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Abstract—Cloud computing has become popular for shared
hosting of third-party applications. A cloud platform may mul-
tiplex virtual machines running different customer applications
onto a single physical server, raising the potential for performance
interference between such applications. In particular, when a
hypervisor shares the file system page cache between virtual
machines, as is common in Linux environments, it is possible for
one VM to impact the performance seen by other co-located VMs.
To address this drawback and improve performance isolation, we
design a page cache which is partitioned by VMs. Such a design
provides the ability to control fine-grained caching parameters
such as cache size and eviction policies individually. Furthermore,
the deterministic cache allocation and partitioning provides im-
proved performance isolation among VMs. We provide dynamic
cache partitioning by using utility derived from the miss-ratio
characteristics.

We implement our page cache architecture in the Linux
kernel and demonstrate its efficacy using disk image files of
virtual machines and different types of file access patterns by
applications. Experimental results show that the utility-based
partitioning can reduce the cache size by up to an order of
magnitude while increasing cache hit ratios by up to 20%. Among
other features, the per-file page cache has fadvise integration,
a scan-resistant eviction algorithm (ARC) and reduced lock-
contention and overhead during the eviction process.

I. INTRODUCTION

Cloud computing has emerged as a popular paradigm for
running a variety of third-party applications. In such an envi-
ronment, customers lease computational and storage resources
from the cloud platform and pay for those resources on a pay-
as-you-go basis. Cloud platforms provide a number of benefits
such as on-demand allocation of server and storage resources.
A typical cloud platform runs customer applications inside
virtual machines and multiple virtual machines (VMs) from
different customers may be mapped onto each physical server.

Since multiple VMs can be co-located on a server, there
is a potential for performance interference between co-located
VMs, and the underlying hypervisor must provide performance
isolation between these VMs. Modern hypervisors provide
strong mechanisms to partition resources such as the CPU—
for example, by dedicating CPU cores to VMs or partitioning
CPU bandwidth across VMs. While resources such as CPU
and network can be partitioned, resulting in performance
isolation, not all resources are isolated in this manner. In
particular, the in-memory file system page cache is a shared
resource in hypervisors, particularly in Linux environments.

A page cache is a memory buffer that caches frequently
accessed data on disk [29]. Achieving a high hit rate for the
page cache is critical for achieving good I/O performance in
VMs. However, when the page cache is shared across VMs,
it is possible for one VM to cause eviction of cached page
belonging to another VM, resulting in higher cache misses
and lower performance. Such performance interference can be
exacerbated in cloud environments where co-located VMs run
arbitrary applications belonging to different customers.

The primary cause for such interference is the use of a
unified page cache by the underlying hypervisor, and the use
of a LRU-based eviction policy that operates on a single LRU
list across all VMs. We argue that unified caches result in
poor utilization and interference and the lack of fine-grained
control over the page cache contents, size, and eviction policy
leads to non-deterministic and suboptimal resource allocation.
Furthermore, the LRU policy and unified nature implies that
the page cache is susceptible to cache-pollution occurring due
to large sequential reads/writes from VM applications. This
cache pollution leads to enlarged cache sizes, and decreases the
free memory available on the physical server. This reduction
in free memory results causes increased memory pressure for
the running VMs and forces cloud providers to consolidate a
smaller number of VMs on their physical servers.

To address these drawbacks, in this paper, we propose a new
page cache design, that logically partitions the page cache on a
per-VM basis. We call our page cache the per-VM page cache.
Since each VM gets it own page cache, the hypervisor can
provide better performance isolation across VMs. Furthermore,
each VM’s cache can be managed differently in a manner
that is best suited to that VM’s application, which can im-
prove performance. For example, each VM can have different
eviction algorithms depending on their access-patterns, usage,
priority, etc. The per-VM page cache allows more fine-grained
control over a globally shared resource (the page cache) among
applications and users and yields better performance isolation
and service differentiation.

