3 comparisons.

On the other hand, the algorithm must return a policy
when that policy is outputted by FP S from comparisons
with every other policy, which is exactly what it does
(i.e. when the CurrBeated set includes k£ — 1 policies).
The maximum number of comparisons it takes to output
a policy is the number of comparisons it takes to elimi-
nate k — 1 other policies plus the number of comparisons
it takes to beat k — 2 policies using the same argument
as above, making a total of 2k — 3 comparisons. Thus,
if welet § = (1 — p)/(2k — 3) all of the comparisons
made by FPS will simultaneously hold with probability
1 — (2k — 3)d = p, and so setting p = 0.5 ensures fair-
ness. O

E SAFETY THEOREMS AND PROOFS

In this section, we will prove the theorems for ensuring
safety when using importance sampling for policy selec-
tion.

Theorem 6.4. For any two policies w1 and 7o, behavior
policy my, w = wygl, Vit 4wy Vg2, and 6 < 0.5, Algo-
rithm 2] is a safe policy selection algorithm with respect
to v with probability 1 — 6.

Proof of Theorem[6.4) Let V" = Zthl w; Ry (e,
the estimate of the value of policy 7 using only 7;). Now
let

_Yrm _ Yrm2
A

Note that the range of X; is [—wy Vit Waiax Vatax)- B~
cause 7; and 7; are independent for all ¢ # j, we know
that X; is independent of X; for all ¢ # j. Thus we can

use Hoeffding’s inequality to find that:
- - In(1
Pr<X—E[X} > —w n(2/7)> >1-
n

and

Pr (XE [X] <w 1n(1/’y)> >1-—
2n

where w = wy, Vira, + wyi, Vi Note that

n n

P DA AR S

i=1 i=1

X:

and E [X]| = V™ — V™. Thus, substituting (1 — p)/2
for v, we have that the following two statements hold
with probability at least 1 — 2y = p,

In(2/(1 —p))

VTV > VI - Ve —
= "IS 1S m

and

~ N In(2/(1 —
VT YT VT VT w

Thus the probability that V™ — V™ < 0 but V;7* —

Vg — /AP g or YT — V72 > 0 but VT +

VI’ST? — W < 01is less than p, which means for

p =1— 4, we will output the worse policy according to
>y with probability at most §, which is exactly what we
need. O

Theorem 6.5. For any two policies m and o, where
Pr (‘Vn%kn - VA}% el = 0) > 1 — uc any behavior
policy m, w = (W, + 1) Vigar + (Wi + 1)Viga 0 =
1—8mcd for some § < 0.5, and forall k € {1,2,3,...},
Algorithm 2is a safe policy selection algorithm with re-
spect to >y, kn With probability 1 — 6 when we have n
samples drawn from . It is a transitively fair policy
selection algorithm whenever 0y c < 0.25.

Proof of Theorem[6.5] Recall that Algorithm [2] receives
as input 74,...,7, ~ . Consider additional random
samples 7/',..., 7, ~ m and 7{%,..., 72 ~ ma.
Note that these samples are all independent from each
other. Fori € {1,2,...,n}, let

Tj i

1k
=% ZZR]M



(i.e., the estimate of the value of policy 7 using
only samples 77, 75;,...7;;). Furthermore let Vig, =
23;1 wi,tRi,t. Now let

= (Vi = Vi) = (Vish — Vis3)
Notice that the range of X; is [—VyiZ — Wit Vit Vatax +
Wyt Vaia)- Thus we can use Hoeffding’s inequality to
find that:

Pr(X—E[X]z—w W) >1-

2n

and

Pr(X—E[X]gw hl(l/‘”) >1-
2n

where w = (wMax + 1)VI\ZIT;X (wMax + 1>VI\ZIT§X

Notice that

n

X = gzxz ; (V7 = V) — (V3 — ig2)
= (Viiten = Viein) — (V5" = Vis?)
and
E [X} =(V™ -V™) (V™ —V7™) =0

Thus, substituting (1 — p)/2 for 7, we have that the
following two statements hold with probability at least

1—-2v=np,

In(2/(1 - p))

Vit~ Vit 2 Vg — V2 — /2L

and
O O gt O ln(2/(1 _p))
Vamcin = Yickn < Vis' — Vis® + —

2n

Thus the probability that Vﬁékn - ‘A/]J[ré e < 0 but
(Vg = Vg% —an/ L= > 00r VR = ViR >
0 but VT — V2 4 wy/CAZP) - (s less than

1 — p. Now suppose without loss of generality that
PV o > V2, = duc > 0.5. The probability
that we output 7o is at most p/dmc- Soif p =1 — dycd,
we output the worse policy with respect to =, xr With
probability at most ¢, which is exactly what we need.

As long as dyc < 0.25, we have that the algorithm is
transitively safe since any fair algorithm with respect to
>MC,kn 18 transitively fair whenever Pr(|V]\zr(1: - Vﬁé\ >
0) > 0.75 O

Theorem 6.6. There exists policies 71, wo, and behavior
policy T, for which Algorithm[2)with inputs as described
in Theorem is not a safe policy selection algorithm
with respect to =yc,1 with p = 0.5 when we have a sin-
gle sample drawn from .

Proof of Theorem[6.6] Consider a world where there are
three trajectories: 71 with reward 0.0001, 75 with reward
0.0002, and 73 with reward 1. We want to select between
two policies: 71, which places probability 1 on 75 and 72
which places probability 0.51 on 7; and probability 0.49
on 73. When we only have one sample from each policy,
Pr(Vyse, > Vata,) = 0.51 > 0.5, but clearly V™ <
V™. Now consider using IS with behavior policy 7,
which places probability 0.48 on 7; and probability 0.01
on 73 and probability 0.51 on 73. If we apply Algorithm[?]
with the inputs to guarantee that the algorithm is safe
with respect -y~ (as given in Theorem[6.4)), we find that
whenever 7, samples from 73,

ViSl - ViSQ (wMaxVM;x + wMaxVM;x) o
0.49 1 0.51 In4
=0(1)———(1 ——(0.0002 —(1 —
) 0.51()+<0.01( )+048()) 2

~ —0.060 < 0

Since this event occurs with probability 0.51, we find that
Algorithm [2| returns 7o more than half the time, indicat-
ing that Algorithm [2|is not a safe policy with respect to
=Mc,1 U
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