Our per-VM cache partitioning technique enables setting the
cache size, eviction policy, etc. for each VM individually. In
addition to manual control of these parameters from userspace,
we have also devised a utility-based cache partitioning heuris-
tic which seeks to minimize miss-ratios. Our per-VM page
cache is a drop-in replacement for the existing Linux page
cache. We also allow users to control cache behaviour using
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Fig. 1. The logical architecture of the Page Cache interface. File-I/O cache
hits get serviced without going through the file-system itself.

the existing fadvise POSIX system-call and the procfs
kernel interface. The VM-based partitioning reduces cache
pollution by restricting the cache size of an individual VM.
While some of these benefits could be obtained in unified
page caches by using containers [16], [23] or control-groups
[2], the partitioned-cache yields a much cleaner design and
implementation.

In addition to improving system performance by increasing
cache hit ratios and providing service differentiation, our per-
VM cache can also provide additional benefits. For example:
when using KVM [17] to run virtual machines, there exist
two levels of the page cache [26]. The guest VMs maintain
a page cache in their private address-space, while the host
OS maintains a second-level cache which is shared by all the
VMs. This setup leads to double-caching — duplicate pages
are present in the caches. Since a virtual disk for a virtual
machine is a file, the per-file cache allows fine-grained control
of the second level host cache in virtual machine hosts. The
size of the second-level host page cache for each VM can be
specified, along with a special eviction algorithm tuned for
secondary caching (such as Multi-Queue [33]). This allows
improved I/O performance in the guest virtual machines and
smaller host page caches, which allows more virtual machines
to be hosted. Furthermore, the cache partitioning also increases
the isolation among virtual machines.

We have implemented our per-VM page cache as a small,
non-intrusive modification (1500 line patch) to the Linux
kernel. We conduct an experimental evaluation of our pro-
totype to demonstrate its efficacy using disk image files of
virtual machines and different types of file access patterns by
applications. Our experimental results show that the utility-
based partitioning can reduce the cache size by up to an order
of magnitude while increasing cache hit ratios by up to 20%.

The rest of this paper is structured as follows. We present
background on the Linux page cache architecture in Section II.
The design and implementation of our per-VM page cache is
presented in Sections III and IV. Finally, Sections V, VI,
and VII present experimental results, related work and our
conclusions.

II. BACKGROUND & MOTIVATION

Cloud computing platforms are designed to run third-party
applications inside virtual machines; each physical server may

run one or more virtual machines and the hypervisor is
responsible for allocating resources to each co-located VM.
There has been significant research on reducing performance
interference between co-located VM applications [14]. Place-
ment techniques use intelligent placement to avoid co-locating
conflicting application on the same server, thereby avoiding
such interference. Resource management techniques employed
by the hypervisor can also partition various server resources
across VMs to provide performance isolation—VMs may
be allocated a certain number of CPU cores, memory size,
network interfaces, virtual disks, and I/O bandwidth [13],
[28]. By enforcing the allocation of physical resources, the
hypervisor ensures that the VMs do not interfere with each
other and can run in isolation, as if they were the only users
of the resources allotted to them.

In this paper, we focus on Linux-based virtualization, which
is common in many popular commercial cloud platforms. In
this case, the Linux kernel, which normally functions as the
OS, also takes on the role of the hypervisor—virtual machines
using a virtualization technology such as KVM or Xen then
run on top of this Linux-based hypervisor. Interestingly, while
Linux allows partitioning of many common resources such
as CPU and network, the page cache is a shared resource
within Linux. The page cache is a memory buffer that caches
recently accessed disk blocks, which allows VMs to improve
I/O performance due to this caching (Figure 1 depicts how file
I/O operations use the page cache to enhance performance).
Since virtual machines use virtual disks, which are typically
files located on the hypervisor’s native file system, all disk
I/O operations of the VM translate to filesystem operations on
the hypervisor(Figure 2). This additional level of indirection
for disk I/O operations uses the hypervisor page cache as an
additional cache level which sits between the physical disk
and the VM.

Consequently, a shared page cache in a Linux-based hy-
pervisor has several performance ramifications for co-located
VMs. Most importantly, the shared page cache weakens the
performance isolation among VMs, since the disk I/O of all
VMs has to contend for the shared cache space. A VM having
more data in the hypervisor page cache has higher disk I/O
rates, since a larger fraction of I/O requests can be fulfilled
with the in-memory hypervisor page cache instead of hitting
the much slower physical disk. Similarly, a VM starved of
hypervisor page cache may suffer in performance even though
sufficient physical resources (CPU, memory) are available
to it. Thus, page cache sharing among VMs is a threat to
performance isolation in cloud environments.

VM-1 virtual disk cache VM-2

VM-1 VM-2

Guest disk I/O

Hypervisor page cacheDisk

Fig. 2. The hypervisor page cache is shared by VMs.



A. Linux page cache design

KVM [17] adds virtualization capabilities to Linux, and the
default Linux page cache is used by all the VMs. We shall
now see the architectural reasons for the page cache sharing,
and also describe some of the other performance issues caused
by the existing page cache design.

The Linux page cache implementation is highly
sophisticated—it implements a completely lockless read-side
page cache [21], and stores the offset → page mapping
in a per-inode radix-tree. Multiple files may correspond to
a single inode. In Linux, address-space refers to a structure
referenced by the inode structure. The address-space structure
contains the radix-tree mapping. Throughout this paper, we
use the terms file, inode, and address-space interchangeably.

Linux has a unified page-eviction mechanism, wherein every
page(cached, anonymous, slab) in the system is present in a
single logical LRU list. Thus, there is no dedicated LRU list
for the file cache pages, and cache pages compete to stay in
memory with other pages (belonging to applications, kernel
slab caches, etc.). Page eviction is controlled by the swap-
daemon (kswapd). A variant of the LRU-2 [22] page-eviction
algorithm is implemented.

This unified page cache design combined with the LRU-2
eviction results in a large amount of performance problems:
Performance interference: Since every file I/O operation
goes through the page cache, every file I/O operation per-
formed by a VM also goes through the hypervisor page
cache because the virtual disk of the VM is a file on the
hypervisor’s filesystem. Thus, the cache occupancy of a VM
depends on the rate and access patterns of its disk I/O. Because
the hypervisor’s page cache is shared between VMs with no
constraints, VMs may be starved of cache space and suffer in
performance. For example, a VM with a largely sequential
disk access pattern (like in the case of media streaming
servers) has a larger amount of data going through the page
cache when compared to a VM doing random I/O (as is the
case for database servers). Thus the performance of the VMs
depends on their co-location, something which cloud providers
strive to avoid, because they want to provide the same VM
performance regardless of the other VMs co-resident on the
physical servers.
Lack of QoS knob: Cloud providers and administrators may
want to control the allocation of the hypervisor page cache
to VMs, and treat it as a quality-of-service knob. The current
page cache design prohibits this.
Caching while swapping: The unified LRU lists for page
eviction (with all system pages on a single list) presents several
problems. The problem of swapping while caching (illustrated
in Figure 3) occurs when cache pages are more recent than the
swapped anonymous pages. In extreme cases this leads to VMs
being killed by the Out-Of-Memory Killer mechanism — even
when there exist sufficient memory for the VMs. This problem
occurs because of the inability to specify hard limits on the
size of the page cache (relative to total memory size). Although
the prioritization of cache pages vis-a-vis anonymous pages is
dynamically controlled by heuristics in the kernel, it is not
always optimum.
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Fig. 3. Memory vs time graph of an I/O intensive workload (from [26]).
The system starts swapping pages to disk even in the presence of a large page
cache.

Cache eviction algorithm: At the heart of the caching-while-
swapping problem is the inadequacy of LRU-2, which is not
scan resistant—a sequential read of a large file leads to the
cache being “polluted” by the recently read pages. Modern
caching algorithms such as the Adaptive Replacement Cache
(ARC) [19] or LIRS [15] have been shown to be significantly
superior to LRU-k, are scan-resistant, and seem to require
fewer magic-parameters.

Second level Caching: There exist a multitude of situations
where the page cache is part of a hierarchy of caches. When
using Linux to run virtual machines using KVM(which is
part of the Linux kernel), the host page cache serves as a
second level cache because the guest VMs maintain a cache
as well. This leads to double caching [26], with pages present
in both host and guest caches. Guest I/O performance can
be improved if the host cache implements some algorithm
specifically designed for secondary caches such as MQ [33].

Scalability: A single LRU list consisting of millions of
pages presents numerous difficulties. On systems with a large
amount of memory, the time required to complete the LRU
list-scan is prohibitively large. With large scan intervals, the
CLOCK heuristic ceases to be effective because it simply
divides the pages into active and inactive pools with no
ordering within the pools themselves. The virtual-memory
system thus has an imprecise view of page access patterns
and working-set size. Cold pages thus stay on the LRU list
(and thus in memory) much longer because of kswapd’s delay
in reaching them. This leads to an inflation in the overall
cache size without any benefits, since the cold pages are never
going to be used in the future. Increasing the page scanning
frequency would alleviate the problem — but at the cost
of increased overhead due to traversal of the LRU list and
especially the costs incurred due to acquiring/releasing the
LRU-list spinlock for every page during every scan. Thus,
the current page cache design needs an overhaul if it is to
keep up with exponentially increasing DRAM capacities (in
accordance with Moore’s law).
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III. PER-VM PAGE CACHE DESIGN

We now describe the design and architecture of the per-VM
page cache. The per-VM page cache is a drop-in replacement
for the existing Linux page cache and provides the same
caching semantics to user-space processes (which includes
KVM VMs).

The primary focus of the redesign is to split the page
cache from a single large shared cache to multiple, inde-
pendent caches. Each VM has its own, private, hypervisor
page cache, which is unencroachable by other VMs. This
separation provides performance isolation and QoS control for
the VMs. The per-VM page cache is also configurable by the
hypervisor and VM-management layer (such as OpenStack) on
a per-VM basis. That is, the cache size and other properties
such as eviction algorithm can be controlled for every VM
individually, and the per-VM cache enforces these policies.

We note that this page cache redesign is completely at the
hypervisor level, and VMs do not have to be modified in any
way to avail the performance benefits. The VMs will only
observe higher disk I/O performance (because of the cache
separation) and other performance isolation benefits.

Figure 4 illustrates the high-level architecture. There are
three major components :(i) an offset-to-page mapping which
is implemented as a radix-tree, (ii) the per-VM cache manager
which tracks the pages present in the radix-tree for the purpose
of accounting and eviction, and (iii) the reaper thread which
maintains the list of VMs for the purpose of eviction of pages.
The key point is that the pages belonging to VM are not put on
the global LRU lists. Instead, all pages of a VM are handled by
its corresponding cache manager. The cache manager handles
radix-tree hits, misses, and deletes. This way, we achieve
isolation between VM page caches, and can have different
cache configurations and algorithms for different VMs. We use
locks for every VM’s radix tree for synchronizing concurrent
updates, and a global lock for the reaper thread for guarding
the VM list.

A key feature of our design is that all the caching decisions
are local to a VM, and are made by the VM’s cache manager.
The cache manager is delegated the task of handling the VM’s

cache pages. The cache manager maintains some sort of a page
index (usually some variant of the LRU list) to keep track of
page hits, misses, and evictions. Any caching algorithm such
as LRU, ARC, LIRS, etc. can be used in the cache-manager
module. For our prototype, we have implemented CAR [19]
and FIFO (First In First Out) eviction algorithms. The cache
manager has the task of ensuring high hit rates for the VM
given cache space constraints. It meets this by evicting pages
when full and when the reaper shrinks the cache for a VM. It
can also ask the reaper for additional cache space.

The cache partitioning is done by the reaper-thread, which
balances the size of each VM’s cache as well as the global
page cache size (total number of pages present in all the
page caches). The primary weapon of the reaper is the ability
to evict/reap pages. The reaper maintains a list of all active
cache-managers (one cache manager per VM), and requests the
corresponding cache-manager to evict pages. The VMs in the
reaper-list are ordered by least recently used. Like any other
LRU list in the kernel, a CLOCK approximation is used. The
reaper-list is updated by the reaper-thread whenever evictions
have to be performed. Thus, the least recently used VMs are
the victims of the reaping, and the VM’s cache-manager gets
to choose which pages to evict from their cache.

The reaper implements three important functions:

1) Make space for new VM’s cache by evicting pages from
other VM caches.

2) Make space for a VM’s cache by increasing the total
cache allocation. This may result in increased swapping.

3) Shrink total page cache if pressure on anonymous mem-
ory is high.

The reaper is called by the cache managers (Figure 4) when
they request for additional space (either for a new VM, or if
the cache manager deems that the VM could benefit from
additional cache). All the reaper’s external interfaces are non-
blocking, and simply update the number of pages to reap. The
thread periodically runs and evicts the requested number of
pages in an asynchronous manner.

A. Utility based Cache Partitioning

While our per-VM cache implementation can be used for
implementing strict limits on the cache-sizes for various VMs
(through the sysfs kernel interface or the fadvise system-
call), general situations demand an adaptive solution to deter-
mine the cache sizes of various VMs. Page cache partitioning
is important to improve the cache hit ratios and overall I/O
latency. A good partitioning ensures that every VM gets the
“right” amount of page cache at all times, depending on the
total space available for caching and the access patterns of the
VMs. To determine what the “right” partitioning is, we use
utility as a metric.

For systemwide page caches, there exist two important
dynamically changing values: the number of pages cached for
a given VM, and the total number of page cache pages. In
systems with a global LRU list (current Linux design), these
values are not explicitly manipulated, but change depending
on the number of pages evicted and added. One key advantage



of system-wide LRU approach is that it naturally adapts to the
changes in workload, system-load, and memory pressure.

With a partitioned page cache, manipulating these parame-
ters (cache size of each VM and the global cache size) is an
explicit task. While very sophisticated marginal-utility based
cache partitioning approaches [24], [30] can be attempted, we
have implemented simple and light-weight adaptive heuristics
to manage the cache sizes. Part of the reason we have not
considered complicated heuristics is that the insertions and
deletions from the caches are performed from inside critical
sections (thus holding spinlocks) and need to be extremely
fast.
We now present a formal treatment of the cache partitioning:

Each VM i, when launched, is soft-allocated Ci number
of pages in the hypervisor page cache. This represents the
maximum possible size that the cache allocation can grow.
If this maximum size is reached, then there are two possible
cases:

1) The page-eviction algorithm of VM-i evicts pages to
make room for new pages.

2) The VM’s cache controller asks for an increase in Ci.
The cache-partitioning problem is thus: Given n VMs, with

a total of M physical memory pages present in the system,
determine Ci and F , where F =

∑n
Ci and F + A = M ,

where A is the number of ‘other’ pages which are managed by
kswapd. There may be user and system-defined constraints on
the minimum and maximum limits for each Ci. The objective
is to assign values to Ci so as to minimize the expected number
of cache-misses, given recent cache access history.

In our implementation, a VM’s hypervisor page cache size
(Ci) is allocated proportional to the VM’s marginal utility of
the cache. The cache utility of a VM [24] is the the benefit
it gets from an extra cache page allocated to it. The benefit
is measured in terms of decrease in the number of misses
that the VM encounters. Marginal Utility(MU ) is function of
cache size, and is the slope of the Miss-Ratio-Curve. Thus,

MUs = miss(s+ 1)−miss(s) (1)

Where miss(s) is the number of misses that occur with a
cache size of s. The optimum partition of a cache among k
VMs is obtained by solving:

Total Utility = Ux1
1 (f1) + Ux2

1 (f2) + . . .+ Uxk
1 (fk) (2)

Where U(fi) is the utility function of VM fi. Assuming a
cache size of F , an additional constraint is:

F = x1 + x2 + . . .+ xk (3)

Thus, given accurate and complete miss-ratio curves, a
cache can be partitioned optimally. This general cache-
partitioning problem is NP-Complete. However, if the util-
ity functions are convex, then a simple greedy algorithm
suffices [24]. The miss-ratio based utility function as de-
fined above depends on the VM’s access-pattern (sequential,
random, cyclic, etc) and is also dynamic in nature. Miss-
ratio curves are obtained by running the LRU stack-distance
algorithm [6] on an access-trace of a VM.

An important point to note is that we also consider the read-
ahead successes when determining the utility. If the read-ahead

success-rate is very high, then the VM is running a sequential
access application, which will most likely not benefit from the
extra cache. Therefore the utility is calculated as:

Utility =
Misses− (Read Ahead Successes)

Total Accesses
(4)

This allows us to quickly detect sequential accesses and
not waste precious cache on them. This approach also nicely
integrates with the ARC’s ‘single-use’ list [19], since we can
potentially also use the shadow-list success-rate as a guide for
sequentiality and utility. That is, a VM with very high hits
in the shadow-list should get a larger cache. A shadow-hit
implies a cache-hit had the cache been double the size, thus
is a perfect input for a utility function.

VM cache shrinking is handled by the reaper thread since it
is incharge of the evictions. As mentioned earlier in Section III,
the VMs are present in an LRU order on the reaper list. The
least recently used VM is chosen as the victim. The number
of pages to evict from a victim VM is proportional to the size
of the VM. This ensures that any “wrong” decisions by our
allocation strategy do not cause catastrophic damage to the
performance of VMs with small page cache footprint.

In our current implementation, the total space allocated for
all the VMs in the cache F , keeps growing until the system
starts to swap. On swapping, it decreases to reduce the memory
pressure. We integrate with the existing page-eviction metrics
of pages scanned and pages evicted, which are used by kswapd
to determine the proportion of VM page cache and anonymous
pages to keep/evict.

It must be emphasized here that our design incorporates
support for both adaptive and user-specified changes for all
parameters, including cache sizes and growth-rate for each
VM. Users/processes can control the VM’s cache allocation
via the kernel procfs interface or by using the fadvise
system-call. The adaptive allocation and partitioning heuristics
are the default in case no allocation-policy is specified from
userspace.

IV. IMPLEMENTATION

Our per-VM page cache is implemented in the Linux kernel
as a drop-in replacement for the existing unified cache. Our
implementation is restricted to the virtual-memory subsystem
of the kernel, and every effort has been made to minimize the
footprint of our changes. The total size of the patch required
for implementing the per-VM cache is about 1500 lines.

In order to implement the partitioned cache, we steal
pages destined for the unified page cache by removing them
from the systemwide LRU list and by putting them on the
Un-evictable LRU list. This prevents the swap daemon
from touching these pages, and results in the LRU lists con-
taining only non-cache pages (anonymous, slab). Our design
does not require any changes in the management/eviction of
the LRU lists—that task is still performed by kswapd.

Page cache pages are managed by putting them in a per-VM
cache manager. Each VM’s cache manager maintains its own
cache state: the size, eviction-algorithm are all independently
configurable. The existing Linux LRU-2 implementation is
replaced by the CAR [5](CLOCK with Adaptive Replacement)



Value Symbol Adaptive change
VM page cache-size C Increases when miss-rate exceeds global miss-rate. Decreases when hit-rate is lower than global hit-rate
Total cache size F-size Increases when free-space exists. Decreases during swap activity and when swap daemon is frequently

scanning anonymous pages for eviction

TABLE I
SUMMARY OF CACHE ALLOCATION PARAMETERS

algorithm. CAR is the CLOCK approximation of the Adaptive
Replacement Cache(ARC) [19]. Our CAR implementation is
only around 300 lines of code, compared to the ˜2000 lines
required for the existing Linux page eviction implementation.

The file-cache eviction and free-space management is per-
formed by a reaper thread, which is called when the total
number of pages present in caches of all the files exceeds a
threshold or when the system is low on free memory. The
reaper thread maintains a list of all inodes ordered by LRU
order of file accesses. To approximate the LRU, we use a 2-
chance CLOCK — a file is declared ’cold’ after being given
two scans during which it has the chance to get accessed again.
The reaper thread is implemented as a kernel-thread.

Our implementation is SMP-ready — the primary advantage
of splitting the LRU list by file is the reduction in the
contention of the LRU zone-lock. The spinlocks used in the
implementation and their usage is detailed below:

reaper-lock: The reaper thread protects its list using
the reaper-lock. The lock is acquired during inode addi-
tions/deletions, and the reaping itself, when the reaper walks
down the reaper-list and updates it, or evicts pages from the
inodes on the list. Since the number of inodes which need
to be scanned during the reaping may be very large, reaping
may take a large amount of time. The reaper-lock overhead is
reduced by releasing and reacquiring the lock after scanning
every inode, so that file open/close operations are not affected
for a long period of time. The reaper-lock is not heavily
contended because it is only acquired by the reaper and when
files are opened/discarded. This is in contrast to the zone lock
which is acquired for every cache miss.

inode-lock: The inode-lock is an important part of existing
Linux inode synchronization. The inode-lock is acquired to
prevent concurrent deletes of the inode via the reaper.

CAR-lock: The cache manager (CAR in our case) needs to
protect its page index against concurrent cache-misses on the
same file. We must emphasize that the lock does not destroy
the lockless property of the page cache implementation. The
lock is only acquired under two conditions:

1) Page additions (which corresponds to cache misses). On
a cache-miss, the radix-tree lock has to be taken anyway.
This is required because the reaper can also request an
eviction concurrently on the same file.

2) Page evictions. If the eviction has been forced by the
reaper thread. Since CAR uses CLOCKS, there is no
lock acquired for a cache hit.

Improved scalability by reducing lock contention for the
page eviction process was an important design goal for the
per-file cache, and the primary advantage of the partitioning
is the reduction in the lock contention for the LRU list lock.

V. RESULTS

The per-VM page cache is a general purpose page cache and
can be used by VMs and any other user-space process. Due to
the double caching phenomenon [26] which occurs with VMs,
we use user-space processes doing file-IO to mimic VMs.

To test the effectiveness of our cache, we run multiple I/O
intensive workloads. The workloads are described in Table
II. All I/O workloads are generated by using fio (flexible I/O
tester) [1], and the working set size of each workload is atleast
two times larger than the total memory available.

Workload Description
rand-seq Mix of random and sequential read workloads

kerncompile Kernel compile(Linux 3.0) with 3 threads

TABLE II
WORKLOAD DESCRIPTION.

A. Cache utilization
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Fig. 5. Average page cache sizes. Per-VM caching results in a large reduction
in cache size required. The per-file cache shows an order of magnitude
reduction in cache size for this workload, illustrating the effectiveness of
the utility based cache partitioning.

Figure 5 compares the average size of the page cache for
the random-sequential and kernel-compile workloads (Table
II). With the per-VM cache, we use only 40 MB of cache,
while the default uses almost all the memory available and
occupies 400 MB. This is an order of magnitude difference in
the cache sizes. This reduction in cache footprint is due to both
a different eviction algorithm (ARC vs LRU-2), as well as an
effective demonstration of the utility-based cache partitioning.

Case Hit-ratio
Default 0.622

Per-VM cache 0.714

TABLE III
SYSTEM-WIDE PAGE CACHE HIT RATIOS FOR THE RAND-SEQ WORKLOAD

MIX. WE SEE A 15% IMPROVEMENT.

The actual I/O performance is shown in Figure 6. The
I/O performance in this case is not perturbed much. This
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Fig. 6. Application performance improvement with per-VM-cache compared
to default Linux page cache.

increase in cache effectiveness (we are able to use a much
smaller cache for the same performance) is primarily because
of the utility based cache sizing. In both the cases - Sequential
and Random workloads, the marginal utility is very low. We
identify the sequential workload on the basis of the high read-
ahead-success to cache-hit ratio, and thus penalize that file
when it asks for more memory. For the random-read case,
the working set is larger than the total memory, thus the hit-
rate is again quite low. Since margin utility is hit-rate based,
and since utility guides the allocation, the file having random
accesses is also prevented from growing at a very fast rate. The
systemwide cache hit-ratios for the same workload(random-
sequential) are presented in Table III. The overall hit-ratios
increase by about 15%. Thus, the per-file-cache is able to
provide an increase in hit-ratios with a 10x smaller cache
occupancy.

Small-file performance is measured by performing the
kernel-compile workload. Due to a large number of open files,
it is a good test of the worst-case behaviour of the partitioning
scheme. Figure 6 shows an improvement of 10% in compile
times of compiling the Linux kernel with the per-VM-cache.
We also see a decrease of 20% in the cache size required
(Figure 5).

B. Impact on system performance

Default Per-VM Cache
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
y
st

e
m

 l
o
a
d

Max load

Average load

Fig. 7. Load average during the random-sequential workload. The load is
20% less with the per-VM-cache.

Since several key components of the memory-management
subsystem have been substantially modified, the performance
of our unoptimized implementation was expected to be infe-
rior. However, as Figure 7 shows, the load averages with the
per-file cache are lower. We hypothesize that this is because

of not maintaining and scanning a global LRU list of pages.
The CPU utilization of the reaper thread was too close to 0%
to measure accurately. System-wide profiling has shown that
the CAR shadow-list linear search function(which is called
on every cache miss) is the most expensive component of
the entire setup. Replacing the linked-list by a suitable data
structure to reduce search cost is part of future work.

VI. RELATED WORK

Our work builds on a large volume of work in the areas of
utility-based cache partitioning and page cache design.

Work by Pei Cao et al. [8]–[10], describes techniques for
application controlled caching — wherein applications can
control the contents of the page cache explicitly by specifying
which blocks to evict in case the cache overflows. The LRU-
SP [10] algorithm which they have devised allows applications
to over-rule the kernel’s eviction decision. In contrast to our
work, the kernel still maintains a unified LRU list, and thus
there is no explicit control on the size of each file’s cache.
Early work in OS disk-caches by [12] models the hit-
ratios in a cache hierarchy when each cache in the hierarchy
implements a different demand-paging algorithm (such as
LRU,FIFO,RANDOM). Several optimizations for OS-level
disk-caches have been proposed and prototyped. The Karma-
cache system [32] use marginal gains to guide placement
of data in a multi-level cache hierarchy — address ranges
with a higher marginal gain are placed higher(closer to the
application). It implements various heuristics for cache alloca-
tion, file-access pattern detection, and replacement. Disk cache
partitioning is also explored in [30]. The RACE system [34]
performs looping reference detection and partitions the cache
for sequential, random and looping files. Similarly, DEAR [11]
presents an implementation study of caching using adaptive
block replacement based on the access patterns.

An implementation of a policy controllable buffer-cache in
Linux is presented in [3]. Policy controllable caches are a
natural fit for micro-kernel architectures, where the policy is
implemented by servers which need not run in the kernel-
mode. Hence, the cache-manager can be abstracted away into
a separate server, and it interacts both with the buffer-cache
server itself as well as other userspace servers to determine
and control the policy. An example of such a scheme has been
shown for the Mach [18] and HURD [31] micro-kernels.

Cache partitioning is a very widely studied problem in
CPU architectural data caches (L2) which are shared among
multiple threads. Work by [4], [20] details several cache
partitioning schemes, where the algorithms decide on which
application threads get how many cache ways(lines). The goal
is to minimize the number of cache-misses. The key insight of
the cpu cache partitioning research is that different applications
have vastly different utilities. That is, the miss-ratio vs. cache-
size (Miss-ratio Curve) of each application is different, and it
is beneficial to allocate cache space by choosing a size for
each application which minimizes the miss-rate derivative.

Singleton [26] implements a black-box exclusive caching
solution for KVM environments by reducing the host page
cache size. Page cache management for virtual environments



is also covered in [27], however it requires changes to the
guest OS. Ren et.al., [25] present a new buffer cache design
for KVM hosts. Their ‘Least Popularly Used’ algorithm tracks
disk blocks by recency of access and their contents. Duplicate
blocks are detected by checksums and eliminated from the
cache. Several approaches to effectively use a multi-tiered
cache hierarchies exist(such as Multi-Queue [33]).

Performance isolation can also be provided by using iso-
lation features of operating systems. Several solutions exist
to provide complete isolation to process-groups using OS-
level virtualization — Jails [16] in FreeBSD, Zones [23] in
Solaris, and control-groups (cgroups) in Linux [2]. Our per-
VM cache can trivially provide page cache virtualization to
process-groups. The I/O-lanes project [7] aims to provide end-
to-end I/O isolation in virtualized environments by completely
partitioning the I/O stack.

VII. CONCLUSION

With increasing memory sizes, it is imperative to have fine
grained control of the page cache. The per-VM page cache
is an attempt to design and implement a general-purpose
high-performance page cache solution which is designed to
be scalable. Some of the limitations of the Linux’s virtual
memory subsystem, such as a single LRU list, non-scan
resistant eviction algorithm, lack of support to specify page
cache occupancy have been addressed by our design. By
partitioning by using miss-ratio based utility function, we have
shown that it is possible to increase cache hit ratios while
decreasing the memory required by upto 10x. Among several
other features, the per-VM page cache allows each VM to have
different cache sizes and replacement algorithms. The per-
VM page cache improves performance isolation among VMs,
increases VM disk I/O performance, and reduces hypervisor
page cache size which in turn allows cloud providers to run
more VMs on their physical machines.
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